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Stability of the higher-bound states in a saturable self-focusing medium
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We present an investigation of the stability of the cylindrically symmetric higher-bound states that can
be formed in a self-focusing medium with saturation. The higher-bound states are found to display
transverse instabilities that break the azimuthal symmetry of the system. An approximate analytic
theory is presented that correctly describes the qualitative variations of the numerically calculated insta-
bility growth rates.

I. INTRODUCTION

The problem of the self-trapping of optical beams [1, 2]
in nonlinear media has been studied extensively over the
last three decades both experimentally [3] and theoreti-
cally [4]. However, most interest in this field has cen-
tered on the lowest-bound state (or ground state) that is
cylindrically symmetric and has no field nodes (zero
crossings). Yankauskas [S] first showed that, for a medi-
um with a Kerr-type nonlinearity, there exists an infinite
number of bound states with cylindrical symmetry, each
being characterized by the number of field nodes, and a
similar conclusion was reached by Haus [6] on the basis
of numerical solutions. The nth bound state has a central
bright spot surrounded by n annular rings of varying size.
From the theoretical point of view the stability of these
nonlinear waves is of great interest. Vakhitov and Ko-
lokolov [7] first obtained stability conditions for the
ground state. These have been shown to apply to a wide
range of nonlinearities, both with and without saturation
[8]. In contrast, to the best of our knowledge, only one
paper by Kolokolov and Sykov [9] has considered the sta-
bility of the higher-bound states, and their findings have
never been tested by direct numerical simulations of the
nonlinear wave equation.

In this paper, we present an investigation of the stabili-
ty of the cylindrically symmetric higher-bound states that
can exist in a self-focusing medium with saturation. For
this case the ground state is known to be stable, but we
find that the higher-bound states display transverse
(modulation) instabilities which break the azimuthal sym-
metry of the system [8]. Transverse instabilities arise for
nonlinear waves whose description requires fewer dimen-
sions than that of the coordinate space. For the case at
hand, the higher-bound states can be described using the
coordinate system (r, z), which is two dimensional. The
transverse instability corresponds to growth of perturba-
tion eigenmodes which depend on the azimuthal angular

variable 0 in three-dimensional cylindrical coordinates.
Mathematically speaking, the bound-state solutions can
be viewed as saddle points in the phase space of our sys-
tem. It is then straightforward to show that the real and
imaginary parts of each unstable perturbation eigenmode
represent the outgoing trajectories from these saddle
points, whereas the complex conjugates of these represent
the trajectories that are moving into the saddle-type
point. Here we use numerical methods to determine the
unstable perturbation eigenmodes and corresponding
growth rates which result from linearizing the nonlinear
wave equation, and an approximate analytic theory is
presented which correctly describes the qualitative varia-
tions of the numerically calculated instability growth
rates. We also present direct numerical simulations of
the nonlinear wave equation which corroborate our
findings, some of which are at variance with those of Ko-
lokolov and Sykov [9]. These simulations show that upon
propagation the annular rings of the higher-bound modes
break into a series of regularly spaced filaments or hot
spots, the number of which is accurately predicted by the
numerical and analytic stability results. Such periodic
beam breakup into filaments has previously been studied
both experimentally [10-13]and theoretically [14-16] for
input fields other than bound states. In particular, for
the case of a Kerr-type nonlinearity, Campillo, Shapiro
[11, 12], and Suydam [14] have stressed the fact that
periodic beam breakup results from a transverse instabili-
ty.

The remainder of this paper is organized as follows.
Section II describes the nonlinear wave equation and no-
tation we have employed and discusses the stationary
bound-state solutions. The stability of the bound-state
solutions is investigated in Sec. III both numerically and
using an approximate analytic model. Direct numerical
simulations of the nonlinear wave equation which corro-
borate the results from the stability analyses are given in
Sec. IIID. Finally Sec. IV contains our summary and
conclusions.
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II. BASIC THEORY
AND STATIONARY SOLUTIONS

In this section we describe the nonlinear wave equation
and notation used in this paper, and discuss the station-
ary solutions of the problem

A. Nonlinear wave equation

We consider the propagation of a monochromatic,
linearly polarized electric field of frequency co in a satur-
able self-focusing medium characterized by the intensity-
dependent dielectric constant [17]

e(IEI )=&b+~e,.I (1+ E )
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where eb is the background dielectric constant, Ae„t & 0
is the saturated change in dielectric constant, and IE is
scaled such that it is the intensity in units of the satura-
tion intensity. Then writing the positive frequency com-
ponent of the electric field E in the form

FIG. 1. Energy Aux vs q for the first four stationary bound
states.

E = A (X, Y, Z)exp(ikonoZ), (2)
is real without loss of generality, then Eq. (5) becomes

where ko=co/c, and no is the effective refractive index,
we obtain the following quasi-optical equation for the
slowly varying envelope A [17]:

a~ a'w a'w
2ikono + + ko(n o eb )

T„A —
q 3+ =0

1+3
with the boundary conditions

=0, 3 (r)I„„=O.

(7a)

(7b)

x =koX(b, e„,)'~, y =koP(he„I)'

z =k QZ AEsat /2n 0

(4)

in terms of which the nonlinear wave equation becomes

. aw
I+I~I'

1+
We now write this equation in dimensionless form by in-
troducing the scaled variables defined by

It is straightforward to show that 0 &
q & 1 [7]. Then for

each allowed value of q, Eq. (7) has bound-state solu-
tions that we designate as A„, n =0, 1,2. . . , the nth solu-
tion having n field nodes. We do not here address the
question of the existence or uniqueness of these solutions.

In general the bound states of Eq. (7a) cannot be solved
in closed analytical form and must be found numerically.
We have obtained numerical solutions of Eqs. (7) using a
shooting method, and for a given value of q the corre-

Here q =(no —eb)/he„, with q playing the role of a
scaled effective index for the nonlinear wave, and the
transverse Laplacian describing beam diffraction in cylin-
drical geometry is

4 —.
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Equation (5) is the starting point for our discussion of
propagation in a saturable self-focusing medium.

B. Stationary bound states

2 I

0 10
radius

20

The stationary solutions are defined by setting
BA/hz=0. If we concentrate on those stationary solu-
tions with cylindrical symmetry A = A (r), and assume A

FIG. 2. Field profiles of the bound states corresponding to
q =0.5 and n =0 (solid line), n =1 (dashed line), and n =2
(dotted line).
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sponding bound-state field profiles A„(r) were obtained.
From these numerical solutions we then calculated the
self-trapped energy Aux of the nth bound-state solution as

I„=j 2vrrdr A„(r) . (8)

Figure 1 shows the energy Aux I„as a function of q for
the first few bound-state solutions of Eqs. (7). Note that
all of these curves have positive curvature over the full
range. Figure 2 shows the corresponding bound-state
field profiles obtained for q =

—,
' and n =0, 1,2.

III. STABILITY OF THE BOUND STATES

In this section we investigate the stability of the
bound-state solutions obtained in Sec. II. We concentrate
on the higher-bound states n = 1,2 to illustrate the
findings of our study in which we verified our conclusions
up to bound states with n =5. Section III A describes the
numerical stability analysis and the results obtained are
discussed in III B. Next, Sec. III C presents an approxi-
mate analytical stability theory which reproduces the
qualitative features of the numerical results, and there-
fore reinforces confidence in the numerical results.
Direct numerical simulations of the nonlinear wave equa-
tion which corroborate our findings are given in Sec.
III D.

A. Numerical stability analysis

To investigate the stability of a general bound-state
solution A„(r) with respect to perturbations which break
the initial cylindrical symmetry we seek a perturbed solu-
tion of the form

2. r)f 2 2 m 2A f+A f+A f*
(1+A„)

(10)

This equation for the perturbation function f has many
possible types of solution. For our purposes here we
specifically want to find those solutions which display ex-
ponential growth in the z direction, and which are there-
fore unstable. Such unstable perturbatI'on eigenmodes
propagate with unchanging field profile, although their
overall amplitude of course changes, and can be written
in the form

f (r, z) =f (r)exp(5z) .

Et can be shown that the eigenvalues of this problem are
either pure imaginary or pure real. Imaginary eigenval-
ues correspond to neutrally stable solutions which do not
grow upon propagation. In contrast, real positive eigen-
values signal instability since they correspond to ex-

3 (r, H, z)= A„(r)+pf(r, z)cos(m0),

where p is a small parameter, f (r, z) is a perturbation
function, and m, an integer, is the azimuthal index. In-
serting Eq. (9) into Eq. (5) and linearizing in the small pa-
rameter p we obtain

—lnI Re[f (r, z) ] I )/bz, (12)

at each step of the numerical simulation, where Az is the
small numerical step length. Clearly, if only one pertur-
bation eigenmode were present at the input then 6„
would simply be the corresponding eigenvalue by
definition (in the limit b,z~O). In general, the input
f (r, O) is composed of several perturbation eigenmodes.
However, for large propagation distances that perturba-
tion eigenmode with the largest growth rate 6„will dom-
inate since the growth is exponential. We therefore nu-
merically determine the propagation distance beyond
which the calculated value of 6„does not change per-
ceptibly. From this propagation distance onwards we
find that the perturbation eigenmode f„(r) correspond-
ing to the dominant eigenvalue 5, does not change in its
field profile. This behavior was verified for both the real
and imaginary parts of the dominant perturbation eigen-
mode. In this way we numerically determine the pertur-
bation eigenmode f„(r) and corresponding eigenvalue
5„ for a given bound state A„(r) and azimuthal index m

[18]. We expect that the symmetry of the perturbation
eigenmode of largest growth rate will dominate the subse-
quent evolution of a bound state as it goes unstable due to
random imperfections or Auctuations in the system. That
is, for example, if m =3 has the largest growth rate we
may expect that the initial cylindrical symmetry is bro-
ken to a threefold symmetry, at least during the first
stages of propagation.

B. Results from the numerical analysis

For the saturable nonlinearity considered here it has
previously been shown that the ground state is stable.
Vakhitov and Kolokolov [7] have shown that a sufficient
condition for the stability of the ground state (n =0) is

(13)

With reference to Fig. 1 we see that the ground state is
therefore stable. Consistent with this prediction our nu-
merical stability analysis was unable to find any unstable
perturbation eigenmodes for the ground state. In addi-
tion, for all higher-bound states considered (up to n =5),
the perturbation eigenmodes with azimuthal indices
m =0, 1 were found to have zero growth rate. The m =0

ponential growth of the perturbation eigenmode.
The general problem of finding the perturbation eigen-

modes of Eq. (10) of the form given in Eq. (11) is a for-
midable task even computationally. This approach was
taken by Kolokolov and Sykov [9], but we have found
that some of their conclusions are erroneous. Instead of
solving this eigenproblem directly we have used the
method of obtaining perturbation eigenmodes and eigen-
values described in Ref. [18]. Namely, for a given A„(r)
and m, we have solved Eq. (10) with a general nonzero in-
itial condition f (r, O) using a Crank-Nicholson scheme
[19],while following the evolution of the subsequent field
profile and calculating the quantity

5„=(ln I Re[f (r, z + Az ) ] ]
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perturbation eigenmode corresponds to an instability
which preserves the cylindrical symmetry of the problem
that causes longitudinal modulations, the "neck-type" in-
stability, whereas the I = 1 perturbation eigenmode is re-
sponsible for instabilities in which the nonlinear wave
bends in the transverse direction, the so-called "snake-
type" instability [20]. We therefore conclude that the
higher-bound states do not display neck-type and snake-
type instabilities. However, we remark that, as shown by
Zakharov and Rubenchik [20], the inclusion of group ve-
locity dispersion in this problem can lead to the growth
of both types of instability.

Figure 3 shows the numerically calculated growth rates
5„as a function of scaled effective index q for the first
higher-bound state n = 1, and azimuthal indices
m =2, 3,4, 5. For this case no unstable perturbation
eigenmodes were found with azimuthal index larger than
m =5. Several features are evident from these curves,
namely, (I) the n = I bound state is unstable for all values
of q and all the exponentially increasing perturbations
depend on the azimuthal angular variable 8, (2) the
growth rate is bounded by —,', (3) the maximum value of
the growth rate occurs for a finite value of azimuthal in-
dex m, and (4) the growth rate curves for different values
of I cross at certain values of q . In particular, with re-
gard to features (3) and (4), for q (0.6 the perturbation
eigenmode with m =4 has the largest growth rate,
whereas for q &0.6 that with m =3 has the largest
growth rate (Fig. 3). In both cases the most unstable per-
turbation eigenmode does not correspond to the largest
allowed value of I, since for q (0.6 the highest growth
rate occurs for m =4 whereas I =5 is also present, and
for q )0.6 the highest growth rate occurs for I =3
whereas m =4 is also present. This result is in contradic-
tion to the findings of Kolokolov and Sykov [9], who con-
cluded that, for nonlinearities for which the ground state
is stable, the perturbation eigenmode of largest growth
corresponds to the maximum possible azimuthal index m.
These authors did, however, also find that the growth
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FIG. 4. Real (8) and imaginary (I) part of the perturbation
eigenmode with m =4 associated with the stationary solution
(dashed line) for X = 1 and q =0.35.
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rate was bounded by —,'. A qualitative reason for this
bound shall be given in the next section.

A typical example of the calculated perturbation eigen-
mode for n =1 is shown in Fig. 4 for q =0.35, and
m =4. The calculated n =1 bound-state profile is shown
as a dashed line, and both the real (R) and imaginary (I)
parts of the perturbation eigenmode are displayed. Note
that the perturbation eigenmode is concentrated mainly
around the peak of the annular ring of the bound-state
solution.

Figure 5 shows the numerically calculated growth rates
6„as a function of scaled azimuthal index m for the
second higher-bound state n =2 and q =0.45. The nu-
merical results are shown as dots whereas the solid lines
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FIG. 3. Growth rates 5„of the predominant perturbation
eigenmodes with m-fold symmetry, associated with the station-
ary solution for n = 1, as a function of q .

FIG. 5. Growth rates 6„of the perturbation eigenmodes
with m-fold symmetry for n =2 and q =0.45. The dots
represent the numerically obtained values, while the continuous
lines are calculated using Eq. (19), in which we consider m to be
a continuous variable.
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are those from an approximate analytic theory to be
presented in Sec. III C. Here we clearly see that there are
two growth rate peaks in comparison to the case n =1
where there is only one. The reason for this is that the
second higher-bound state has two annular rings around
a central peak. For rn ~4 the unstable perturbation
eigenmodes are concentrated mainly around the inner
ring, whereas for I )4 they are concentrated mainly
around the outer ring. This is illustrated in Fig. 6 where
we show the unstable perturbation eigenmodes corre-
sponding to the peaks in Fig. 5 for (a) m =3, and (b)I =7. The calculated n =2 bound-state profile is shown
as a dashed line for reference, and both the real (R) and
imaginary (I) parts of the perturbation eigenmodes are
displayed. Therefore, in a sense, each annular ring gives
rise to a series of unstable perturbation eigenmodes which
have a growth rate structure similar to that for the n = 1

bound state (see Fig. 3), but with the largest growth rate
occurring for different values of azimuthal index m for
the two rings.

Our numerical calculations have shown that the same
line of reasoning can be applied to the higher-bound
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states. That is, for the nth bound state there are n local
maxima in the plot of 6, versus azimuthal index m for
q fixed, each maximum being associated with a different
annular ring. In this case we expect that as the nth
higher-bound state loses stability due to random imper-
fections or fluctuations in the system, the breaking of az-
imuthal symmetry will be different in each annular ring,
at least during the first stages of propagation. In Sec.
III D we present direct numerical simulations of the non-
linear wave equation which verify this expectation for the
example of the second higher-bound state.

C. Approximate analytical stability theory

At present there exists no rigorous stability theory for
the higher-bound states. In this section we present an ap-
proximate analytic stability theory which yields good
qualitative agreement with the numerical results of Sec.
III 8 and lends support to our conclusions based on those
results. It also demonstrates that the breakup of the
higher-bound states is indeed due to a transverse instabil-
ity.

To investigate the stability of the higher-bound states
we concentrate on the Ith annular ring of the nth bound
state (in general, l may assume values from 1 to n) Al-.
though this annular ring has a field profile we assume
that it can be amply characterized by the mean radius r„I
and amplitude 3„& given by

0

0 10 80
I i t i r I

and

rnl = f 2nr A„(r)dr
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f 2~r A„(r)dr
I
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2~r A„r dr

I
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2~r A„r dr
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where r is the jth zero of the nth bound state, A„(r& ) =0.
Clearly these quantities measure the mean radius and
field amplitude averaged over the annular ring. We have
seen in the preceding sections that the unstable perturba-
tion eigenmodes for the higher-bound states are concen-
trated mainly around the annular rings of these solutions
(see Figs. 4 and 6), and one may therefore anticipate that
the stability properties are related in some way to r„I and

A„I as defined above.
We now assume that the stability properties of the

bound state can be obtained from a simple one-
dimensional model in which the ring of radius I",I is
unwound. The equation for the field amplitude A (s, z)
along the ring is taken of the form

0 10
I RdlllS

20
where s is the path length along the ring, and

(16)

FIG. 6. Same as in Fig. 4 for n =2 and q =0.45. (a) m =3;
(b) m =7.

2

1+A„(
(17)
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dielectric function E(~E~ ) is positive for all finite ~E~,
and (2) the nonlinearity saturates to some finite value
b,e„,. Condition (2) frustrates the catastrophic self-
filamentation which can occur for self-focusing Kerr
media in two dimensions (2D). Condition (1) ensures that
when the response if linearized with respect to a small
change in the field p [as in Eqs. (18) and (19)], the term
proportional to p will always be positive, and the growth
rate will be of the form of Eq. (19). Our particular choice
of model was motivated by its basis in simple physical
systems; the well-studied "two-level atom" response of a
system to an optical field yields Eq. (1) (see, for example,
Yariv [21]).

D. Numerical simulations

In this section we present some numerical simulations
of the nonlinear wave equation (5) which corroborate the

2 (x,y, 0)= A„(r)[1+I (x,y)],
where I is a random noise term obeying

(I(x,y))=0, [(IP(x,y)l')]'"= —„', .

(20)

(21)

The noise term is intended to mimic random Auctuations
in the input beam which will serve to seed any latent in-
stability in the system. All of the numerical simulations
reported here were verified for several realizations of the
noise term to ensure that our conclusions were not the
product of a wild Auctuation which biased one specific
perturbation eigenmode.

findings of our stability analysis. In particular, we have
solved Eq. (5) using the split-step method [22] on a Carte-
sian grid with the initial condition

FIG. 9. Same as in Fig. 8 for n = 1 and q =0.8. (a) z =0; (b)
z = 140; (c}z = 170.

FIG. 10. Same as in Fig. 8 for n =2 and q =0.45. (a) z =0;
(b) z =50; (c) z =70.
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Figure 8 shows the evolution of the initial field profile
for the example represented in Fig. 4, where n =1 and
the perturbation eigenmode with m =4 has largest
growth rate. As expected, the field profile develops an az-
imuthal modulation which has four-fold symmetry as it
propagates. In contrast, Fig. 9 shows the corresponding
results for q =0.8, for which m = 3 has the largest
growth rate, and an azimuthal modulation develops
which has threefold symmetry. With reference to both
Figs. 3 and 7, we see that these results are in complete
agreement with both the numerical and analytic predic-
tions.

As a further demonstration of the validity of our analy-
ses we consider the second higher-order bound state with
n =2. According to the results leading to Fig. 5, for

q =0.45 the perturbation eigenmode with largest growth
rate occurs for m =3 for the inner annular ring (/ =1),
and m =7 for the outer annular ring (l =2). Figure 10
shows the evolution of the initial field profile for this case
and as predicted the inner ring develops an azimuthal
modulation with threefold symmetry, whereas the outer
ring develops an azimuthal modulation with sevenfold
symmetry. Again the results are in complete agreement
with both the numerical and analytic predictions. We re-
mark that such agreement between the numerical simula-
tions and analytic predictions was found in all the cases
we examined within the range 0 & q & 1.

Upon further propagation each of the numerical simu-
lations reported here lead to the formation of filaments or
hot spots. The number of filaments formed was accurate-
ly predicted as the azimuthal index of the perturbation
eigenmode of largest growth rate, as expected. However,
the dynamics of the filaments as they propagate was gen-
erally very complex, and is beyond the scope of the
present paper.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a combined
numerical-theoretical investigation of the stability of the
cylindrically symmetric higher-bound states which can be
formed in a self-focusing medium with saturation. The
higher-bound states were shown to display transverse in-
stabilities which break the azimuthal symmetry of the
problem. An approximate analytic theory was presented
which gives excellent qualitative agreement with the nu-
merically calculated instability growth rates.

We anticipate that these results will be of more general
utility in the analysis of the beam breakup and filamenta-
tion which occurs for nonstationary solutions. For exam-
ple, Konno and Suzuki have shown numerically that
beam breakup of an initially broad Gaussian beam occurs
only after the beam has undergone significant reshaping
and formed an annular ring, whereupon breakup into
four filaments occurs [15]. This is highly suggestive of
the same phenomena reported here for the first higher-
bound state. In recent work Heatley, Wright, and Stege-
man have shown that when spatial rings are emitted into
a nonlinear cladding medium bounding a linear fiber core
beam breakup can occur [23]. The application of the ap-
proximate analytic model to such nonstationary cases
will be reported in a future publication.
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