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Unstable periodic orbits in the parametrically excited pendulum
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We analyze chaotic motion in an experiment on a parametrically excited pendulum in terms of unsta-
ble periodic orbits. This provides a useful quantitative comparison with results of a faithful numerical
simulation. Despite the presence of experimental artifacts, simulation and experiment are in good agree-
ment. The analysis of scaling properties of both chaotic attractors along these lines remains, however,
incomplete. Periodic-orbit analysis fails to account for their marginal hyperbolicity, and therefore fails
to capture an important qualitative aspect of the chaotic dynamics in both experiment and simulation.

PACS number(s): 05.45.+b, 46.10.+z

I. INTRODUCTION

One of the most impressive discoveries in the physics
of nonlinear dynamical systems is the universality of their
chaotic behavior. For example, a phase-space orbit in a
dissipative system may cover a strange attractor whose
structure possesses universal features. The scaling prop-
erties of this structure can be quantified using scaling
functions, such as the spectrum of generalized dimen-
sions D?. Widely different systems may then be described
by identical functions DY.

It is now recognized, however, that this universality
only applies to systems located on the borderline of
chaos. Universality shows when special points on this
border are approached hierarchically in parameter space.
It is expected that universal scaling behavior can no
longer be found at the other side of the border. A conse-
quence would then be that one expects an experiment to
show different scaling behavior than its theory or numeri-
cal simulation.

It is very hard to fabricate a mechanical realization of
a differential equation without introducing experimental
artifacts. Because nonlinear dynamical systems often ex-
hibit sensitive dependence on parameter settings, these
artifacts may essentially alter the dynamics in mind.
Since at the other side of the chaos border there no more
exists a hierarchical approach that governs navigation
through parameter space, the only recourse in the experi-
ment is the theoretical parameter settings. The state of
the experimental system may then be essentially different
from that found from the differential equation. One
might argue that this problem might be posed entirely in
the context of numerical simulations where a simulation
of a differential equation is compared to one that is made
to include more and more “experimental” artifacts. Per-
forming real experiments, however, provides crucial gui-
dance as to which artifacts might be of practical
relevance.

Just beyond the chaos border, metric universality, that
is, universal scaling behavior of the attractor, may give
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way to topological universality, i.e., that the attractor has
its parts in the proper place. This was quite convincingly
demonstrated experimentally by Gunaratne, Linsay, and
Vinson [1], who studied an electronic realization of the
circle map just beyond criticality where chaotic orbits
start to wander out of one-dimensional phase space.

If it is indeed problematic to construct experiments in-
volving chaotic dynamics that has predictable scaling be-
havior, the question quite naturally arises as to what
manner the found differences should be quantified. Ac-
cording to a recent suggestion [2], low-dimensional chaos
can be described through its underlying skeleton of unsta-
ble periodic orbits. It was Poincaré’s original idea that a
chaotic dynamical system will after a given time return
arbitrarily close to its starting location in phase space [3].
By slightly adjusting the phase-space point, this return
can be made exact, and the point is turned into a periodic
point. In a low-dimensional chaotic experiment, a regis-
tered time series will contain many points that are near a
cyclic point and that almost return. These points can be
used to estimate the precise location of the cycle, whereas
the evolution of their neighborhoods allows an estimate
of the stable and unstable cycle eigenvalues. In simple
systems the skeleton of periodic points can often be con-
structed hierarchically, and then provides a complete
description of chaos.

Such a description would be eminently suited to quan-
tify differences between chaotic dynamics as observed in
an experiment and as observed in theory or in numerical
simulations. In the past few years, several ways have
been explored to measure the scaling function D? in an
experiment [4-6]. A periodic-orbit analysis would also
furnish this scaling function. At the same time, however,
it would give insight into the dynamical mechanism that
brings forth the scaling of the experimental measure and
it would elucidate the nature of differences between ex-
periment and simulation.

A circumstance that at first sight discourages applica-
tion of periodic-orbit analysis is the necessity of finding
arbitrarily long periods together with their stable and un-
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stable eigenvalues. With a finite number of data points
measured with finite precision, this is an impossible task.
However, it has been shown that in many cases long cy-
cles are shadowed by sequences of nearby short cycles [7].
This circumstance gives rise to cycle expansions: an
elegant and systematic manner of approximating the con-
tribution of long cycles by nearby short ones. Thus, by
locating only the short cycles in an experiment, one
should be able to characterize the dynamics at much
longer times. The error made by omitting the true long
cycles is expected to diminish rapidly with the increasing
length of the included orbits. The rate of convergence,
the success of the cycle expansion, is intimately tied to
the underlying symbolic dynamics. It is exponential in
the case of “well behaved” symbolic dynamics that is, for
example, found for one-dimensional (1D) repellers [2,7].
Therefore, in order to assess the performance of a cycle
expansion, it is necessary to have a good idea of the sym-
bolic dynamics at hand. This, incidentally, is a nontrivial
task when the experiment is not truly low dimensional
(i.e., close to one dimensional).

In this paper we analyze chaotic dynamics in a
mechanical realization of a parametrically excited
damped pendulum: a pendulum whose support is lifted
periodically. Ideally, this experiment would be described
by the well-known differential equation [8]

2 k 2
%;?+__127%+ w3— Alco cos(wt) [sing=0, (1)
m

where / is the length of the pendulum, m its mass, and
where w, is the eigenfrequency for small excursions g.
The pendulum is excited with amplitude 4 and damped
by ordinary friction that is gauged by a damping constant
k,. A few years ago Koch et al. [9] constructed a similar
mechanical device and uncovered a plethora of nonlinear
phenomena, such as period-doubling series and transient
chaos. We have improved the accuracy of the experi-
ment and will concentrate on the measurement of scaling
properties instead. The principal aim of the present pa-
per is the comparison of a direct method of extracting
scaling behavior with the result of a periodic-orbit
analysis, both for the experiment as well as for its faithful
numerical simulation. We anticipate that a better under-
standing of these methods, and of their practical im-
plementation in particular, will lead to better tools for
analyzing chaos.

In Sec. II of this paper we will analyze the experiment
and introduce the differential equation that is assumed to
describe it and its numerical simulation. In Sec. III we
discuss the measurement of scalings and compare the
spectrum of generalized dimensions D7 from the experi-
mental attractor with that of its numerical simulation.
The power and elegance of a periodic-orbit analysis have
been illustrated in the case of simple dynamical systems
consisting of one- or two-dimensional mappings [7]. So
far, the full potential of the method to analyze experi-
mental results has remained unexplored [1,10]. In Sec.
IV we focus on practical aspects of the implementation of
a periodic-orbit analysis of the experiment. We will,
therefore, always work with time series, even in the case
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of numerical simulations where, in principle, the periodic
orbits and their eigenvalues are directly accessible. It will
turn out that a measurement of the stability of the under-
lying net of unstable cycles points to the dynamical origin
of the scaling behavior of the asymptotic measure and is,
therefore, often to be preferred over direct methods that
merely extract its averaged scaling behavior. However,
at the same time we will show that a cycle analysis does
not supersede these direct methods.

II. EXPERIMENT

Figure 1 shows the mechanical device. The pendulum
is 0.317 m long and terminates in a bob of 0.0858 kg.
The support of the pendulum is driven by a crank mecha-
nism. This allows for a more stable and simple construc-
tion, although the obvious drawback is that the excita-
tion is no longer described by the second term between
the large parentheses in Eq. (1) and contains higher har-
monics. The pendulum is driven by a 1-kW motor with a
tachogenerator feedback mechanism that keeps the angu-
lar velocity w constant to approximately 4%. An optical
encoder with an angular resolution of 27 /4096 gives in-
formation about the instantaneous angular position ¢ of
the pendulum. It is interfaced by a logical circuit to a
computer that reads ¢ each time the support is in its
highest position. A second reading, 15.08 ms later, is
used to obtain the angular velocity coordinate ¢ of the
point (¢,¢) in the Poincaré section; phase-space points

ﬁ
|

FIG. 1. The parametrically driven pendulum drawn to scale;
its height is 1.38 m. 1, bob of 0.0858 kg; 2, suspension with opti-
cal angle encoder; 3, rods guiding the vertical motion of the sus-
pension; 4, driving crank.
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are thus obtained with time intervals of 277 /w. The noise
€, in the (@,p) measurement was estimated from the ac-
curacy of measured returns in the phase plane when the
pendulum was in a sate of periodic motion. Within a few
cycles of the excitation, periodic points would be sharp to
within 3X 1073, and would broaden to twice this value
after about ten cycles.

A faithful simulation of the actual experiment intro-
duces extra terms in Eq. (1) that reflect the presence of
other damping forces and that allow for the noticed pecu-
liarity of the excitation. Friction forces other than that

|
k k k
do K o |de |, K2 de  Ks |de
drr | mi2 a7 i ar w2 | ar | 8"
+ a)(z)—

where € is the ratio of the two arms that make up the
driving crank mechanism. We have measured all three
damping parameters k;, k,, and k; in an unexcited, free-
ly swinging pendulum released at ¢ =0 at t =0. Figure 2
shows a plot of the excursion maxima as a function of
time, together with a prediction based upon Eq. (2) where
the damping constants k,, k,, and k; have been adjusted
so as to obtain the best agreement between measurement
and simulation [11]. Although we believe that the pres-
ence of damping terms that have a more complicated
dependence on the angular velocity is unavoidable in any
mechanical realization of Eq. (1), their presence will not
affect the main conclusions of this paper.

The phase diagram of the parametrically excited pen-
dulum is shown as a function of w in Fig. 3 where the an-
gular frequency of the excitation is varied from 8 to 13
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FIG. 2. Excursion maxima (¢=0) of a damped unexcited
pendulum as a function of time. Dots, experiment; solid line, a
fit using Eq. (2) with 4 =0.

do
dt
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represented by the term proportional to ¢ will be air
resistance that introduces a term proportional to
(@)’sgn(¢p), whereas the bearings will counteract the
motion through a Coulomb friction term that only de-
pends on the sign of ¢. Apart from those, there may even
be other forces acting in the experiment; for example,
small excursions near ¢ =0 could be influenced by har-
monic forces that are due to imperfections in ball bear-
ings.

In summary, the original equation of motion has to be
augmented to

2 cos (2wt )+ e*sin*(wr )

[1—e%sin(wt)]??

cos(wt)+e sin(p)=0, (2)

r
S™!, which is about the largest angular frequency that is
feasible in the experiment. Although there appears to be
a shift of the bifurcation values of @ in the experiment,
the scenario that gives birth to the chaotic attractor that
we wish to study is the same in the experiment and its
simulation. At 13 S™! the pendulum is in a rotating
motion whose frequency is locked to the excitation.
When lowering @, we encounter a series of period-
doubling bifurcations that leads to a small fourfold chaot-
ic attractor at ®=9.295 S™!. At slightly smaller  this
state yields a large chaotic attractor that extends over the
full angular range. The noise in the angle measurements
obscures further doublings of the period-4 cycle in the ex-
periment. The computed largest period-8 subharmonic
amplitude in the simulation (Ap/27=5.0X10"?) is con-
sistent with the estimated noise level in the experiment.
We notice incidentally that the presence of higher-order
harmonic terms in the excitation that have size €=0.17
in Eq. (2) is essential for the sketched scenario.

The large chaotic attractor that is shown both for ex-
periment and simulation in Fig. 4 is, in fact, transient. It
engulfs the origin that is stable due to the presence of the
hysteretic friction term k;sgn(¢). The effect of this term
is that the pendulum may become still at a finite angle ¢
[12]. The length of the chaotic transients may be very
long. Figure 4 shows a transient that lasted 42754 cy-
cles. However, since we were interested in much longer
simulated time series, we performed all simulations with
k,;=0. This will only affect a small region centered at the
origin of the phase plane, as is corroborated by Fig. 2.

In the absence of the hysteretic friction term, the sta-
bility of the origin is predicted by a simple argument
given by Landau and Lifshitz [8]. When k;70 the nu-
merical simulations show that the island of arrested
motion grows slowly as one moves farther away from
parametric resonance (w=2w,) towards lower frequen-
cies. However, the actual length of the chaotic transients
is almost entirely determined by the distribution of the
measure on the chaotic attractor. As will be shown
below, this distribution is uneven; the more so as the exci-
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FIG. 3. A part of the phase diagram as a function of the driving frequency w. Upper, as determined from a numerical simulation;
lower, from the experiment. The left bound of the interval of transient chaos is drawn at an arbitrary but short transient length.

tation frequency is increased and the pendulum spends a
large fraction of its time away from the origin [13].

Both experiment and simulation exhibit a clear fractal
measure in Fig. 4, where in each case 42 754 points are
drawn. The measure has a folded leaflike structure and is
strongly concentrated near the turnbacks. We will
demonstrate that these more concentrated regions of the
measure have a scaling behavior that is different from
that of the more rarified regions. Therefore, the mea-
sures shown in Fig. 4 are multifractal. We will now seek
to quantify the observed chaos both through the scaling
behavior of the measure and through the unstable period-
ic cycles.

g/

FIG. 4. Poincaré sections of transient chaos during 42 754
cycles: (a) experiment, (b) numerical simulation.

III. MEASURING SCALING BEHAVIOR

The measurement of scaling properties is, in principle,
aimed at quantifying the self-similar structure of the at-
tractor. Assume a coverage of the attractor using N balls
with sizes /; <1, each of which receives a fraction p; of the
phase-plane points. The scaling of the attractor then fol-
lows from considering the partition sum

N
Tig,n=3 p,.q/z,.f. 3)

i=1

In the limit of increasingly fine partitions /—0, the
condition TI'(g,7)=1 singles out a dimension
D=1(q)/(q—1) [14]. For partitions with a fixed size /,

gp,.qzﬂq'“l’" . @)

i=1

The significance of the parameter g is that the more con-
centrated parts of the attractor may have a different scal-
ing behavior than the more rarely visited. The scaling be-
havior of these most depleted regions is expressed by D4
with ¢ large and negative, whereas that of the most
enhanced regions is expressed by D for g large and posi-
tive. The point ¢ =0 is special in that the capacity di-
mension D° reflects the scaling of the support of the mea-
sure.

A practical way to measure the function D7 is through
the distribution of near-neighbor distances [4,15]. As-
sume a reference point with index i, we then call §,(k,n)
its kth near-neighbor distance out of a set of n points.
This distance increases as k increases and decreases as n
increases, probing the smallest scales in the measured at-
tractor when n equals the total number of measured
phase-space points and k =1 (nearest neighbors). Rough-
ly, 8;(k,n)=(k /n )8, where the value of the local scaling
exponent 8 depends on where the reference point i is lo-
cated. The generalized dimensions then follow from a
generalized average over many (m) such reference
points:

17y

i=1

5Tk, )= ‘% S (87 (ko)

1/D(y)
> (5)

1




6392

where the dimension function D(y) implicitly determines
the dimensions D% D(y=(1—gq)D?) =D Near-
neighbor distance scaling may be obtained from measur-
ing either the k or n dependence of 8'7(k,n). In practi-
cal applications of the method, the k-dependent scaling
behavior needs to be corrected by a function that reflects
the binomial statistics of near-neighbor distances [15].
Another consequence of the binomial statistics is that in
the case of the fixed-k method, which we will employ sub-
sequently, the value of g is bounded by g <k —1.

The above-sketched method is one where the mass of
partition elements remains fixed, whereas their radius
varies. A complementary method to extract generalized
dimensions is through the measurement of generalized
correlation functions C9(1) [5]

If
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FIG. 5. (a) Dots, scaling functions 8"(k,n) at k=16, and
y=0. Lines, fits using Eq. (5). Upper curve, simulated time
series containing 1048 576 points; lower curve, experimental
time series containing 42 754 points. (b) Same as (a) but for
v =28. For clarity, the simulated results have been shifted verti-
cally in each frame.
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where M;(1) is the number of phase-space points in a ball
with radius / around reference point i. This method gen-
erates a cover with fixed radius partitions that have vary-
ing mass.

In practice, the scaling dynamical range that can be
observed in an experiment will be bounded from below by
noise. Therefore, care needs to be exercised in applying
Egs. (5) and (6). Depending on the inhomogeneity of the
attractor scaling (i.e., the variation of DY with g), noise
may affect the fixed- mass and fixed- radius methods in a
different way.

Figure 5(a) shows the scaling behavior of the 16th
near-neighbor distance 8!V ~%(k =16,n) as a function of n
both for the experimental and the simulated time series.
The moment ¥ =0 corresponds to g = 1; its scaling behav-
ior provides the information dimension. The experimen-
tal time series contained 42 754 points and distances were
averaged over 8192 reference points; the simulation had
1048 576 points and 32 768 reference points were used to
compute averages. In both cases a clear scaling behavior
can be recognized whose dynamical range is limited by
the number of phase-plane points. While Fig. 5(a) shows
that the D! derived from the experiment is in excellent
agreement with that of the simulation, determining the
scaling behavior of other moments becomes progressively
more problematic as |y| increases. This is demonstrated
in Fig. 5(b), where we show 8r=8(k =16,n), a moment
that is probing the most rarified regions of the measure.
Also the scaling using the simulated time series, which
does not suffer from noise, shows a clear oscillatory resi-
due. We believe that these problems are due to the la-

20 — 77—

04

FIG. 6. Spectra of generalized dimensions D¢ measured from
simulated and experimental time series. Solid line, using near-
neighbor distances 8'")(k,n) at k=16 in the simulated time
series. Dashed line, using near-neighbor distances 8"'(k,n) at
k=38 in the simulated time series. Symbols, experiment; balls,
using near-neighbor distances 8'"(k,n) at k =16; triangles, us-
ing near-neighbor distances 8'7'(k,n) at k =8; squares, using a
variable mass method for the experimental time series.
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cunarity of the attractor [16].

The spectra of generalized dimensions, both for the ex-
perimental and simulated time series are shown in Fig. 6.
In both cases we have used the n dependence of the aver-
aged near-neighbor distance at two values of k (k=8§,16)
and for the experiment we have also employed the fixed-
radius method [5]. These various methods give con-
sistent results, leading to the conclusion that the experi-
ment has a multifractal scaling that is in remarkable
agreement with that of the simulation.

While the analysis of scaling behavior concentrates on
the metric properties of the attractor, it does not provide
direct information on the dynamics. It is precisely the
dynamics underlying the fractal measure that will be ana-
lyzed in the next section, where we will seek the hidden
network of low- order periodic orbits.

IV. PERIODIC-ORBIT ANALYSIS

The quest for periodic points and their eigenvalues
from a time series begins with partitioning the phase
plane into small boxes of linear size €. Next, the points in
the time series are sorted with respect to the location of
the box to which they belong. This action makes neigh-
boring points in phase space readily accessible: they ei-
ther belong to the same box or to an adjacent box that
can be located swiftly using a binary search. Because
most of the time in the algorithm that seeks periodic or-
bits is spend in finding neighbors, these technicalities
dramatically reduce the computing time needed [17].

The length of candidate cycles can then be easily found
from the time it takes a single phase-space point to return
to within a distance €. Such a point will return to either
its own box or to one of the neighboring boxes. Because
a point belonging to a p cycle may return each kp step,
k=1,2,..., it is ascertained that its corresponding en-
try in the list of return times is p. When multiple cycles
return in the same box, this requires a reduction of return
times to relative primes. Figure 7 shows a histogram of
points in the Pioncaré plane of the experiment that return
to within e=1072 in p steps (€ is normalized to unit at-
tractor size). Apparently, the experiment has cycles of
length 1 (fixed points) and a number of cycles of even
length.

The list of these candidates may be narrowed further
by requiring that a box contain at least a few points that
e-return as a p cycle. The point x? that returns closest is
selected as a reference point in a local linear approxima-
tion A? of the dynamical system. The stable and unsta-
ble eigenvalues of the p-periodic point that are needed,
for example, in the cycle expansion of the generalized di-
mensions, are the eigenvalues of the Jacobian matrix A°?.
A least- squares fit was used to estimate the Jacobian ma-
trix A7 over a single time step ¢,¢+1

X =y, = AN —y,) . 7

A minimum of 32 neighboring points y, was included in
the fit; typically, the points were taken from a 2€ neigh-
borhood of x,, excluding those that were within a €,-
noise distance from the reference point (we recall that €,
was estimated to be 5X 1073 in the experiment). The cy-
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FIG. 7 Number of orbits in the experiment that return in p
steps to within €é= 1072 as a function of p. The total number of
points in the time series is 42 754.

cle Jacobian A” was then composed out of p single-step
Jacobians:

AP=AL ALy A7 . (®)

In principle, identical results should be obtained from a
fit of the linear map A? directly over p time steps; howev-
er, the latter poses more severe requirements on the data
[18]. The identification of each cycle was facilitated by
associating a four-letter symbol with it (the phase plane is
divided as #%).

The outcome of this procedure is a rather long list of p
cycles, each with their stable and unstable eigenvalues.
From this list only those p cycles were selected that had
entries for each of their p-cycle elements with consistent
eigenvalues. Although this attitude may be rather con-
servative, we will point out below that the marginal hy-
perbolicity of the chaotic attractor introduces many close
returns that are not cycles.

Figure 8(a) shows the cycles up to length 5 that were
found in a time series of 42 754 points from the pendulum
experiment. The figure nicely illustrates the shadowing
mechanism in the central part of the phase plane: long
cycles are shadowed by short ones. In almost all cases we
did find all p elements of p cycles. If occasionally an ele-
ment was missed, it was constructed from the companion
cycle that is related to it via reflection symmetry of Eq.
(2) through the point ((¢,@)=(,0)) of the phase plane.
It is expected that this symmetry also applies to the ex-
periment. The cycles up to length 6 found in a simulated
time series of 1048 576 points are shown in Fig. 8(b). Ap-
parently, the experiment and the simulation have the
same network of periodic orbits. The found periodic or-
bits are concentrated in the region where the attractor is
folded strongest and where the measure appears to be
concentrated. The fixed point of the upright pendulum
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FIG. 8 (a) Experimental attractor overlayed with its low-
order periodic points; crosses, circles, triangles, squares, and +
signs correspond to periods 1, 2, 3, 4, and 5, respectively. (b)
Same as (a), but for the simulated attractor; period-6 orbits are
triangles pointing down.
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and the period-6 cycle eigenvalue were not found in the
experiment, most probably due to the limited number of
data points.

Table I summarizes the eigenvalues of the found
periodic points together with their symbolic dynamics. It
is a striking observation that the shadowing mechanism,
predicting cycle eigenvalues that are the product of those
of nearby cycles of shorter length is apparently effective
for the fixed points, two and six cycles near ¢ =7 The ex-
panding three- and four-cycle eigenvalues appear in both
cases anomalously large. This illustrates the nonunifor-
mity of the measure in the central part of the phase
plane. It may very well be, however, that the largest cy-
cle length found here is too small to be able to quantita-
tively verify shadowing. So far, the shadowing mecha-
nism has only been studied thoroughly in close to 1D at-
tractors [7]. We point out that finding cycles in near-2D
systems is much harder.

In Sec. III we compared the scaling properties of the
experimental and simulated attractor. The question then
quite naturally arises whether these scaling properties can
also be predicted by periodic-orbit analysis. In order to
connect to the metric properties of the attractor, we must
associate the measures p; and lengths /; in the partition
sum Eq. (3) with the stable and unstable eigenvalues of
the periodic points. Regions near such a periodic point
are expanded along its unstable direction and contracted
along its stable direction. A natural cover, therefore, is
one with boxes whose linear size decreases as p,, and
whose measure decreases as f,/u;. The generalized di-
mension D ? then follows from [19]

S (M) T T=1, )
fix(n)

TABLE 1. List of cycle eigenvalues that were found from an experimental time series (expt) and
those that were determined from a numerical simulation (sim). The phase plane is divided as &2, the
symbol indicates the order in which the regions 4, B, C, and D are visited. For orbits close to the divi-

sor ¢ =1, the symbol assignment is ambiguous.

Period No. of cycles I 72y Symbol
1 1 2.2 0.37 =0 (expt)
1 2.01 0.48 =0 (sim)
1 1 36.7 0.028 o= (sim)
1 2 1.68 0.39 C,B (expt)
2 1.71 0.43 A,D (sim)
2 2 3.8 0.21 AA, DD (expt)
2 2.54 0.22 AA, DD (sim)
3 2 26 0.067 ABA,DCD (expt)
2 22.6 0.020 ABA,DCD (sim)
4 2 30 0.02 ADCB (expt)
ABCD
2 25.2 0.022 ADCB (sim)
ABCD
5 2 43 0.008 AABAB (expt)
CDCDD
2 43.3 0.0067 AABAA (sim)
CDDDD
6 2 39.8 0.0015 ABCBAD (sim)

BCDADC
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where the sum over partition elements in Eq. (3) has been
replaced by a sum over periodic points. In Egs. (3) and
(9) the value ¢ =1 determines the normalization of the
measure; the information dimension D! merely follows
from the continuity requirement. We chose to satisfy the
normalization condition by replacing the right-hand side
of Eq. (9) with g, 15" /p{”. As was also emphasized
by Cvitanovi¢, Gunaratne, and Procaccia [19], the as-
sumed connection between the metric properties of the
attractor and the eigenvalues of its periodic points ex-
clusively applies to measures that are smooth along the
direction.

We have recast Eq. (9) in terms of a cycle expansion,
which means that we approximately allow for cycles that
have a length larger than those actually found [20]. First
we analyze the numerical simulation whose cycle eigen-
values are listed in Table I. Figure 9 compares the spec-
trum of generalized dimensions DY as computed from
near-neighbor information with that computed from the
eigenvalues of the unstable orbits. It appears that the
capacity (D99 computed from the cycle expansion is in
excellent agreement with that computed from the direct
method. There is fair agreement for the case g <0; how-
ever, there is a marked disagreement for the case g >0
that corresponds to the more concentrated regions of the
phase plane, where the direct method gives a much
stronger g dependence of DY than the cycle expansion.
The same conclusions can be reached for the experiment,
the results of which are shown in Fig. 10. While there
again is a quite remarkable agreement between the di-
mension spectra near ¢ =0, the dimensions correspond-
ing to the more concentrated regions of the phase plane
are significantly smaller for the direct method.

It should be realized that the behavior of DY for ¢ <0
is determined by the most depleted regions of phase space
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FIG. 9. Generalized dimensions from the numerically simu-
lated time series of 1048 576 points. Solid and dashed lines, us-
ing the direct method of near neighbors at kK =16 and 8. Dash-
dotted line, D? computed from the unstable orbits listed in
Table 1.
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FIG. 10. Generalized dimensions from the experimental time
series of 42754 points. Symbols, generalized dimensions es-
timated from fixed mass and fixed distance methods (see also
Fig. 6). Line, generalized dimensions computed from the exper-
imental unstable periodic orbits listed in Table I.

where we may not be probing the system with sufficient
accuracy. Therefore we are not sure of the behavior of
DY for q <0. In the case of the cycle expansion it may
very well be that the contribution of the most unstable
orbits to the cycle expansions is overestimated due to the
omission of their shadow companions.

The origin of the differences between direct methods
and cycle expansions for g >0 is revealed by Fig. 11,
which shows an enlargement of the central section of the
experimental phase plane. The figure clearly shows the
unstable manifolds that emanate from the period-2 cy-
cles. The measure on these manifolds is concentrated at

08 09 10 u 2

FIG. 11. Enlargement of Fig. 4(a) showing regions of margin-
al stability. The unstable fixed points are indicated by crosses,
the unstable period-2 orbits by circles.
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their folding points. These, in fact, are the most concen-
trated regions of phase space that we probe with g >0.
Orbits that pass through these folds are marginally
stable, the attractor is nonhyperbolic, and the analysis
embodied by Eq. (9) is bound to fail. Since folds are
mapped on folds and can never be members of a periodic
orbit of finite length, nonhyperbolicity will be hard to
capture in a cycle description of attractors.

Cvitanovi¢, Gunaratne, and Procaccia [19] have indi-
cated an extension of Eq. (9) that would be applicable in
case of marginal hyperbolicity. This method needs orbits
of length n in regions of marginal stability, but at the
same time necessitates the quest for nearby orbits with
the double cycle length 2n and prescribed symbolic dy-
namics. In our case, where the attractor is nearly two di-
mensional and only a small number of cycles can be
traced, this is an impossible task.

The presence of such outspoken marginal stability
causes close returns near the two-cycle of Fig. 11 that do
not correspond to a periodic orbit. These orbits pass
close to the folding points and have apparent periods that
are even. They are responsible for the peaks in the histo-
gram of close returns (Fig. 7) at multiples of 2. In the
simulated time series (where noise is virtually absent)
these apparent cycles vanish when the return distance € is
made small enough. The experimentalist should be aware
of this mechanism that produces close 2p returns near a
slightly unstable p cycle. When the measure is smooth
along the unstable manifold of the p cycle, the apparent
2p eigenvalues are the square of the proper p eigenvalues.
This was evident in case of the origin fixed point. In fact,
this was how the origin eigenvalues in case of the experi-
ment, which has strictly speaking a stable origin, were de-
duced. The relation between apparent and proper eigen-
values was strongly violated near the nonhyperbolic
points shown in Fig. 11.

For lower excitation frequencies, the nonhyperbolicity

20 ————
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FIG. 12. Generalized dimensions from a numerically simu-
lated time series of 1048 576 points at ©=8.845 S™!. Solid lines
using the direct method of near neighbors at k=16 and 8.
Dash- dotted line, D? computed from unstable periodic orbits.
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diminishes and the chaotic measure is spread out more
evenly over the phase plane. Also as a consequence, the
spectrum of dimensions becomes flatter. Figure 12 com-
pares the spectra of dimensions D? computed from near-
neighbor scaling and that deduced from a periodic-orbit
analysis using a simulated time series at ©=8.845 S~ 1.
The dimension spectra are now in perfect agreement for
g <0, the remaining nonhyperbolicity causing a slight
discrepancy at g 2. As the pendulum now spends a
larger fraction of its time near the origin, the length of
the chaotic transient in the experiment has decreased to a
few thousand points. Therefore it is not feasible to gen-
erate large experimental data sets at this frequency.

When the scaling of the attractor grows more uniform,
the terms in a straightforward summation over cycles of
the partition function [Eq. (9)] become of a comparable
order of magnitude. Therefore, information about a sin-
gle cycle would suffice to estimate D?. Restricting the
summation in Eq. (9) to a single cycle leads, together with
the normalization condition, to

, (10

which is the well-known Kaplan-Yorke formula [21].
For the cycles found in the simulation with »=28.845
S™1 Eq. (9) predicts values of DY in the interval (1.63,
1.95). While this is in fair agreement with the dimensions
that were determined using the direct method of near-
neighbor scalings, the dimension spectra of the full cycle
sum are clearly superior.

V. CONCLUSION

We have demonstrated that it is indeed possible to ex-
tract the scaling behavior of a strange attractor from an
(experimental) time series of finite length containing finite
precision data, through an analysis of its periodic points.
Moreover, since a periodic-orbit analysis produces a map
of local expansions and contractions, it provides informa-
tion on strange attractors that is far more valuable than
just their average scaling behavior. However, cycle
analysis has failed to capture an important qualitative as-
pect of both experiment and simulation; namely, that
they contain marginally stable points. The presence of
these points leads to strongly nonuniform scaling behav-
ior.

The exclusive use of time series for finding periodic or-
bits and their stability raises questions about the data re-
quirements. On the basis of the principle underlying cy-
cle analysis, one is led to believe that it is impossible to
derive scaling properties of an attractor if not yet all fun-
damental cycles have been found. However, for our 10°
simulated points it is already impossible to find orbits of
length 8 [22]. Still, we think that direct estimates of scal-
ing properties are possible using data sets that are that
large.

Without explicit knowledge of the symbolic dynamics
at hand it is impossible to notice that a cycle has been
missed. On the other hand, the direct methods to extract
scaling behavior may also miss these most depleted re-
gions of phase space, resulting in large errors in DY for
g <0. What is clearly needed here is an error analysis of
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multifractal scaling measurements.

An important practical problem in our cycle analysis
was the large number of close returns that had to be
dismissed as cycles. Because we believe that multifractali-
ty due to marginal hyperbolicity is quite generic, cycle
analysis should be extended to include these close returns
that are positioned close to marginally stable points.

6397

ACKNOWLEDGMENTS

The authors thank Dr. James Theiler for generously
providing software. They also acknowledge financial sup-
port from FOM (Stichting voor Fundamenteel Onder-
zoek der Materie, the Netherlands).

[1]1 G. H. Gunaratne, P. S. Linsay, and M. J. Vinson, Phys.
Rev. Lett. 63, 1 (1989).

[2] P. Cvitanovi¢, Phys. Rev. Lett. 61, 2729 (1988).

[3] H. Poincaré, Les Methodes Nouvelles de la Mechanique
Céleste (Gauthier— Villars, Paris, 1892).

[4) K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes,
IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-1,
25 (1979); Y. Termonia and Z. Alexandrowicz, Phys. Rev.
51 1265 (1983); R. Badii and A. Politi, Phys. Rev. Lett.
52, 1661 (1984); J. Stat. Phys. 40, 725 (1985).

[5]1 K. Pawelzik and H. G. Schuster, Phys. Rev. A 35, 481

(1987).

[6] A. Chabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327
(1989).

[71 R. Artuso, E. Aurell, and P. Cvitanovi¢, Nonlinearity 3,
325 (1990).

[8] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon,
New York, 1966).

[9] B. P. Koch, R. W. Leven, B. Pompe, and C. Wilke, Phys.
Lett. 96A, 219 (1983); R. W. Leven, B. Pompe, C. Wilke,
and B. P. Koch, Physica 16D, 371 (1985).

[10] D. P. Lathrop and E. J. Kostelich, Phys. Rev. A 40, 4028
(1989). Both this article and Ref. [1] concentrate on a
characterization of symbolic dynamics via periodic orbits,
but do not attempt to estimate metric properties using a
cycle analysis. In both cases the attractors studied were
close to one dimensional.

[11] The numerical integration of Eq. (2) is slightly complicat-
ed by the fact that the angular acceleration suffers a
discontinuity when ¢ changes sign. This can, however, be
adequately handled using a trick described by M. Hénon,
Physica Utrecht 5D, 412 (1982). The values of the param-
eters used in the simulation were k;=6.88X107%
k,=4.85X107% k;=1.90X10"% A4=0.131, €=0.173,
®©=9.09, and w,=5.57, all in mks units. The largest angu-
lar velocity in the freely swinging pendulum that was used
to determine the damping constants was 11 rad/s, whereas
that in the driven chaotic case is 14 rad/s. This leaves
some room for a damping term O(¢ ) in the driven experi-
ment.

[12] The effect of the hysteretic friction term k,;sgn(¢) is that
the pendulum becomes still at a finite angle ¢ at some in-
stant 7,. Depending on the phase of the excitation, the
pendulum may become unstuck again at a later instant
t,tg <t <ty+2m/w. This circumstance presents another
slight complication in the numerical analysis. The area of
the island of arrested motion in the numerical simulation
at ©=9.09 is approximately 10~ ° of that of the phase
plane drawn in Fig. 4. The longest chaotic transient that
we encountered in the simulation with nonzero hysteretic
friction lasted 3 X 10* cycles.

[13] For excitation frequencies that are slightly smaller than

®=9.4 s7! the periodic orbits in the central part of the
phase plane are only slightly unstable. This causes strong-
ly intermittent chaos: the pendulum spends a large frac-
tion of its time near these unstable periodic points and
only rarely visits the remainder of the phase plane. We
have explored other regions of parameter space and be-
lieve that this intermittency is the only way to achieve
long chaotic transients in the experiment. It may be feasi-
ble, however, to redesign the suspension of the pendulum
such as to reduce the size of the hysteretic friction term.

[14] R. Benzi, G Paladin, G. Parisi, and A. Vulpiani, J. Phys.
A 17, 3521 (1984); U. Frisch and G. Parisi, in Turbulence
and Predictability in Geophysical Fluid Dynamics and Cli-
mate Dynamics (edited by M. Ghil, R. Benzi, and G Parisi
(North-Holland, New York, 1985); T. C. Halsey, M. H.
Jensen, L. P. Kadanoff, I. Procaccia, and B. Shraiman,
Phys. Rev. A 33, 1141 (1986).

[15] W. van de Water and P. Schram, Phys. Rev. A 37, 3118
(1988).

[16] B. B. Mandelbrot, The Fractal Geometry of Nature (Free-
man, New York, 1983); R. Badii and A. Politi, Phys. Lett.
104A, 303 (1984); L. A. Smith, J. -D. Fournier, and E. A.
Spiegel, ibid. 114A, 465 (1986); W van de Water and P.
Schram, ibid. 140A 173 (1989).

[17] This procedure was first described by J. Theiler, Phys.
Rev. A 36, 4456 (1987). Its significance can be appreciated
if one realizes that a naive search for neighbors to each of
the N data points takes a time proportional to N2. Rear-
ranging phase space into neighborhoods, on the other
hand, takes a time proportional to N InN, after which the
quest for neighbors reduces to either an address lookup or
a quick (=~InN) binary search. The program is so fast
that a periodic-orbit analysis for up to 28 000 (as limited
by a 640-kB memory size) 2D data points can be done in a
few minutes of processor time on an ordinary personal
computer. The source code is available from the first au-
thor.

[18] Over p time steps one would try to deermine A4? from
Yi+p—1—X= A’(y,—xP). The problem is that the neigh-
borhood of x” may spread very rapidly, so that after p time
steps it may be very hard to find enough points y,;,—;
that are close enough in time series of manageable length.
Furthermore, distances may shrink below the resolution of
the experiment in the complementary contracting direc-
tion. In the case of very high-quality data it may be feasi-
ble to look for the exact return point x? by simultaneously
fitting 47 and x”.

[19] P. Cvitanovi¢, G. H. Gunaratne, and I. Procaccia, Phys.
Rev. A 38, 1503 (1988).

[20] The cycle expansion of the generalized dimension
uses a dynamical zeta function §(z) that is
defined as the following infinite product: &7 !(z)



van de WATER, HOPPENBROUWERS, AND CHRISTIANSEN 44

=TI,[1 —zn”(ulp )"”(/12‘D )97177], where p indexes the fun-

damental cycles (those listed in Table I) with period n,
and stable and unstable eigenvalues t, and p, , respec-
p

tively. The product is expanded as a polynomial in z,
which is truncated with N, the highest included order; N,
is the largest cycle length found. The generalized dimen-
sion, or equivalently, 7(q) then follows from the require-
ment £ !(z)=0 for z=1. In order to find these zeros it
was necessary to omit the fixed point of the pendulum at
rest and the very unstable fixed point of the upright pen-
dulum at (@, ¢)=(,0) from the expansion and to include
them in an ordinary fashion as in Eq. (9).

[21]J. L. Kaplan and J. A. Yorke, in Functional Differential

Equations and Approximation of Fixed Points, edited by H.
O. Peitgen and H. O. Walther, Lecture Notes in
Mathematics Vol. 730 (Springer, Berlin, 1979), p. 204.

[22] Assuming a uniform dimension D, the number of points in

a time series of length n that are close to a cycle and re-
turn within € is (u,/u,)e’n. If we take typical values of
Table I as average expansion and contraction rates per
time step, 1.5 and 0.4, respectively, a period-8 cycle would
have p,=(1.5)%, u,=(0.4)%. In that case at least 3 10°
points would be needed for observation of a single return
ine=10""



