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Local properties of Kauffman's N-k model: A tunably rugged energy landscape
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The N-k model is a dilute, k-ary spin glass in which the state of each of the 1V sites is affected by that
site and k of its neighbors. As a function of k for large k, we explicitly compute the number of local
minima of the Hamiltonian, the distribution of locally minimal energies and the first two moments of
that distribution, and a number of statistical properties of "downhill" walks from random starting posi-
tions to local optima on these landscapes, including estimates for their length. We suggest some implica-
tions of these results for spin-glass physics and for approximating other landscapes that cannot be
modeled using more conventional, quadratically coupled spin glasses.

PACS number(s): 64.60.Cn, 87.10.+e

I. INTRODUCTION AND SPECIFICATION
OF THE MODEL

The properties of multipeaked "fitness" or "energy"
landscapes have attracted attention, both in many areas
of physics and in a wide variety of other fields, including
evolutionary biology and computer science. Biologists
[1—7] have embraced this paradigm in the hope that they
might learn something about evolution, and computer
scientists [8,9] hope to use evolutionary strategies in de-
veloping methods of solving combinatorial optimization
problems. Similar issues have also attracted the attention
of physicists [10,11], who speculate that the thermo-
dynamics of glassy systems, such as polymers and other
more or less random covalent networks, are intimately re-
lated to the complex structure of the barrier heights
present in the potential surface. The common denomina-
tor in all of this work is a notion that has become known
as a "rugged landscape. " If one is a biologist, such a
landscape can be interpreted as a fitness landscape; if one
is a computer scientist, the landscape is the set of allow-
able configurations in some optimization problem; and if
one is a physicist or chemist, it is a glass and/or spin
glass.

The primary focus of the most well-developed theory
of rugged landscapes, namely, the theory of spin glasses,
has been the global properties of specific kinds of
landscapes; that is, the properties of the partition func-
tion and, in particular, the existence and nature of phase
transitions for landscapes with pair wise interactions
(such as the Sherrington-Kirkpatrick model) [12]. Al-
though there have been some results concerning metasta-
ble states of these landscapes [13], and there have been
some investigations of the global properties of more corn-
plex landscapes (e.g. , k-ary spin glasses), we believe that
the previously unexplored local properties of these more
complex landscapes determine, for example, evolutionary
adaptation. Suppose we assume, following Gillespie [14],
that selection often proceeds on a significantly faster time
scale than mutation. In this regime, Gillespie argues that
long periods of stasis are punctuated by the efFectively in-
stantaneous replacement of the wild type by an advanta-

geous mutation, and that deleterious mutations will die
out suSciently rapidly to be invisible over a slow time
scale. This leads to the metaphor of evolutionary adapta-
tion as an "uphill walk on a rugged landscape. "

There are also compelling reasons for workers in other
disciplines to be interested in such walks. In computer
science, the most obvious algorithm for solving combina-
torial optimization problems, such as the well-known
"traveling salesman problem, " is that of "iterative im-
provement. " This algorithm, which consists of making
incremental improvements to an initial trial solution to
the problem, is obviously another example of an adaptive
walk, but this time in the "downhill" direction.
Downhill walks in phase space are also relevant to the
low-temperature, dynamical behavior of glassy materials,
for which the waiting time to return to equilibrium may
be efFectively infinite. Yet another place in which the lo-
cal properties of a landscape play an important role is in
the economic concept of a Nash equilibrium (in which no
economic actor can improve his lot by acting unilateral-
ly), which is clearly a local optimum. In each of these
cases, results concerning the lengths of these adaptive
walks and the energy of a typical local optimum are
clearly of interest, both for "greedy" or "gradient" walks,
in which the walker steps to the best of its neighbors, and
for "random adaptive" walks, in which the next step is
chosen at random from the set of better neighbors.

The purpose of this paper is to discuss the local proper-
ties of a class of landscapes which has become known by
the generic name, the N kmodel [3]. N k-landscapes are-
representative of a wide class of models that stochastical-
ly assign energies to the vertices of the Boolean hyper-
cube, provided that the energies have a roughly Gaussian
distribution and that the sequence of energies generated
by unbiased random walks on the landscape approxi-
mates a stationary Markov chain [15]. This class of
landscapes, which includes a variety of spin-glass models,
is characterized more completely below.

Heuristically, the N-k model is an attempt to under-
stand the dependence of a system with N "parts, " on a
parameter k which measures how richly interconnected
the parts of the system are. (In order to conform to the
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original specification of the model, we take k to be the
number of other parts interacting with a given part. Note
that some other authors take this quantity to be the total
number of interactions per site. ) As we will see, tuning k
from 0 to X—1 tunes the ruggedness of the correspond-
ing energy landscape. The ruggedness of the landscape
alters the character of downhill walks toward optima un-
der any of a variety of optimization procedures, ranging
from mutation and selection of fitter variants ("hill climb-
ing") to annealing (either physical or simulated) to
recombinational strategies. Thus understanding the
structure of X-k landscapes is of importance in the wide
variety of situations mentioned above. In order to fix ter-
minology, we will use the word "energy" to describe the
landscape parameter that is to be optimized; we choose it
only to appeal to an audience of physicists. For the same
reason, we adopt the convention that the optima of in-
terest are minima, rather than maxima. However, as the
foregoing makes clear, the issues we wish to consider are
richly interdisciplinary. The words "fitness" or "payo8"
could equally well have been chosen, and we could also
be interested in maxima, rather than minima. Our
methods apply to local maxima with only trivial
modifications.

The simplest X-k landscapes are constructed on the
N-dimensional hypercube whose vertices are the set Xz
of all possible Boolean vectors of length N. (Although it
is biologically more plausible to allow either four symbols
per site, thus modeling the interactions of bases in a
DNA molecule, or to allow a symbol per site for each of
the 20 amino acids, and thus model a protein, we will

show that the qualitative features of these generalizations
are already present in the simple binary model. ) To form
the landscape, we assume that the "Hamiltonian" H of
the entire X bit string is the average of contributions
from each of the individual bits. We choose the contribu-
tion h,. from the ith bit as a function of the state of that
bit and k &N other bits. The individual h s can there-
fore have 2 +' possible values, one for each of the possi-
ble states of the k+1 bits on which h, depends. Each of
these 2 +' possible energy contributions is assigned by
selecting an independent random variable from some
specified probability distribution,

I' (x ) =Prob(h, & x ),
thus expressing our ignorance of the exact nature of the
interaction between each site and the others. This set of
assignments constitutes the "energy table" for the ith bit.
There is a diferent, independently generated table for
each of the 1V bits which, once chosen, is never reas-
signed. In other words, the model is a "quenched, " rath-
er than an "annealed" model. See Table I for a pictorial
description of the model.

It remains to specify the "neighborhood" of each bit;
that is, the k other bits upon which it depends. The sim-
plest of these cases, at least when k is even, is to imag''ne
that the neighborhoods consist of the k/2 bits that are
the nearest neighbors on each side of the bit in question
and to assume that the bits are arranged in a circle
(periodic boundary conditions), which guarantees that
each bit does, indeed, have k neighbors. The other ex-
treme is to consider "neighborhoods" in which the k bits

TABLE I. Graphical representation of the N-k model for N= 8, k =2, adjacent neighborhoods, showing the tables used for com-
puting the fifth and sixth site energies, but not the others, because they are computed by a similar procedure. In the 8-bit string
whose energy is to be computed, the substring consisting of bits 4, 5, and 6 is "101," so the fifth site energy is 0.73, as per the under-
lined entry in the table at left. Similarly, the substring consisting of bits, 5, 6, and 7 is "010," so the sixth site energy is 0.29. In gen-
eral, there will be 2 +' entries in these tables. The ith of the N tables is indexed by the (k+ 1)-bit substring formed by concatinating
bit i with its k "neighbors. "

Bit position

N bit string to be
assigned an energy

Energy contribution
of bit position

0.39 0.46 0.91 0.18 0.73 0.29 0.84 0.70

Energy of above string = Average of energy contributions = 0.56

Bit
4

Value of indep.
sample from P(x)

Bit
5

Table for computing the contribution
of fifth bit position
Bit
6

Bit
5

Bit
6

Value of indep.
sample from P(x)

Table for computing the contribution
of sixth bit position
Bit
7

0.32
0.21
0.19
0.93
0.87
0.73

0.64
0.88

0.99
0.10
0.29

0.22
0.86
0.39
0.48
0.61
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are chosen at random. Note that these two extremes cor-
respond to two important kinds of spin glasses: the adja-
cent neighborhoods correspond to a one-dimensional,
short-range spin glass; the random neighborhoods corre-
spond to a dilute, long-range spin glass. However, one
notable feature of this model is the possibility of studying
the effects of dimensionality of the lattice by "unravel-
ing" a d-dimensional rectangular lattice with L sites on a
side into a one-dimensional lattice with X=L" sites.
When the adjacent neighborhood of site i in d dimensions
is unraveled into a one-dimensional lattice and the sites
are numbered consecutively, the sites in the d-
dimensional neighborhood are now site numbers
i —l, i+1, i —L,i +L,i —L,i +L, . . . , i —L",i +L".
Another possibility of the model is that of generating
"intermediate-range" spin glasses by allowing the neigh-
borhood of each site i to depend randomly on some k bit
subset of the N~ bits of the string closest to i, for y ( 1.

To see that alterations in k do indeed "tune" the
ruggedness of the landscape, consider the landscapes gen-
erated by the largest and smallest possible k values: For
k =0, the energy contribution of each site depends only
on the bit value at that site, and not on bit values at any
of the other sites. If the probability distribution from
which the energy contributions are sampled is continu-
ous, the probability that two such samples are exactly
equal is zero; hence, a single specific sequence comprised
of the fitter bit value in each position is the single, global
optimum in the energy landscape. This simple case cor-
responds to the mean-field approximation to the energy
of a spin system in physics and the haploid, multilocus,
two-allele additive genetic model in population genetics
[16]. We can define the "local correlation" of an energy
landscape as the average correlation of the energy of each
configuration with the energy of its 1-mutant neighbors,
that is, those configurations obtained by Gipping any sin-
gle bit to the opposite state. Since such a Rip can only
alter energy by O(1/N) in k =0 landscapes with N sites,
such landscapes are highly locally correlated. Further-
more, any downhill walk from a given configuration
through less energetic 1-mutant neighbors must eventual-
ly terminate at the unique global minimum. Because the
length of the walk is just the Hamming distance from the
initial string to the global minimum and because roughly
half the bits will be in their less energetic state for a ran-
domly chosen initial string, the expected walk length is
N /2.

The fully connected N kmodel (that -is, k=N 1)—
yields a completely random energy landscape. In this
case, the energy contribution of each site depends on all
of the other sites, so that the energy of each bit string is
assigned an energy independent of (and therefore locally
uncorrelated with) its neighbors. This limiting case of
the N-k landscape is therefore the Derrida random ener-
gy model of spin-glass physics [17]. Such random
landscapes have very many local optima [O(2 /N)],
walks to optima are short [O(lnN)], and only a small
fraction of local optiIna are accessible from any initial
string [1,18,19]. In other words, important features of
the landscape vary dramatically as k varies from 0 to
N —1. However, such uncorrelated landscapes are un-

realistically "rugged;" in most practical situations, there
is almost certainly some correlation between neighboring
points. We propose that a wide class of such landscapes
are at least qualitatively described by X-k landscapes
with intermediate values of k. In particular, N-k
landscapes approximate generic members of the class of
so-called "AR(1) landscapes, " in which all correlations
are completely determined by correlations between neigh-
boring points [15]. AR(1) landscapes were so named be-
cause the sequence of energies obtained via an unbiased
random walk on them must be, in the limit of large
landscapes, an AR(1) (first-order autoregressive) process.
The AR(l) process, characterized by the difference equa-
tion

+&=pH, +AH (1.1)

where AH, is a sequence of independent, identically dis-
tributed Gaussian random variables, and 0 ~ p ~ 1, is the
most general stationary, Gaussian random process that is
also (first-order) Markov. The Markov property is
effectively a maximum entropy condition" that guaran-
tees that no additional information about the random
variable H, from a knowledge of H, , for s & 1, and thus
no additional information about the energy of a given
point, can be obtained from points further away than its
nearest neighbors. [For all stochastic processes, the con-
ditional entropy of H„given H, , and H, 2, is bounded
above by the conditional entropy of H„given only H,
The Markov property implies that this upper bound is ac-
tually achieved for AR(1) landscapes. ] This description
implies that AR(1) landscapes in general and N-k
landscapes in particular are statistically iostropic, in the
sense that their statistical properties are invariant with

respect to "translation" from one point to another.
AR(1) landscapes include the traveling salesman problem

[20], and they are ubiquitous in optimization problems in

computer design [21].
In this paper, we focus primarily on the special case in

which k is large (but possibly much smaller than its upper
bound of N ), and in which the mean p and the variance
o. of the probability distribution of site energies are
finite. Under these assumptions, we show that the ener-

gies of local optima for both the random and adjacent
neighborhood X-k model are asymptotically normally
distributed with a mean of approximately

2 ln(k+ 1)
p

and a variance of approximately

(k+ 1)o.
N [k + 1+2(k +2)ln(k + 1)]

The same calculation also allows us to deduce that the
average Hamming distance between optima —which is
roughly twice the length of a typical gradient walk —is
approximately N log@(k+1)/(@+1). We also derive re-
currence relations for the mean and variance of the distri-
bution of site energies at a given step in terms of the
mean and variance at the previous step for the random
adaptive walk. Not only do these recurrence relations
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characterize the approximately Ciaussian distribution of
energies as the walk progresses, but they can also be used
to argue that the length of a random adaptive walk is
roughly 2 ln2= 1.39 times longer than a gradient walk on
a landscape with the same large N and k values. The pa-
per concludes by showing that these results and the
methods used to derive them apply at least qualitatively
to a variety of more general cases.

the k =2 case with adjacent neighborhoods. In this case,
the site energies h;, (0), h;(0), and h;+, (0) change to
the site energies h; &(0;), h;(0;), and h;+, (0, ) respective-
ly. No other site energies change. The condition that the
configuration 0 is a local optimuum is thus

h;, (0)+h;(0)+h, +,(0)

~h, , (0, )+h;(0;)+h;+, (0;) (2.2)

II. NUMBERS AND ENERGIES OF LOCAL OPTIMA
IN THE GENERAL CASE

for 1 ~i ~N. The random variables

h; i(0; )+h;(0; )+h, +,(0; )

We note first that the statistical properties of the
landscape are unchanged whenever the labels 1 and 0 are
exchanged at a single site. We can therefore choose a
particular locally optimal configuration and exchange the
appropriate 1 and 0 labels to make that configuration
have the labels (0,0, . . . , 0)=0 without changing the
quantities we wish to calculate. The truth of this claim is
readily verified by means of a geometric argument: We
imagine that an arrow is drawn from each vertex of the
Boolean hypercube to each adjacent vertex with lower en-
ergy. Verticies corresponding to local energy minima
will then have no arrows pointing away from them. If we
view the label exchange as a rotation of the Boolean hy-
percube such that a specified corner of it lands on the ori-
gin, we see that the rotation does not disturb the number
of arrows entering and leaving each vertex.

The condition for a configuration to be a local
minimum is that its energy increases when we Aip any
one of its bits. This will be the case if

h, (0)+h2(0)+ . +h~(0)

~ h, (0, )+h2(0; )+ . . +h~(0, ), (2.1)

where the configuration 0, is the 0 configuration with bit i
Hipped to 1. The details of what happens when bit i is
Hipped are seen most clearly by restricting attention to

are mutually independent for di8'erent values of i, and are
also independent of

h; i(0)+h;(0)+h;+, (0)

because the energy tables for each bit i are constructed
from diferent, independent random variables. It follows
that the inequalities (2.2) are, in fact, probabilistically in-
dependent events. For arbitrary neighborhoods, the cor-
responding inequalities are

g h(0)~ g h(0), (2.3)
j6v,. jHv, .

where v, is the neighborhood of the ith site, and where
all of the subscripts are interpreted modulo N, a conven-
tion to be followed throughout this paper.

Because of the independence of the h s, the joint prob-
ability of all of the inequalities (2.3) being satisfied simul-
taneously is the product of the probabilities that each in-
equality is satisfied in isolation. Furthermore, the proba-
bility that a single one of these inequalities is satisfied is
just 1 Pk+&(pi~ —hi), where Pk+, (x) is the distribu-

tion of the sum of 0+1 independent samples from the
distribution P(x) of site energies. A basic result of the
theory of probability states that Pq+& is the (k+1)-fold
convolution of P(x) with itself. The probability that a
randomly chosen configuration is a local optimum is
therefore

0=f dP(h, )f dP(h ). f dP(h ) + 1 P, g h-
i=1 jEv,.

(2.4)

where we write dP(x ) rather than p(x )dx to remind ourselves that the density of p(x ) may involve 5 functions. Note
that the only change that must be made if we are interested in local maxima is that the sense of the inequality in (2.1) is
reversed. 1 Pk+, (g, ~, h. ) m—ust then be replaced by Pk+, (pi~ hJ ) in (2.4).

Similar expressions can be written down for the m th moment of the distribution of local energy optima, which is

Em8[E
~

configuration is local optimum]=
Prob(configuration is local optimum)

If we let 1 denote the vector with all unit entries, and we denote the vector of energy contributions as h, so that

h, +h2+ +h~
N

(2.5) is equivalent to

(2.5)
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f dP("i)f dP(h2) f dP(h~) H 1 Pk+i (2.6)

These integrals can all be evaluated by first computing

Z(P)= f dP(h) f dP(h ) . f dP(hz)e ~'-' -"',g 1 Pk—, $ h.
i=1 jEv,.

(2.7)

and then taking the absolute value of successive P deriva-
tives when P=O. [The choices of the suggestive variable
names 13 and Z is not accidental; the relationship between
(2.7) and the average partition functions in spin-glass
physics will be discussed in the last section of this paper. ]

III. NUMBERS AND ENERGIES
OF LOCAL OPTIMA FOR LARGE IG

We now consider the special case mentioned in the In-
troduction; that is, we assume that k is large and the dis-
tribution of site energies has 6nite mean and variance.
Because these assumptions will allow us to apply the
central-limit theorem [22,23], we first investigate the way
in which the statistics of local optima vary as a function
of p and cr when P(x) is a normal distribution with
these parameters as mean and variance, respectively.
P&+ i(x ) is then also normal with mean (k+ 1)iLi, and vari-

ance (k+ 1)o, so we have the explicit formula

Z(/3) =
(2 ~2)w/2

where g =y .~, h . Shifting the means of all of the

Gaussians in Z(P) from iLi, to zero corresponds to making
the substitutions h, —

iu, =y, and g,
—(k+1)p=q, . in the

integrals above. It is thus clear that Z(0), and therefore

the distribution of the number of optima remains un-

changed under a shift in the mean of P(x ). Note that

changing the means of the Gaussians by p will also shift

(I/Z)BZ/BP —and thus the average energy of a local
minimum —by the same amount. Similarly, via the sub-

stitutions o h; =y; and o &k + lg; = il;, it is easy to check
that the mean of the number of optima remains un-

changed when the variance of P(x ) changes from unity

to cr and the mean of P(x) remains zero. However, this

change in P changes both the mean energy at a local
minimum and its standard deviation by the factor o..

It remains to evaluate (3.1) for iM=O, o =1, and

k ))1. An evaluation of (3.1) when P= 0 will also give us

a hint as to how to obtain the entire probability distribu-

tion of local optima in this case. To do this, we observe

that for both the adjacent and random neighborhood
models

X f dh exp —(h —pl) /2o ——1 h g h =(k+1)h+0(&k+I),

x
2m.(k+1)0.

N/2

—[g',- —(k+1)p] /2(k+1)o
dg,

1

1 z- 1h= —1 h= —(h+h + +h ).
N

(3 1) Thus, for large k we have

—22V'k+1h+ 0(1)+
v'k+ ii, v'k+ ih . v'2~

N

(3.2)

Because h (0, the first integral in parentheses is 0(l).
However, using the estimate h = —[2 ln( k
+1)/(@+I)]'~2 derived below, it is easy to check that
the second integral in parentheses is 0(1/k ink). Actu-
ally, the 0(1) terms in the limit of the second integral

fluctuate essentially randomly in sign, so that the error
involved in ignoring this integral is actually of much
smaller order, the larger of 0(1/k ink&A ) and
0(1/(k ink ) ). The remaining expression can be written
in the form
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1/2
Pjh g /2

f dh exp — +Kin f dg
oo 2 «+ir &2m

The integrand of the outer integral is of the form e
which has an extremely sharp maximum when the func-
tion

e-~ /2

f(h )= — ln d
2 v'a+if v'2~

k+1h e & dg

Because we must have h (0, the denominator in (3.3)
must be between &~/2 and &2m. , and the right side of

has a minimum. The standard method for evaluating
such integrals is the method of steepest descent, which in-
volves approximating f(h ) by a truncation of its Taylor
series, expanded about its minimum value, which we
denote by h . The condition that h must satisfy is
found via a straightforward ditferentiation off to be

—(k+1)h /2

h = —&k+ I

2 ln(k+ 1)
k+1

(3 4)

for arbitrarily small 5 and suSciently large k. It is easy
to check (3.4) by noting that the inequality that results in
substituting one of the bounds for h reverses its sense
when the other bound is substituted.

A second differentiation, some algebra, and the use of
(3.3) allows us to compute

d h = 1+(k +2)hdh'

The required Taylor series is then

1+(k+2)h
f(h)=f(h )+ (h —h ) +

and

(3.3) is monotone decreasing. Equation (3.3) must there-
fore have a unique solution, which lies in the interval

' 1/2 1/2
(2—5)ln(k+ 1)

k+1

1/2

Z(0) =
2m

—Ãf(h ) oo —%[1+(k+2)h 2 ](h —h )2/2
e dh

—Xf(h )
e m

+1+(@+2)h

1+2 ln(k +1)k+1

1/2 1/(k+1)
+21n(k+1) e

dtk+1 &2' (3.5)

In other words, the probability that a randomly chosen configuration is a local optimum if X~~ and k is fixed is

Z(0) =O(z"),

where A, is the k-dependent quantity in the second set of square brackets above. If we define

~

1 if configuration e is a local optimum
0 otherwise,x(~ = '

then the expected number of local optima is

g g(e) =O((2A, ) ),
e

because there are 2 configurations e and each has the probability O(A, ) of being a local optimum.
With only slightly more efFort, we can explicitly compute the probability P(u ) that h =u. If p(x ) is Gaussian with

zero mean and unit variance, the identity

5(x)= f e" dz
2 77 oo

allows us to write this distribution as
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P(u)= 1

2'
N+1

f e "/-dIS(u 1—I /N) ~f .
QO

—
g,. /2(k+ 1)

e
i/k+1 d

N+1

f e h /—2dl f iz(u —1 h/N)d g f
l

e
—g' /2(k+1)

df,&k+1

1 oo N
2& oo 2'

L

1/2

1/2 —
g /2)

e Nh /—2dIi f eiz(u —h )d& foo v'k+ ih V 21r

iV

277

—Nf(h ) . 1 —N[1+(k+1)h j(h —h ) /2
e e "dh2'

The iterated integrals are just the forward and backward
Fourier transform of the Gaussian in the inner integral.
The expression above must then evaluate to

—Nf(h )

P(u) =
+1+(@+2)h

1/2N[1+(k+2)h ~] N()+(k+2)h2 )(u —h ) /2

277

Note that 1)))( u )du is the probability that a given
configuration is a local minimum and that it has energy
between u and u +du. The probability that the
configuration has energy between u and u+du, given
that it is a local minimum is thus:

Prob[u &Ii & u+du llocal min j
1/2

N[1+(k + ) im ] N[1+(k+2)h ](u ——h ) /2
e du

2m

It follows that the expected energy of a local minimum is
h, and the variance about this mean is
I/{N[1+(k+2)h ] j. Figure 1 shows a comparison
between these analytical results and the computer simula-
tions reported in Table III. (The data in this table is re-
printed from Ref. [2], except that we report here the en-
ergy of local minima, instead of local maxima, as report-
ed there). In all cases, the underlying site energy distri-
bution is the uniform distribution on the unit interval, for
which the mean is —,

' and the variance is —,'„and for which
the energy of local minima is one minus the energy of lo-
cal maxima. The statistics of downhill walks to local
minima and uphill walks to local maxima are clearly
identical. Local minima are consistently somewhat lower
for landscapes with random neighborhoods for the same
reason that walk lengths for random landscapes are
longer: some sites in random neighborhood landscapes
are relatively unconstrained, and the lower energies that
these sites can attain will more than offset the high ener-
gies that are the best that can be attained by unusually
constrained sites.

IV. STATISTICS OF DOWNHILL WALKS
FOR LARGE-k LANDSCAPES

As we saw in the Introduction, many of the properties
of N-k landscapes are determined by the (pair) correla-

tions R(d) between configurations separated by a given
Hamming distance d.

R (d)= 1 ——d
N

k
1 X —1

for the random-neighbor model [24], and

d(k + 1 )

N
N —I —1

. g(k+1 /)—
N —1

E

E
C

E
a
O0

4-0

0.50-.

0.47-

0.45-

0.42-.

0,40-

0.37-

0.35-

0.32:
0.30-

0,28-

0.25
0

r
/ P-- II -13J

/
4)—-/

t' I

20

Adjacent neighborhoods
Random neighborhoods
Analytical standard deviation
Analyticai mean

40 60 80 100

k value

FICs. 1. Comparison of the energy of local optima for both
the random and adjacent neighborhood models with the expres-
sions given in the text for N =96 and the k values used in the
tables. The j surrounding each data point shows the standard
deviation of 100 simulated random adaptive walks; the solid and
dotted lines show the analytical mean and standard deviation.
The k values of the simulation data are shifted slightly to distin-
guish the two different sets of data points.

for the adjacent-neighbor model [25]. If k/N=O(1),
these results suggest that X-k landscapes split apart into
uncorrelated patches, so that the local optima should be
more or less randomly distributed in the space, in con-
trast to the ultrametric distribution of local minima of
spin-glass Hamiltonians. Precisely the former behavior
was observed [26] in the free-energy landscape of RNA
secondary structures, which recent studies show to be
considerably less correlated than the spin-glass landscape
[24]. When k /N= 0(1), therefore, it is meaningful to es-
timate the average distance between optima and the aver-
age lengths of gradient and random adaptive walks. As
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in Sec. III, we also assume that the variance of the site
energy distribution is finite.

The analysis of Sec. III shows that the variance of the
distribution of local minima is small, so that relatively
high local minima are unlikely to trap the downhill walk
prematurely. This explains why there is good agreement
between the average energy of a local optimum as com-
puted above and the simulation data, even though the
average taken in the simulation data is biased by the
number of starting points that can reach each optimum
and the analytically computed average is not. The small
variance in the distribution of local minima also explains
why the energies of local optima reached by gradient and
random adaptive walks are roughly the same (see Tables
II—V).

The number of bits required to specify a particular lo-
cal optimum is the base-2 logarithm of the number of lo-
cal optima, or, asymptotically, N(1 —~log2A, i), where A, is
the quantity in the second set of square brackets in (3.5).
The asymptotic Hamming distance between neighboring
local optima is therefore N~log2A, , which must also be
the average diameter of the basin of attraction of each
optimum. We use the symbol D for their common value.
As N increases, the probability of starting within o(N)
steps of the "edge" of one of these basins of attraction
[i.e., N logzki/2+o(N) steps from an optimum] ap-
proaches unity.

This expression gives the mean length of gradient
walks from random starts to local optima in the large-X
limit. For finite X, the fact that a gradient walk will al-
most always step to the nearest local optimum must be
taken into account. The probability that the random

starting place for the walk is a distance d away from the
nearest local optimum is the probability of having d of
the D bits "wrong, " given that one of the two nearest lo-
cal optima has been chosen as a target, or

1/2
D 8

m.D
e

—2(d —D/2) /D

For even moderate k, the integral in the second set of
square brackets in (3.5) is very close to unity, so that

log2(k+ 1)
D =liog, zl= (4.1)

For k )4, the agreement between the simulated local op-
tima and the estimates suggests that the asymptotic re-
gime has been attained. We note good agreement with
(4.1) for longer walks for k) 4, even with the finite-N
correction ignored, and only moderate agreement for the
shortest walks, even with the finite-X correction. Here,
the Gaussian approximation to the binomial distribution
breaks down.

The above result only provides a lower bound to the
length of a random adaptive walk because the walk need
not terminate at the nearest local optimum to its starting
point. An alternative approach is to derive recursion re-

The mean Hamming distance from the random start to
the chosen optimum is then approximately

1/2 1/2

re 2(, D/2)2/D, D Ddr=
D/2 2 2~

TABLE II ~ Mean energies of 100 simulated gradient walks from random starts to local optima for
various N and k values. The numbers in parentheses are the standard deviations. For ease of compar-
ison, k =N —1 entries appear where k =N, enclosed in square brackets. (a) Adjacent neighborhoods.
(b) Random neighborhoods; results for k =0 and k =N —1, which would be the same as those in (a), are
omitted.

0
2
4
8

16
24
48
96

0.34(0.08)
0.28(0.06)
0.29(0.06)
[0.32(0.04) ]

(a) Adjacent
0.34(0.06)
0.29(0.04)
0.29(0.04)
0.31(0.04)

[0.35(0.04) ]

24

neighborhoods
0.34(0.05 )

0.29(0.04)
0.29(0.03 )

0.31(0.03)
0.34(0.04)
[0.37(0.03) ]

0.34(0.03 )

0.29(0.02 )

0.29(0.03 )

0.31(0.02)
0.34(0.03 )

0.36(0.02)
[0.39(0.02) ]

96

0.34(0.02)
0.29(0.02 )

0.29(0.02)
0.31(0.02)
0.34(0.02)
0.35(0.02)
0.38(0.02)
[0.42(0.01)]

(b) Random neighborhoods
0
2
4
8

16
24
48
96

0.29(0.05 )

0.29(0.06)
0.29(0.04)
0.28(0.05 )

0.31(0.04)

0.29(0.04)
0.29(0.04)
0.30(0.03 )

0.35(0.03 )

0.29(0.03 )
0.28(0.02)
0.30(0.02)
0.33(0.02)
0.35(0.02)

0.29(0.02)
0.29(0.02)
0.29(0.02)
0.32(0.02)
0.34(0.02)
0.38(0.02)
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TABLE III. Mean walk lengths of the walks used to compute (a) Table II(a) and (b) Table II(b).

0
2
4
8

16
24
48
96

0
2
4
8

16
24
48
96

4.4(1.5)
2.9( 1.2)
2.1(1.1)
[1.5(0.8 ) ]

3.0(1.1)
2.3(1.1)

16

8.4( 1.9)
5.8(2. 1)
4.3( 1.7)
2.6(1.1)
[1.8( 1.0) ]

6.0(2.0)
4.6( 1.9)
2.9( 1.2)

(a)

(b)

24

12.3(2.3)
8.4(2.5)
6.7(2. 1)
4.2( 1.7)
2.5(1.1)
[1.7(1.0) ]

8.9(2.4)
6.8(2. 1)
4.5(1.7)
2.4(1.1)

48

24.1(3.7)
17.3(3.5)
12.5( 3.4)
8.5(2.4)
5.1(1.7)
3.2( 1.2)

[1.7(0.8) ]

17.8( 3.6)
13.7(3. 1)
9.1(2.6)
5.5( 1.9)
3.6( 1.4)

96

48.9(4.7)
34.3(5.1)
24.5(4.0)
16.5(3. 1)
9.5(2. 1)
7.0(2. 1)
3.8(1.4)

[1.7(0.9) ]

35.1(5.6)
26.8(4.7)
18.2(3.5)
11.3(3.2)
7.9(2.3)
4.2(1.5)

lations for the moments of the distribution of site ener-
gies after the (n+1)st step, given the values of these mo-
ments after the previous step. The derivation starts with
the observation that, for the adjacent-neighbor model,
each bit not only affects exactly k+ 1 sites but each site is
also affected by k+1 bits. In the random-neighbor mod-
el, the number of sites that are affected by each bit is a
random variable with mean k+1. We can therefore
think of an adaptive step in both models as the replace-
ment of k+1 old site energies in (2.1) by k+1 new site
energies with a smaller average. We then have the recur-
sion

N
g (n +1)—y h (n)+ y (n)

J J j
jPv,.

(4.2)

where h'. "' is the energy of the jth site after the nth step
and r'"' is the new site energy that results from replace-
ment in the (n+1)st step. The neighborhood v; consists
of site i, the bit that was flipped in the (n+ 1)st step, and
the k neighboring sites. The variables h'"' are indepen-
dent, identically distributed random variables, each with
mean p„and variance o.„. Because the r's are chosen
subject to the condition that

TABLE IV. Mean energies of 100 simulated random adaptive walks from random starts to local op-
tima for various N and k values. The numbers in parentheses are the standard deviations. For ease of
comparison, k =N —1 entries appear where k =N, enclosed in square brackets. (a) Adjacent neighbor-
hoods. (b) Random neighborhoods; results for k =0 and k =N —1, which would be the same as those
in (a), are omitted.

0
2
4
8

16
24
48
96

0.35(0.08)
0.30(0.07)
0.30(0.06)
[0.34(0.06) ]

16

(a) Adjacent
0.35(0.06)
0.30(0.04)
0.29(0.04)
0.32(0.04)
[0.35(0.04) ]

24

neighborhoods
0.34(0.04)
0.30(0.03 )

0.30(0.04)
0.32(0.03 )

0.34(0.03 )

[0.37(0.03) ]

48

0.34(0.03 )

0.30(0.02)
0.30(0.03 )

0.31(0.02)
0.34(0.02)
0.36(0.02)
[0.40(0.02) ]

96

0.34(0.Q2)
0.29(0.02)
0.30(0.02)
0.32(0.02)
0.34(0.02)
0.36(0.02)
0.39(0.02)
[0.42(0.01)]

0
2
4
8

16
24
48
96

0.30(0.06)
0.32(0.05 )

0.29(0.04)
0.29(0.04)
0.31(0.04)

0.29(0.03 )

0.29(0.04)
0.31(0.04 }
0.35(0.03 )

(b) Random neighborhoods

0.29(0.03 )

0.28(0.03 )

0.30(Q. 02)
0.33(0.03 )

0.35(0.02)

0.29(0.02 )

0.28(0.02)
0.29(0.02)
0.32(0.02)
0.34(Q. Q2)
0.38(Q.02)
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TABLE V. Mean walk lengths of the walks used to compute (a) Table IV(a) and (b) Table IV(b).

0
2

8
16
24
48
96

4.5(1.2)
4.1(1.9}
3.2(1.8)

[2.7(1.5) ]

16

8.6(1.9)
8.1(3.2)
6.6(2.5)
4.7(2.3)
[3.3(1.7) ]

(a)

24

12.6(2.2)
11.2(3. 1 }
9.4(2.9)
7.7(3.0)
4.8(2. 1)
[3.5(1.4)]

24.3{3.4)
22.5{4.6)
19.3(3.9)
15.3(4.3 )

9.6(3.0)
7.4(3.0)

[3.9( 1.9) ]

96

48.8(4.6)
45.2(6.6)
37.3(6.1)
27.7(5.3)
19.3(4.2)
15.0( 3.9)
8.9(3.0)

[5.1(2.4) ]

0
2
4
8

16
24
48
96

4.4(1.8)
3.6(1.8)

8.1(2.8)
7.3(2.9)
5.3(2.5)

(b)

12.5{3.8)
10.9(3.3)
8.0(3.2)
4.8(2. 1 }

26.5(5. 1)
22.9(5.6)
17.0{4.3)
10.1(3.4)
7.4(2.6)

46.9(6.1)
44.5(7.9}
34.7{6.5)
21.6(4.8)
16.0(4.3 )

9.3(2.6)

r n~ & y h (n)

jEv, jEv.

we have the recursion relations

P„+,=PP„+(1 P)D r '"' —g rj"'& g hj"'
jHv, . jEv,.

o„+,=po„+(1—p)(k+1)Var r '"' g r'. "'&
jEv,. jEv,.

(4.3)

(4.4a)

(4.4b)

Here, r '"' is the average over the k+1 sites replaced at
the (n+1)st step, and p= 1 —[(@+1)/jV] is the correla-
tion coefficient in (1.1). At the beginning of the walk, the
h's are simply samples from the underlying site energy
distribution, and thus have the known mean po, and vari-
ance o.o. As the walk proceeds, site fitnesses (the h's) are
replaced such that (4.3) is satisfied, and p„ increases ac-
cording to (4.4a). Note, however, that the replacement
process does not change the statistical properties of the
entries in the site energy tables, but merely selects some
of them instead of others. In particular, the energy table
entries taken as a whole continue to have mean po and
variance 0.0, but only those sets of site energies satisfying
(4.3) are replaced. For k sufficiently large, the sums in
(4.3) and the average r '"' are all asymptotically Gaussian,
so that

r (n) y r(n) & y h(n)
L

r
jEv, jC v,.

k + 1 oo —(k+1)(r—p ) /2o.
1/2 2 2

27TC7 ~
OO

f r —(k+1)(a —pp) /2o.
pae da

f —(k+1)(a —pp) /2o.
e da

dr (4.5a)

r (n) y rIn) & g h. " =g (r "
) y r~~&~& y h~&~ —p~ „r

I

jKv,. jEv,. j6v,. jEv,.

where

(r ") r" & hj"—(n) 2 {n) . („) k + ] ~ —(k+1)(r—p„) /2o„
e

j+ j Q ] 277(7

r 2
—(k+1)(a —pp) /2o.

pa e 'da

f r —(k+1)(a —pp) /2o.
pe 'da

(4.5b)
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The recursions are terminated when the mean energy of a
locally optimal configuration p0

—cr0[2 ln(k
+1)/(k+1)]'~ is reached. For sufficiently large N, the
central limit theorem implies that the energy of the
configuration, i.e., the average over all of the site ener-
gies, is asymptotically Gaussian with mean p„and vari-
ance o.„/N. Finite-N corrections to the Gaussian distri-
bution will be discussed below.

As a check on the above analysis, we compared p„and
cr„as computed from (4.4) and as averaged over 100
simulations of downhill walks for N=96 and k =16 and
48, adjacent neighborhoods. The integrals were done nu-
merically, using the NAG Library routines D01AMF and
D01AJF (Mark 13) for the inner and outer integrals, re-
spectively. All of the simulated walks started from the
same initial configuration, which had energy 0.500 885 (as
compared with @0=0.5, exactly). As in Sec. III, both the
calculation and the simulation assumed the underlying
distribution of site energies to be the uniform distribution
on the unit interval.

We note good agreement for k =48 (Fig. 2), but only
qualitative agreement for k =16 (Fig. 3). This is not too
surprising, because we expect the Gaussian approxima-
tion used in (4.5) to compute the conditional mean and
variance in (4.4) to break down for small k, especially at
the "tails" of the distribution, which are especially im-

portant in computing the conditional moments in (4.4).
For suKciently small k, it is probably not too much work
to dispense with the Gaussian approximation and calcu-
late these conditional moments directly, although we do
not attempt this here. For intermediate k values, im-

proved estimates of the conditional mean and variance
can be computed via a more refined approximation in-

volving corrections to the Gaussian distribution. For ex-

ample [23], the density pk+, of the average of k+1 in-
dependent identically distributed random variables with
mean p, variance o. , and third moment ~ is

r

=~(x ) 1+
3 H3(x ) +0(1/Vk +1),

6o k+1

r„+i
=ps„+ (1 p)(k+—1)

Xg (r '"'—p, „&).
3 g r'. "'(

jE&; j&v,.

A similar procedure can be used to find the fourth and
higher moments of the distribution.

For large N, we can approximate the recurrence rela-
tions (4.4) by differential equations. To do this, we intro-
duce functions m and s of the continuous argument t and
require that m (n /N ) =p„and s (n /N ) =o „. Using the
approximations p„+,—p„=(1/N )m ( t ) and a „+,—o „=(1/N )s(t ), we then have the differential equations

and

m(t)= —(k+1)m +(k+1)p„(,
)

(4.6a)

s(t) = —(k+1)s

+(k+1) Var r(t) g r (t)( g h (t)

uniformly in x. Here, JV(x ) is the Gaussian density with
mean zero and unit variance, and H3(x ) is the Hermite
polynomial

H3(x)=x 3x .—

The unknown third moment w„of the site energy distri-
bution after the n th step can be computed via the recur-
sion

l
0.40—

LLl

i'
II

j6v,.

(4.6b)

0.35

Step number

10 15

FIG. 2. Comparison of analytical estimates of the mean and
standard deviation of the energies encountered along a random
adaptive walk as a function of step number for 1V=96, k =48.
The dashed horizontal line at the bottom represents the analyti-
cal estimate of the energy at a local optimum ( =0.38), the solid
curve represents the analytically derived mean energies at each
step, the dashed curves surrounding the solid curve represent
the analytically derived standard deviation estimates. Each
solid circle and the ~ surrounding it represents the mean and
standard deviation of the 100 random adaptive walks described
in the text. The standard deviations of the last several steps of
the simulated walks are artificially low because some walks
found local optima in previous steps.

0.50—

0.45—
Q

0.40—

~ Simulated walk

Energy of local optimum
Gaussian estimate
Standard deviation

&ig

II
II

II

II

II
II

0 30
0 10 15 20 25

Step number

FIG. 3. Same as Fig. 3 for %=96, k=16. Here, the mean
energy of a local optimum is about 0.34.
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where the conditional moments in the above equations
are now functions of the continuous variable t, and the
quantity p (, ]

is the continuous time analog of p („) in

(4.5a).

An approximate solution to (4.6a) is straightforward,
given the observations that much of the walk is spent
near the local optimum and that much of the contribu-
tion to the outer integral in

d e
~p

&2'(k+1) "—
—[P+s + ( m —po) +k + 1] /2o o

[g+s +(m —po)+k+1]/ao
e '"da

(4.7)

(4.8)

comes from values of g= —1. [Note that we must have m(0) =go, the mean of the underlying site energy distribution,
s (0)=ao, its variance. ] Thus, for even moderate values of k, the quantity rt = [p/s

+ (m po)&k + 1]/ao ~ —3, justifying the approximation
T

e ' da= —e " —
3

—g2 2

QO

which is accurate to 3% when g= —3 and is asymptotically exact for large negative values of g. ~e then have

1 ~ p~2 P s +(m po)v'k—+1
&2~(k+1)

+ dte
2

1
CTp

[gv s +(m —po)v'k +1]~
2

Op=go+ (m —po )+ d(k+ 1)(m —po)v'2~

2
Op"' +

(m —t, )(k+1)

e
—

g /2

1+
(m —po)Vk +1

m(t*) =go —oo

' 1/2
21n(k+1)

@+1

The second line follows from the first by expanding the
denominator as a geometric series, truncating after the
second term, multiplying everything out, and observing
that some of the terms in the result are odd functions of
g, which make no net contribution to the integral. The
third line follows from the second by simply ignoring the
fraction in the denominator of the integrand in the previ-
ous line, and thus some higher-order correction terms.
Strictly speaking, the integrands of all of the integrals
above blow up for su%ciently positive g. However, this is
an artifact of approximation (4.8) that could have been
avoided by retaining higher-order terms that are discard-
ed later. The simplified version of (4.6a) that results from
the above calculation has solution [m (t ) —po] 2aot.

The walk stops at t such that

the approximate mean value of the local optima comput-
ed in Sec. III. The length of the walk is thus roughly
ln( k + 1)/(k + 1) in the scaled units, or
N ln(k+1)/(0+1) in the original unscaled number of
discrete steps, regardless of the mean pp or variance o.

p of
the underlying site energy distribution. This estimate is
compared in Fig. 4 with the simulation data for %=96
and various k values.

V. SUMMARY AND CONCLUSIONS

The primary focus of this article has been the study of
energy landscapes that represent an intermediate case be-
tween the quadratically coupled landscapes of spin-glass
physics, and the random energy model. The X-k model
is, of course, a k-ary spin glass: It is always possible to
write any function f(e) that assigns a real number to a
k+ 1 bit string e = (e &, ez, . . . , ez+, ) in the form

f(e)=ao+ga e + g azz ez ez + +
&i»2 . »k+1

e e
P~ Pk+} ~& ~k+1

where the a's are real numbers. In particular, the site en-

ergy function h, can be written in this form. Because the
X-k Hamiltonian is just the average of such expressions,
this Hamiltonian contains some of the (I, +, ) products
e - . - e plus some of the products of every lower or-

~1 1 k+1
der, and is therefore a generalization of the familiar qua-

dratically coupled spin-glass Hamiltonian. The need for
such a generalization is suggested by an unsuccessful at-
tempt [7] to fit a "landscape" of sequence-dependent
RNA kinetic parameters to the quadratic scheme. Given
the assumptions described in the introduction, N-k
landscapes provide this generalization, in the sense that
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all AR(1) landscapes on the Boolean hypercube must
have approximately the same statistical properties as X-k
landscapes. N-k landscapes with k =40 have been used
to capture many of the important statistical properties of
the maturation of the immune response in mice [2]. Pre-
liminary results obtained in fitting the free energy
landscapes for RNA folding [24] are also encouraging.

As mentioned in the Introduction, the high-correlation
(k =0) limit of the N-k model leads to a landscape with a
single local optimum that is also the global optimum. If
k )0 but k =O(1) and N ))1, widely separated points on
the landscape have significant correlations. For both the
random and adjacent neighor models, the form of the au-
tocorrelation functions R (d ) for d ((N implies that

(k+1)d

for energies H and H', separated by Hamming distance
d ((N. Sorkin [21] has noted the similarity between this
scaling law and that of Brownian motion, for which

and he argues that many of the same fractal properties of
Brownian motion should be found in landscapes where
the above scaling law applies. In particular, we expect
that energy "valleys" should appear on all scales, includ-
ing the largest possible scale, the diameter of the
landscape. The bowl shape of highly correlated N-k
landscapes has been confirmed by computer simulations
showing that the deepest local minima lie nearest the glo-
bal minimum [27]. So many of the properties of Gauss-
ian energy landscapes seem to be related to the correla-
tion coefticient p that we speculate that all such
landscapes lie in the same "universality class. " In partic-
ular, the fact that the topography of X-k landscapes
seems to be independent of how the neighborhoods are
chosen lends strong support to the argument that the
Parisi ansatz for the solution to the Sherrington-
Kirkpatrick spin-glass model —for which p = 1—O(N ')—is also correct for "real" (i.e., Edwards-
Anderson) spin glasses.

As we saw in Secs. III and IV, the long-range (ul-

0 I 1 I ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ I I I
i

~ ~ ~ ~ I I ~ ~ 1 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ i I I I l 1 ~ I ~ I I I I I I I 1 I t ~ i ~ ~ ~ ~ e I ~ I I ~ ~ I ~ I I I 1 ~ ~ i I I I I ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ I I

40 60 80 100

k value

FIG. 4. Comparison of the length of the random adaptive
walks used in Fig. 2 with the analytical estimate derived in the
text.

trametric7) correlations in highly correlated (small-k)
landscapes disappear as k increases and the correlation
decreases. Instead, the landscape breaks up into uncorre-
lated patches whose radii are on the order of the correla-
tion length. We saw, in particular, that both gradient
and random adaptive walks from random starts extend
for somewhat more than one correlation length. Increas-
ing k also increases the energy of local minima, in con-
trast to the energy of the global minimum, which stays
roughly constant [15].

In the high-k (k=N —1) limit, we recover the fully
uncorrelated, random energy model. Similar questions to
ours have been asked about the random energy model by
other authors [19], and it is of interest to compare their
results with ours. For example, the number of local opti-
ma in the uncorrelated case was 2 /(N+1) but (2A, ),
where X is the quantity in the second set of square brack-
ets in (3.5), for the correlated case. In both cases, there is
a boundary layer of local optima, but the location of the
boundary layer depends on the distribution of energies in
the landscape, which differs in the two models. The final
and most striking difference between the two models is
the difference in the magnitude of downhill walk lengths:
O(lnN) in the uncorrelated case and O(Nllni, l) in the
correlated case.

The underlying premise of the X-k model —that the
energy of a given configuration is a sum of independent
random variables, some of which are replaced upon mov-
ing to a neighboring configuration —is extremely general.
For example, the traveling salesman problem is essential-
ly an X-k model on the permutation group of the X cities
to be visited: interchanging the order in which two cities
are visited replaces four intercity distances by other
effectively random distances. As a result, the number of
local optima is close to what one would expect from the
X-k estimates; that is, approximately the number of
configurations divided by the number of configurations
within a correlation length of each other [20]. The gen-
eral situation is that any collection of jointly Gaussian
random variables [X„X2,. . . , XM J has a "spectral reso-
lution, " that is, a representation of the form [28]

M

X, =gT,,Z, ,
j=1

where the T1 are constants and l Z „Zz, . . . , ZM ] is a se-
quence of M independent random variables whose vari-
ances o.„o.2, . . . , o.M are the eigenvalues of the covari-
ance matrix of the X's. For a wide class of landscapes, it
can be shown [29,30] that relatively few of the Z's with
significant variance change when a single step is made in
a highly correlated landscape, but many more of them
change when the landscape is relatively uncorrelated.
The number of such "significant variables" is crudely
measured by the parameter k in the 1V-k model.

When there can be s & 2 symbols per site, the analysis
changes only in minor ways. In fact, nothing changes in
(2.3), provided we reinterpret 0; as a configuration with
any of the s —1 symbols other than 0 at site i and 0's else-
where. Because there are now s —1 such inequalities for
each i, rather than just one,
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z(p, s)= f" dP(h, )f" dP(h2). f dP(h~)e ~'-'-" + 1 Pk—+, g h.
oo oa oo

N ~ k+1
i=1 jEv,.

s —1

(5.1)

This expression can also be evaluated by the techniques
described above. We thus conclude that there are
O((sk) ) local optima and that the typical distance be-
tween optima is N

l log, A, l, where A, now depends on both
k and s. If the site energy distribution has finite variance,
a trivial extension of the methods of Sec. III yields the re-
sulting bounds for h

' 1/2
(2—5)in[(s —1)(k + 1)]

P 0 k+1 I

2 1n[(s —1)(k + 1)]
1+1 (5.2)

and the estimate

(s —1)log, [(s—1 )( k + 1 ) ]
llog, kl =N

S s k+1

0.40—
E

E
C:

0.35-
U
C30

o 0.30—

Adjacent neighborhoods
Random neighborhoods
Analytical mean
Analytical standard deviation

for the typical distance from a randomly chosen
configuration to a local optimum. [Typically, a randomly
chosen symbol will fail to have a speci6ed value with
probability (s —1)/s. ] Figure 5 shows a comparison be-
tween (5.2) and the mean energy of a local optimum for
100 simulated random adaptive walks in which the un-
derlying site energy distribution is, once more, the uni-
form distribution on the unit interval. The only change
in the derivation of the walk length estimate is that (5.2)
must be used instead of (3.4) in estimating m (t '), result-
ing in the s-dependent estimate of log, [(s —1)]/(k+1)

for the walk length. A comparison of this estimate with
the simulation data is shown in Fig. 6.

A limitation in our method is the requirement that the
site energy distributions satisfy the hypotheses of the cen-
tral limit theorem. One distribution that fails to satisfy
these hypotheses is the Cauchy distribution [23], whose
density is given by

Prob[x X +dx l
= dx

1

vr(1+x )

for —~ & x ( ~ and therefore fails to have a finite mean.
It is easy to prove the remarkable fact that the average of
n such random variables has the same distribution as one
of them, and thus the magnitude of a sum of Cauchy ran-
dom variables will almost surely be determined by only a
single one of its terms. This characteristic of such sums
is reminiscent of a typical biological enzyme, whose
e6'ectiveness is largely due to the correct placement of a
few specific amino acids in a short "active region. " In
contrast, the statistical properties of sums of random
variables that satisfy the central limit theorem are deter-
mined essentially equally by all terms in the sum, corre-
sponding to a scenario in which all amino acids in the en-
zyme make equal contributions to its activity. Thus, the
Cauchy distribution may be a more biologically appropri-
ate distribution than Kau6'man's original choice of the
uniform distribution for the h s, but it can be shown [31]
that the resulting landscapes still have the same qualita-
tive asymptotic X dependence: the probability that a ran-
domly chosen point is a local optimum is A, for A, in-
dependent of N, the expected energy of a local optimum
is independent of X, and the variance of the distribution
of locally optimal energies is O(1/N ).

The quantity we defined as Z(13) is actually the true
partition function when the sum is restricted to local op-

25—
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s vclue
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FICx. 5. Dependence of the energy of local optima for both
the random and adjacent neighbor models with s, the number of
possible symbols per site for %=48, k=16, as estimated from
100 simulations of random adaptive walks from random starts,
and analytical estimates. Simulation data is for s=2, 4, 10,
and 20, but the s values of the plotted points are shifted slightly
to distinguish the two different kinds of data. The T surround-
ing each data point shows the standard deviation of 100 simula-
tion runs, and the solid and dotted lines show the analytical
mean and standard deviation.
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FICx. 6. Comparison of the length of the random adaptive
walks used in Fig. 5 with the analytical estimate derived in the
text.
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tima and the results are averaged over the ensemble of
possible energy tables. (Let us refer to this quantity by
(Z ) in this paragraph to emphasize the average that is
being taken. ) In view of the comments in the Introduc-
tion, the restriction to local optima may be physically
sensible. However, our results cannot be directly applied
to thermodynamic calculations on N-k landscapes be-
cause it is only the average (lnZ), rather than ln(Z),
which is extensive, and is therefore a sensible expression
for the average free energy in the thermodynamic limit.
Our method for identifying local optima, combined with
the famous "replica trick, " might yield a result for
(lnZ). More directly obtainable from our formalism
and transfer matrix arguments [31] is the fact that Z (this
time the unaveraged version) is still the trace of a (ran-
dom} product of transfer matrices whose eigenvalues de-
pend analytically on P for finite k. For k =N 1 —+ao-,
though, the 1V-k model becomes the random energy mod-
el, which is known to have a phase transition. This

shows once more that the important thing about a spin-
glass model is not whether its interactions are long range,
but whether each spin interacts with a significant fraction
of the other spins.
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