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Invariant densities for noisy maps
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The invariant density of discrete dynamical systems in the presence of weak Gaussian noise is studied
both by means of path integrals and a WKB method. The leading order of the invariant density in the
noise strength defines a generalized potential that is a Lyapunov function of the deterministic map. For
this generalized potential an eKcient functional recursion relation is established and applied to a variety
of different maps. The typical singular behavior of the generalized potential in the neighborhood of an
unstable fixed point is studied in detail. We show that noise-dependent corrections to the leading order
restore the smoothness of the invarant density.

PACS number(s): 05.40.+j, 05.45.+b, 02.50.+ s

I. INTRODUCTION

The inAuence of noise on discrete, dissipative dynami-
cal systems has been investigated in many respects. The
shift, broadening, and suppression of bifurcations due to
noise [1], the scaling of Lyapunov exponents [2] and of
the invariant density [3,4] near the onset of chaos, the
scaling of the length of laminar regions in the case of in-
termittency [5], both as functions of the noise intensity,
and the destabilization of locally stable states by noise
[6—9] are but a few examples.

For the investigation of some of these problems, the in-
variant density of the dynamical system in presence of
weak noise plays an important role [1,8]. In principle,
there exist numerical methods that allow one to deter-
mine the invariant density at a given noise level [10,11].
However, with decreasing noise the computational effort
may increase considerably, and hence, in general, the
asymptotic weak-noise behavior is difficult to obtain by
standard numerical means. The same problem appears
for noisy dynamical systems in continuous time, too.
There, for Markovian problems, it may be tackled by
WKB-type methods [12—15]. It is the purpose of this
work to transfer and extend these methods to the
discrete-time case [16].

We proceed as follows: In the next section we intro-
duce the model and formulate the problem. In Sec. III
we determine from the path-integral representation [17]
of the conditional probability density the invariant densi-
ty in the Gaussian approximation and essentially recover
an Ansatz for the invariant density, which was proposed
recently [16,18]. In the vicinity of stable fixed points and
stable periodic orbits, the invariant density coincides with
the local Gaussian approximation. Because unstable
fixed points turn out to be caustics in the path integral
[19], the Gaussian approximation fails within a noise-
dependent neighborhood of every unstable fixed point.
Using the leading asymptotic form of the invariant densi-
ty, in Sec. IV we obtain a transformed integral equation
for the invariant density.

In this way we are not only able to circumvent the

II. NOISY MAPS

We consider one-dimensional maps f (x) that are addi-
tively disturbed by independent, identically distributed
Gaussian random numbers g„:

x„~i
=f(x„)+g„, (2.1)

P(4 & [4 k+d g])=
&m.e

(2.2)

where n denotes time, e the intensity of the noise, and
P (8) the probability of an event B.

Because of the independence of the random force g„at
different times, the recursion (2.1) generates a Markovian
chain. The other assumptions concerning the one dimen-
sionality of the process, the additivity of the noise, and its
Gaussian character are made in order not to complicate
the presentation unnecessarily and may be relaxed con-
siderably (see Sec. V).

We will deal only with differentiable maps f (x) that
are further restricted such that the Markov chain (2.1)
becomes stationary after sufficiently many time steps [21].

problem of caustics, but more importantly obtain an al-
ternative method for the determination of this leading or-
der in terms of a generalized potential [20]. This method
may be applied iteratively with a fast rate of convergence.
The results thus obtained coincide with the leading order
of the path integral. Further, we establish an integral
equation for the corrections to the leading order which,
sufficiently far away from unstable points, coincides with
the Gaussian corrections to the path integral. Near un-
stable points the noise intensity may be made of order 1

by a scaling transformation of the state variable. The re-
sulting integral equation can numerically be solved by
standard methods. It yields a universal behavior of the
invariant density in the vicinity of unstable fixed points.
Section V provides a summary and discusses generaliza-
tions of the present methods to maps in higher dimen-
sions and more general non-Gaussian but still white
noise.

6348 1991 The American Physical Society



INVARIANT DENSITIES FOR NOISY MAPS 6349

~f(x)) & A ~x~, 0& A & 1 for ~x ~~ oo

or periodic maps

(2.3)

For this purpose we consider either maps that grow for
large ~x~ slower than the identical map

Because of the Markovian property of the process, the
probability density of the first n steps of the process start-
ing out at y is given by a product of n single-step condi-
tional probabilities:

I'(x„,n;x„„n—1;. . . ;x„1~y )

f(x+6 )=l.+f(x), (2.4)
=(ere) " e " ' (3 2)

—S(Ix I")/e

where L, denotes the period.
In the first case infinity is a natural boundary and an

invariant density exists that is normalized on the real
axis. In the second case a periodic invariant density ex-
ists, which may be normalized on each period.

It is obvious that in both cases, because of the Gauss-
ian noise, any state may be reached from any other one
with finite probability, and so there exists a uniquely
defined invariant density (see Appendix A and [21]).

The time evolution of the probability density W,"(x) to
find the system in the state x after n steps is given by [22]
[see also Eq. (3.1) below]

where

n

S([xk }0)= r [(Xk —«Xk-1)]'
jc =1

(3.3)

denotes the Onsager Machlup functional or action of the
path [xk}o IXo=y, x„.. . , x„),x„}.The most prob-
able path [xk }k o that leads in n steps from xo =y to
x„=x minimizes the Onsager Machlup functional, and
hence it obeys the two-step recursion

~n+1( ) I —(x f(y)] /e~—n(y)dy (2 5)&~e

Hence the invariant density is the solution of the homo-
geneous Fredholm integral equation

x„*—f(xk, ) —[x„*+, f(xk ) ]f '(—x„*)=0,

supplemented by the boundary conditions

X 0 y and Xn X

(3.4)

(3.5)

W, (x)= I e (" f' ') 'W (y)dy
v'ere

In passing we note that, only for linear maps,

f(x)=AX, iAi &1,

(2.6)

(2.7)

The invariant density W, (x) may be obtained as the
n —+ ~ limit of the (n —1)-fold integral of the path proba-
bility (3.2) over the intermediate steps xk, 1 & k & n —1:

W, (x)=(~e) ' lim

a stationary Markov chain evolving according to Eqs.
(2.1) and (2.2) obeys the principle of detailed balance (see
Appendix 8). The invariant density then reads [22]

1 1 —S( Ixk Io)/EX dX ) dx)e
(rre) (~e)

2 1/2
( 1 —A ) —11—~ ')x 'Za

&ere
(ne) ' J—Dxe

—5( Ix I )/e
(3.6)

For maps f(x) that deviate only slightly from the identi-
cal map,

f(x)=x —aU'(x) for a positive, small, (2.9)

the invariant density is approximately known [8]. It
reads

gq )
—Z —1 aU(x)IE— (2.10)

f(x)=x + sin(2rrx ) .b
2m

(2.1 1)

where Z ' is the normalizing constant.
In the following we will use as an example a climbing

sine map with parameter b )0 [23]:

where Dx denotes the infinitesimal volume element in the
space of paths. Recall that the existence and uniqueness
of the limit in this equation is guaranteed by the restric-
tion to map (2.3) or (2.4) (see Appendix A and [21]). The
uniqueness implies in particular that W', (x) is indepen-
dent of y. For small noise intensities the leading contri-
bution in Eq. (3.6) comes from the most probable path
that ends after an infinite number of steps at x =x. We
shall see below that this leading contribution depends
only on the domain of attraction of the deterministic map
to which y belongs. If there is only one infinite path with
minimal Onsager Machlup functional ending in x, one
can also take into account Gaussian fluctuations about
that path. For the invariant density this yields, to lead-
ing order in the noise intensity,

III. PATH-INTEGRAL RKPRKSKNTATION
OF THK INVARIANT DENSITY

W, (x)= —Z(x)e1

v'ere
(3 7)

According to (2.1) and (2.2), the conditional probability
density of finding the system at x after one step, when it
starts out at y, reads P(x) —=S( [xk }k =o) (3.8)

where $(x) denotes the action of the most probable path
as a function of the end point x * =x,

P(x, 1~y) = —e
1

&vrE
(3 1) and where the prefactor Z(x) is determined by Cxaussian

fluctuations
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Z(x)= JD5xexp —g 5xk5xi
1 i3 S([x*])

2E' 8 kB

B S([x*])
20xk BXI

—1/2

(3.9)

8 S[x*]
20xk 5XI

—b2 a3

Q 0 e ~ ~

Q Q ~ ~ o

Q ~ ~ ~

3

Hereby D5x denotes the infinitesimal volume element of
the fiuctuations [5xk ]. Further we introduced

The solution of (3.16) that obeys the boundary conditions
(3.5) for large n reads

xk =yA +XA" (3.17)

This path consists of an incoming part proportional to
that rapidly converges to the fixed point x =0 and an

outgoing part proportional to 3" that finally runs to
the prescribed end point x.

Note that in the limit n ~~ the incoming part of the
most probable path (3.17) follows the deterministic map
(3.16). Consequently, it does not contribute to the action
[cf. Eq. (3.3)], which therefore turns out to be indepen-
dent of the initial point y. With Eqs. (3.3) and (3.8) the
action for the most probable path reads

(3.10) {t(x)=(1—A )x (3.18)

where

~k —= 1 —f"«k )[xk+i —f(xk }]+[f'(xk}]',
bk =f'«k } . (3.11)

Elimination of the upper oQ'-diagonal elements on the
right-hand side of Eq. (3.10) yields

8 S([x*]) (3.12)
2B kB I k=

where

bk
Pk+& ak+1

Pk
p1=a1 . (3.13)

«k —1 «k+1
a —b —b =0

k k —1
d g k

Xk Xk
(3.14)

where ak and bk are defined in Eq. (3.11). With
dxk i Idxk = (dxk' Idxk i ) ', we obtain for
b„dx„*+,/dx„' the same Eq. (3.13) as for p„, and with
dxo /dxi =0 the same "initial" condition as in (3.13).
Hence, using Eqs. (3.9) and (3.12}, the prefactor Z(xk }
along the most probable path xk may be determined with
the help of the following discrete time Jacobi identity:

Z(xk+i )

Z(xk )
=(p )

' '= f'(x') dxk+1

dXk

—1/2

(3.15)

We will explain the general strategy of how to obtain
the most probable path as a solution of the two-step re-
cursion Eq. (3.4) and the resulting action P(x) and Z, (x)
by two examples. First, we consider the linear map (2.7).
From the two-step recursion Eq. (3.4), we then obtain for
the most probable path the equation

The sequence pk, k =1,2, . . . may be determined from
the most probable path for a fixed initial condition con-
sidered as a function of the position at a particular in-
stant k. For this purpose we di6'erentiate the two-step re-
cursion Eq. (3.4) with respect to xk and find for the varia-
tions dxk+i /dxk of neighboring sites of xk the equation

Equation (3.13) yields p& =(1—3 '"+")/(1—P2"),
and thus the determinant of the second derivative of the
action is readily obtained to read, for

~

3 ( 1,

O'S( [x*]}

28xk Bx)
(3.19)

5xk+i —[f'(x, )+1/f'(x, )]5xk+5xk i=0, (3 20)

where

5Xk:Xk Xs (3.21)

whereas for A~) 1 it diverges. With Eqs. (3.7), (3.9),
(3.18), and (3.19), we recover the invariant density of the
linear map [cf. Eq. (2.8)].

As a second example, we consider the climbing sine
map (2.11) with 0(b (2. Then, within each period, the
deterministic map exhibits exactly one stable fixed point
at x, =0.5mod1. The only unstable fixed points lie at
the integers. First, we look for the most probable path of
infinite duration that connects an initial point y with a
final point x both within the same period. From Eq. (3.3)
we infer that most of the steps of this path may deviate
only slightly from the deterministic map in order to yield
a finite action. Therefore, as for a linear map in the limit
of infinitely many time steps, the most probable path con-
tains an incoming part that follows the deterministic tra-
jectory toward the stable fixed point and consequently
does not contribute to the action. Near this stable fixed
point, an infinite number of time steps may accumulate
with no gain in action until the start of an outgoing part
that is consequently independent of the starting point y
and completely determines the action. The outgoing part
may be further subdivided into a first part that stays
within a neighborhood of the fixed point closely enough
that nonlinearities of the map can be disregarded and, in
general, a second part consisting of a finite number of
steps which follow the full nonlinear two step recursion
(3.4) and, finally, lead to the required end point x. The
first part follows analytically from the linearized equation
of the most probable path [see Eq. (3.4)]:

xk+, —( 2+ 2 ')xk +xk*, =0, (3.16)
denotes the deviation of the most probable path from the
stable fixed point x, . With the initial condition
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lim 5xk=0,
k —+ —oo

one finds

(3.22)

5x„=5xk,/f'(x, ) . (3.23)

If also the final point xo=x lies within the linear region,
one obtains

5xk =(x —x, )f'(x, ) (3.24)

and recovers with Eq. (3.3) the Gaussian form of the ac-
tion [see Eq. (3.18) and Fig. 1]:

P(x)=[1—f'(x, ) ](x —x, ) (3.25)

In the general case where the end point lies outside the
linear neighborhood, one matches the linear solution
(3.23) with the nonlinear recursion; i.e., one starts the
iteration of the two-step recursion Eq. (3.4) with a pair of
points xo and x &, both within the linear neighborhood
that are related by Eq. (3.23):

x*, =(xo —x, )If'(x, )+x, . (3.26)

The resulting path yields with Eq. (3.3) an extremal ac-
tion. After a fixed number n of time steps, the coordinate
x=x„' and the action of this path depend solely on the
matching point x o. In this way a parameter representa-
tion of the extremal action as a function of the state x is
obtained which in general is multivalued. The action
P(x) which determines the leading order of the invariant
density is then given by the corresponding minimal
branch. This minimal action P(x) is continuous, but has
discontinuities in the derivative at those points where
different branches of the multivalued action cross each

0.20

0.15—

0.05—

0.00
0.0 0.2 0.3 p 4. 0.5

FIG. 1. Action according to Eq. (3.8) along the minimal path
as solution of Eq. (3.4) for the map (2.11) with b=1.2. The
several branches in the upper part belong to a single curve. The
lowest-lying branches determine the minimal action that enters
the invariant density (3.7). Discontinuities of the first derivative
occur where di8'erent branches are minimal at the same value of

other. A numerical evaluation of the extremal action for
the map (2.11) with b =1.2 shows a smooth part of the
minimal action in a large neighborhood of the stable fixed
point x =0.5 and a succession of isolated discontinuities
in the derivative of P(x), which apparently accumulate at
the unstable point x =0 (Fig. 1). This behavior will be
discussed using another method in the following section.

One may argue that the number of steps n is another
parameter with respect to which the action must be mini-
mized. However, closer inspection shows that a change
of n may be compensated by a change of the matching
point xo without a change of the multivalued action.

Obviously, the above construction of P(x) must be
modified in the case of a superstable fixed point, i.e.,
where f'(x, )=0. One may then start the nonlinear re-
cursion (3.4) with xo =x, and use the first step x*, and
the number n of iterations as parameters of the represen-
tation of the multivalued action as function of the state
X=X~ .

One might think that there exists another possibility to
construct candidates for most probable paths: first, one
goes from the initial point to the next unstable fixed
point, stays there for an infinite amount of time, and
finally leaves it to the prescribed end point along a deter-
ministic path. However, one can show that this leads to a
vanishing prefactor, and hence thus constructed paths do
not contribute.

So far, we have considered final points that lie within
the same domain of attraction of the deterministic map as
the initial point y whose precise value has turned out to
be of no relevance. If, however, the final point belongs to
another domain of attraction than the initial point y, say,
to a neighboring one, then the most probable path must
go through an unstable fixed point of f (x). Beyond that
point this path follows the deterministic one, and hence
the action of this path remains constant until the next at-
tractor is reached, beyond which the action may further
increase. A lower action may be obtained, however, by
starting the most probable path within the domain of at-
traction to which the final point belongs. In this way a
piece of minimal action can be constructed on each
domain of attraction. These pieces are then continuously
matched together by adding appropriate constants on
different domains.

Once the multivalued action is known, it may also be
used to determine the prefactor Z(x) in Gaussian ap-
proximation according to Eq. (3.9). The prefactor
changes smoothly where P(x) is given by a single branch
of the multivalued action. For example, in the neighbor-
hood of a fixed point x, with f"(x, ) =0, one obtains a
constant prefactor by means of Eqs. (3.9) and (3.19),
where A is replaced by f '(x, ). Since, in general, different
prefactors Z;(x) belong to different branches P, (x), at a
crossing x& of two branches Pi(x) and $2(x) the respec-
tive prefactors Z, (x) and Z2(x) disagree. Therefore, in a
crude approximation the relevant prefactor in the invari-
ant density changes discontinuously where the derivative
of P(x) is discontinuous (Fig. 2). The dashed line in Fig.
2 shows two of these singularities of P(x) whose locations
xb coincide exactly with those of the jumplike discon-
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1.2

~ 0.8-
%l

& O.6-

04-

0.19

-0.18

-0.17

-0.16

-0.13

—0.12

an Ansatz:

W, (x)= Z, (x)e -~"",1

&me
(4.1)

where P(x) denotes the minimal action of all infinitely
long paths ending at x and where we have to allow for an
e dependence of the prefactor if we have to go beyond the
Gaussian approximation (3.9) as, for instance, in Eq.
(3.27). From Eqs. (2.6) and (4.1) one obtains an integral
equation for the prefactor,

0.2 I I I I I 0.11
002 004 006 008 0 10 0 12 014 016

Z, (x)= dy Z, (y)e
1

&~e
(4.2)

FIC1. 2. Minimal action P(x) (dashed line) according to Eq.
(3.28), the prefactor Z, (x) in Gaussian approximation Eq. (3.9)
(dotted line), and according to Eq. (3.29) for @=10 (solid line)
and b =1.2. Note that the di6'erences between the Gaussian ap-
proximation and improved solution show up as cusps in an @-

dependent neighborhood of those points where P(x) has discon-
tinuities of the first derivative. The height of the cusps is deter-
mined by the sum of the heights of adjacent plateaus and is
therefore e independent.

V(x,y) =P(y) —P(x)+ [x —f(y) ]

Using Eq. (3.3) and (3.8), P(x) may be expressed as

0
P(x) = min g [xk f(xk,—)]

Ixk I, XO =x
k

(4.3)

(4.4)

If one further restricts the minimum to paths with a
prescribed penultimate point x

&
=y, one finds, from the

obvious inequality

where V(x,y) is given by the minimal action and the map
f (x):

tinuities of the crude approximation of the prefactor (dot-
ted line). However, in an e-dependent neighborhood of
xb, both branches contribute to the invariant density:

/A{X}/6 $2{X}/&
v'rreW, (x)=Z, (x)e ' +Z, (x)e

0

y(x) ~ min y [xk —f(xI, $)]2,
IXk I ~Xp =X,X

an inequality involving P(x) at x and y:

P(x) ~ P(y)+ [x —f(y) ]

(4.5)

(4.6)

where

=Z (x)e (3.27)
With Eq. (4.3) this implies that the function V(x,y) must
not be negative:

p(x) =min[/, (x),$2(x)], (3.28) V(x,y) ~0 for all x,y . (4.7)

Z, (x)=Z(x)+Z(x)exp (x)—(x)

P(x) =max[/, (x),$2(x)],

(3.29)

(3.30)

From Eq. (4.5) we infer that V(x,y) vanishes only if the
point y coincides with the state on the most probable
path that precedes x: y=x* &, x=x0. In the typical
case there is exactly one most probable path leading to x,
in which ease y is a unique function of x:

and where Z(x) and Z(x) are the prefactors Z;(x) that
belong to the actions P(x) and P(x), respectively. Be-
cause of Eq. (3.27), the discontinuities of the crude ap-
proximation of the prefactor are replaced by cusps (see
the solid line in Fig. 2). The height of the cusps is given

by the sum of the left and right limiting values of the
crude approximation at a discontinuity and hence is e in-

dependent, while the width is proportional to e. The in-
variant density W, (x) is smooth by construction (3.27).

In the neighborhood of an unstable fixed point, a large
number of branches of the external action contribute and
a simple Gaussian approximation of the path integral for
the invariant density fails to give the correct prefactor.
We wiH come back to this point in the following section.

IV. MINIMAL ACTION AND PREFACTOR

A. WEB Ansatz

Instead of evaluating the prefactor in Eq. (3.7) within
the path-integral approach (3.6), we consider Eq. (3.7) as

y=g(x) . (4.8)

V(x,y)=0 y=g(x) . (4.9)

This together with the inequality (4.6) implies an implicit
equation for P(x):

P(x)=min[/(y)+[x —f(y)] ] . (4.10)

This represents the central result of this section.
Some consequences may easily be drawn from this

equation: First, we note the inequality

At those isolated points x where P(x) has discontinuous
derivatives, two different most probable paths end in x,
and hence two points y exist that lead in one step to the
same point x. There, g(x) has a jumplike discontinuity
with two values at this very point. We conclude that
V(x,y) vanishes for y =g (x):
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h +2h [x f—(g(x +h ))]~P(x+Ii )
—P(x)

~h +2h[x —f(g(x))],
(4.11)

0.12

0.10—

0.08—
where h is an arbitrary number. For a proof, see Appen-
dix C. The continuity of P(x) follows immediately in the
limit h~O. Difkrentiability is recovered at all points
where g(x) is continuous. There, the derivative of P(x)
reads

0.06—

4(~)
4(~)

P'(x)=2[x —f(g(x))] . (4.12)
0.02—

This may be obtained directly from the derivative of
V(x,y) (see Appendix D). Note that the derivative of
P(x) vanishes if the last step along the most probable
path follows the deterministic map f(g (x ) )=x.

The second property of P(x) is found if x in Eq. (4.10)
is replaced by f (x), and the minimum is estimated by the
value of the curly brackets at y =x:

P(f(x))~P(x) . (4.13)

Hence P(x) decreases along the deterministic path. With
the continuity of P(x), it follows from (4.13) that P(x) is
constant and locally minimal on attractors. In other
words, P(x) is a I.yapunov function of the deterministic
map f (x). The same arguments imply that P(x) is con-
stant and locally maximal on repellers.

Third, P(x) increases along the most probable path:
For y =g(x) the bracket on the right-hand side of Eq.
(4.10) assumes its minimum

P(x)=P(g(x))+ [x —f(g(x))]',
and hence

(4.14)

P(x) ~ P(g(x)) . (4.15)

Recall that g (x) is just one step back on the most prob-
able path ending at x. On an attractor or repeller, where
P(x) is constant, Eq. (4.14) implies that x =f(g(x)), i.e.,
that the most probable path coincides with the deter-
ministic one. According to Eq. (4.12), the first derivative
of P(x) vanishes there.

In passing, we note that in Ref. [18] a similar Ansatz is
made for the invariant density. There, however, P(x) is
still to be determined, whereas the positivity of V(x,y)
together with the existence of zeros of V(x,y), i.e., Eq.
(4.10), is postulated [25].

So far, we have seen that Eq. (4.10) follows form the
fact that P(x) is given by the minimal action. Next, we
demonstrate the converse, i.e., that the solution of Eq.
(4.10) is given by the minimal action. In other words, we
show that the Ansiitze of the present paper and Ref. [18]
are equivalent.

For this purpose we iterate Eq. (4.10) % times:

0.00
0.0 0. 1 0.2

z
l

0.3
f(~)

0 4 0.5

FIG. 3. Minimal action P(x) and one tangent parabola
P(y)+ [x —f(y) ] for a fixed value y =g(x ) for b =0.4.
Tangency occurs at x [see Eq. (4.10)].

0.12

0.10—

0.08

0 04—

0.02—

Since P(x) is constant on attraetors, P(x &) converges to
a constant in the limit X—+ ~. If there is only one attrac-
tor, this constant may be taken out of the minimum, and
up to this constant, Eq. (4.4) for the minimal action is
recovered. If there is more than one attractor, the
minimum is obtained i. (4.16) is first considered separate-
ly on each domain of attraction, and finally the constant
values of P(x) at the attractors are determined in such a
way that a continuous and minimal function P(x) results,
which, again, coincides with Eq. (4.4) up to an irrelevant
constant.

The recursive relation for the most probable path may
also be recovered directly from Eq. (4.9): First, one
differentiates (4.2) with respect to y and then puts
y =g(x) to obtain

P(x)=min[/(x ~)+S(Ixk J ~)], (4.16) 0.00
0.0 0. 1 0.2 0.3 0.4 0.5

where the action S( [x„] ~) is defined in Eq. (3.3). From
the discussion in the preceding section, it follows that
S([xk] &) becomes stationary in the limit X~~ only
if, for suKciently large X, x & moves on an attractor.

FIG. 4. Same as Fig. 3 for a series of y values that generate a
set of parabolas having P(x) as an envelope. The minimal ac-
tion P(x) is mirror symmetric with respect to the point x =0.5.
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P'(g(x) ) =2I x —f(g(x) ) ]f '(g(x) ) . (4.17) g(x) = x —a„ /2
(4.24)

Replacing x by g (x) in Eq. (4.12) yields another expres-
sion for P'(g(x)). Comparison of the two results yields

g(x) —f(g(g(x)))=Ix —f(g(x))]f'(g(x)) . (4.18)

This coincides with Eq. (3.4) for the most probable path if
we recall that g (x) precedes x on this path.

We conclude this section with a geometrical interpreta-
tion of Eq. (4.10): For each value of y the quantity to be
minimized on the right-hand side of Eq. (4.10) represents
as a function of x a parabola with vertex (f(y), P(y)) and
curvature 2. According to (4.10), this parabola lies above
P(x) except at those points x which have y as preimages
on the most probable path (see Fig. 3). As y is varied, a
set of parabolas is generated which has P(x) as an en-
velope (see Fig. 4).

x —a„/2 ana„x+b„=aI +6&+I 4
(4.25)

Since Eq. (4.25) must hold for all x, we find

a
an = (4.26)

and

where terms of order O(x ) are neglected. Since g(x)
can be discontinuous only at the boundaries of intervals,
with x EI„,g(x) varies in some interval I&. Hence Eq.
(4.14) reads

a„a) a„2
b„=b(—,+

2f„' 4
(4.27)

B. Vicinity of stable and unstable fixed points

We consider first the vicinity of a stable fixed point
which is assumed to lie at x =0. According to the
findings of Sec. IV A, P(x) assumes a minimum there:

P(x}=ax (4.19)

where a must still be determined and where terms of or-
der O(x ) are neglected. From Eq. (4.12), then, g (x) fol-
lows up to corrections of order O(x ):

1 —a x (4.20)

where f,' =f '(0). Combining Eqs. (4.14), (4.19), and
(4.20), we find, for the curvature of P(x) at a stable fixed
point,

Obviously, g(x) does not map I„on the same interval.
Since we have not yet fixed the numbering of intervals,
we may choose l =n —1. Then we obtain

ao

(f„')" (4.28)

(4.29)

where ao is the inclination of P(x) at a point x that al-
ready lies in the linear neighborhood of the unstable fixed
point, whereas g(x) does not. Hence ao is fixed by the
fully nonlinear map. To the right-hand side of Eq. (4.29},
an arbitrary constant may be added. For the interval one
finds

a =1—(f,')',
and consequently for g (x),

(4.21) I =
n

—ao —ao
(4.30)

4(f„' —l)(f„')"+' 4(f„' —l)(f„')"

g (x ) =f,'x . (4.22)

P(x) =a„x+6„, x EI„, (4.23)

where higher-order terms are neglected and where the
constants a„and b„and the intervals I„have still to be
determined. From Eq. (4.12) we obtain, with f„' —=f'(0),

By inspection one finds a non-negative function V(x,y) in
a neighborhood of x =y =0. Hence we recover the result
(3.25) obtained by means of the most probable path. For
a generalization to stable periodic orbits, we refer the
reader to Appendix E.

At an unstable fixed point lying again at x =0, P(x)
must have a maximum since P(x) decreases along a deter-
ministic path Isee Eq. (4.13)]. The existence of discon-
tinuities in the derivative in the neighborhood of an un-
stable fixed point is readily demonstrated. For this pur-
pose we look for a continuous function P(x) consisting of
smooth pieces which have different derivatives where
they are joined together (for a more careful derivation,
see Appendix E):

where we assumed f„' & 1 and negative ao. We find for
the location of the discontinuities of the derivative a
geometrical series with a rate (f„') ' that accumulates at
x =0. The inclination of the linear pieces of P(x) de-
creases in the same way. The parabola
P(x)+ I (f„') —1]x lies completely below P(x) and
touches each linear piece of P(x). A straightforward but
somewhat tedious calculation shows that the function
V(x,y) is positive for this P(x). Figure 5(a) shows V(x,y)
for a typical value of x as a function of y. For this x
value, V(x,y) has a single absolute minimum and two rel-
ative minima. As x is increased, one of the relative mini-
ma increases, whereas the other one decreases, until
V(x,y) shows two minima of equal height zero IFig.
5(b)]. With a further increase of x, the role of these mini-
ma is exchanged: The formerly absolute minimum be-
comes a relative one and vice versa. This exchange hap-
pens exactly at those x values where P(x) has a discon-
tinuous derivative and corresponds to the exchange of
different branches of the extremal action which form the
minimal action (see Sec. III and Fig. 1).
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The minimal action in the neighborhood of unstable
periodic points is discussed in Appendix E. Finally, we
remark that a similar behavior of P(x) near unstable fixed
points was already found in the case of continuous-time
stochastic processes in more than one dimension [15].

C. Functional iteration for the minimal action

P„+,(x)=min[/„(x)+[x —f(y)] J (4.31)

So far, we have drawn some general conclusions about
the minimal action and derived some local properties of
this action from the variational principle (4.10). Our next
goal is to replace this implicit equation by a functional
iteration that can easily be implemented and converges
rapidly.

We shall show that

Po(x) ~P(x) for all x,
Po(x ) ~ P, (x ) for all x,

(4.32)

(4.33)

where Pi(x) is obtained from Po(x) according to Eq.
(4.31). From condition (4.33) and Eq. (4.31), we find for
Pz(x)

$2(x) =min[Pi(y)+ [x —f(y)] ]

~minI Po(y)+[x —f(y)] ] =P,(x) . (4.34)

converges in the limit n ~~ toward the different pieces
of action on different domains of attraction of the deter-
ministic map, provided the initial function iIbo(x) is prop-
erly chosen. For a particular domain of attraction, we
may measure the yet-unknown minimal action relative to
its value at the attractor; i.e., P(x)=0 if x is on the at-
tractor. This may be assumed for Po(x), too. Then the
conditions under which (4.31) converges to the minimal
action P(x) read

0.020
This argument can be repeated and shows that the se-
quence P„(x) is monotonically decreasing:

0.015—
4o(x) —0i(x) —' ' ' —0 (x) —4' +i(x) —' ' ' (4.35)

~0.010—

Condition (4.32) implies that it is bounded from below
and hence converges. It is easily seen that the limit func-
tion ~)b'(x), to which the series tt)„(x) converges, is a solu-
tion of the variational equation (4.10):

0.005—
i)b*(x)=minIP*(y)+ [x —f(y)] ] . (4.36)

0.000
0.00 0.05 0.10 0.15 0.20

The uniqueness of the solution of Eq. (4.36) is indirectly
shown. Let us assume that i)b"(x), being constructed as
described above, differs from the minimal action P(x):

iI)*(x)—P(x) =b, (x) . (4.37)

0.020

0.015— (b)
b, (x)=min[V(x, y)+h(y)] . (4.38)

Choosing y =g(x) on the right-hand side, we obtain, with
Eq. (4.9),

By construction, h(x) is nowhere negative and vanishes
on the attractor. From Eqs. (4.36) and (4.7) an implicit
variational equation follows for h(x):

~0.010—H &(x)~&(g(x)) . (4.39)

0.005—

0.000
0.00 0.05 0.10 0.15 0.20

FIG. 5. V(x,y) as defined in Eq. (4.3) as a function of y for
fixed values of x for b = 1.2 in the neighborhood of the unstable
point y =0. (a) For x=0.03 and (b) for the particular value
x=0.0387. . . which corresponds to the location of a discon-
tinuity of the first derivative in the minimal action ib(x) and,
hence, leads to two degenerate minima in V(x,y). otherwise . (4.40)

Since in a single domain of attraction any most probable
path comes out of an attractor (see Sec. II), the iterates of
g (x) converge towards the attractor, and Eq. (4.39)
yields, as upper bound for b,(x), its value at the attractor.
Hence b, (x) vanishes identically on a single domain of at-
traction, contrary to the assumption.

In cases with multiple attractors, P(x) has to be con-
structed separately in each domain of attraction and then
matched together, as already described in Sec. IV A.

The function which is zero on the attractor and
"infinite" elsewhere fulfills the conditions (4.32) and
(4.33) and hence may be used as initial function i)bo(x):

0 on the attractor
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0.25

0.20—

0.15—

0.05—

0.00
0.0 0. 1 0.2 0,3 0.5

Here "infinite" can be any positive number that exceeds
the range in which P(x) is expected to vary. If P(x)
grows to infinity on the considered domain, the constant
value ~ in Eq. (4.40) should be replaced by a function
that grows faster than P(x). Figure 6 shows the first few
iterates of (4.31) for the map (2.11) with b =2. Since the
fixed point x =0.5 is only stabilized by nonlinear terms,
the convergence of P„(x) toward a quartic parabola in
the vicinity of this point is relatively slow compared to
linearly stable cases. In the neighborhood of the unstable
point x =0, the first discontinuity in the derivative of
P„(x) shows up after three iterations. With higher itera-
tions this singularity is shifted toward its final location,
and in each iteration a new singularity of the same type is
born. As one usually works with a discrete set of a few
hundred x values, convergence is reached after 5 —50
steps, depending on the map f (x).

Results for P(x) obtained in this way are shown as
dashed lines for the map (2.11) for a variety of different
parameter values b. Since (()(x) is symmetric about
x =0.5, only one half of the period is shown.

Figure 7 shows with b =0.6 a small parameter value
for which the generalized potential (()(x) coincides reason-
ably well with 4 times the potential U (x )

=(2') b cos(2mx) determining the "force" —U'(x) in
the map f(x)=x —U'(x). This approximate result can
be obtained from a lowest-order perturbation theory
[8,18].

Figure 8(a) shows (t(x) for b =1, where the determinis-
tic map has a superstable fixed point at x, =0.5. In a
large neighborhood of x„P(x) is given by the steepest
possible parabola (x —x, ) until it has a discontinuity of
the first derivative at x =0.13 followed by a succession of
such singularities as the unstable fixed point x =0 is ap-
proached.

3.0 0.12

0. 10

2.0— -0.08

1.0-
i

-0.04

0,0
0.0 0. 1 0.2

-0.02

[ I
000

0.4 0.50.3

FIG. 7. Minimal action P(x) (dashed line) determined from
(4.31) and the prefactor Z, (x) in gaussian approximation (solid
line) from (4.41) for b=0.6. Note that the singularities in the
neighborhood of the unstable point x =0 are present even for
this small b value, but are more visible in the prefactor than the
action. The inset shows the prefactor on an enlarged scale near
x =0.

Increasing b leads to the marginally stable case at
b=2, shown in Fig. 6. For b=2. 6 [Fig. 8(b)] the map
f (x) has a stable period 2 at the approximate values 0.3
and 0.7, where P(x) has its minima, about which it is par-
abolic in agreement with the solution of Eqs. (E9), (E10),
and (E13) of Appendix E. Discontinuities of the deriva-
tive of P(x) exist in the neighborhood of the unstable
points 0 and 0.5, though hardly visible near 0.5.

As b is further increased, a series of period-doubling
bifurcations leads to a Feigenbaum attractor at b
=3.532. . . . Its location is indicated in Fig. 8(c) above
the abscissa. The generalized potential is constant on the
attractor and displays an approximate scaling behavior
with a scaling factor A, =43.8116. . . . See Fig. 8(d) and,
for further details, Refs. [3] and [4].

At the parameter value b =3.62, the map f (x) has in
each period a strange attractor consisting of two inter-
vals, indicated as a solid line in Fig. 8(e). There, (()(x) is
constant in accordance with the remark following Eq.
(4.13).

Finally, Fig. 8(f) shows the map with parameters
b =4.256, corresponding to a periodic window with
period 4. Between the deterministically stable points
where (()(x) has minima of equal height, there are strange
repellers on which P(x) is constant according to the re-
mark following Eq. (4.13).

FICi. 6. First iterates P„(xl of Eq. (4.31) for the map (2.11)
with b=2. The initial function Po(x), which is not shown, is
zero at x =0.5 and infinity elsewhere. With increasing number
of iterations n, the iterates P„(xl converge rapidly from above
to the minimal action. Note that at b=2 the fixed point at
x =0.5 loses its stability and bifurcates to a period 2. In the vi-

cinity of x =0.5, the action P(x) is given by a quartic parabola.

D. Determination of the yrefactor

Once the minimal action P(x) is known, the prefactor
Z, (x) can be determined from Eq. (4.2). If, for a given
value of x, there is only one zero of V(x,y) at y =g(x),
the integral on the right-hand side of Eq. (4.2) can be
evaluated in Gaussian approximation to yield
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f '(g(x) )

g'(x)

—1/2

Z, (g(x))

—1/2

Z, (g(x)), (4.41)

where we have used the expression (D5) for the second
derivative of V(x,y) given in Appendix D. Comparison
with Eq. (3.15) shows that Z, (x) coincides with the result
from the path integral obtained in Gaussian approxima-
tion.

Next, we shall determine the behavior of the prefactor

2.0 0.20
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FIG. 8. Minimal action (dashed line) and prefactor (solid line) as solution of Eq. (4.2) at a=5 X 10 for the map (2.11) at different

values of b. Both functions are mirror symmetric about x =0.5. (a) shows the case of a superstable fixed point at x =0.5 for b =1.
(b) For b =2.6 there is a stable period 2 at approximately x

&
=0.3 and x2 =0.7. (c) Feigenbaum attractor for b =3.532. . . . The lo-

cation of the attractor is indicated above the ordinate. (d) Logarithm of P(x) for the same b as in (c). P(x) displays an approximate

scaling behavior with scaling factor X=43.8116. . . . Note that P(x) vanishes on the attractor. For further details, see [3] and [4].
(e) Strange attractor for b =3.62. Its location is indicated above the ordinate. (f) Window with period 4 for b =4.256. Note that the

minimal action is constant on the strange repeller.
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in the vicinity of stable and unstable fixed points. Near a
stable fixed point at x =0, Z, (x) converges toward a
finite value. For a map f(x) with vanishing second
derivative at x =0, Z,'(x) vanishes.

Near an unstable fixed point at x =0, we find, with
(4.24)

x —a„ /2
Z, (x)=f„'Z, for x EI„, (4.42)

where f„' —=f '(0). Since for x EI„ the argument of Z, (x)
on the right-hand side lies within I„„the value of Z, (x)
must decrease by the factor [f'(x)] ' if one moves from
an interval to a neighboring one toward the unstable fixed
point. Further, we observe that the interval I„ is mapped
onto a proper subinterval of I„&of even smaller length
than I„by g (x)= (x —a„ /2)( f„' ) '. Consequently,
Z, (x) becomes constant for x HI„with sufficiently large
n. In order that the prefactor exists within each interval,
Z, (x) must be constant on each interval. Hence we re-
cover the steps in the prefactor with constant values on
each interval I„ that decreases by a factor (f„') ' on the
neighboring interval I„+i (see Fig. 2). In the case shown
in Fig. 2, this asymptotic regime has not yet been
reached, with the consequence that the steps are slightly
inclined. The inclination decreases by the same factor
(f„' )

' as do the heights of the plateau. In Fig. 9 the in-

clination of the steps has reached its asymptotic value of
zero.

We recall that these conclusions are drawn from the
approximate Eq. (4.41), which follows from the exact Eq.
(4.2) under the assumption that there is only one leading
maximum of the kernel exp[ —V(x,y)/e] of the integral
equation (4.2) that then can be handled in Gaussian ap-
proximation. Figure 5(a) shows, however, that for each
fixed value x, V(x,y) has many other minima besides its

0 2 6 8 10 12 14

FIG. 9. Prefactor Z,{x) in arbitrary units as solution of Eq.
{4.2) in the neighborhood of an unstable point at x=0 with
f' =1.6 and e~=0.7635. . . . See discussion at the end of Sec.
IV D.

absolute minimum. It is only justified to neglect these
other minima if the value of V(x,y) at each of them is
large compared to the noise strength e. For x values in a
e-dependent neighborhood of the borders of each interval
I„,this is no longer true and two minima of almost equal
magnitude dominate the integral in Eq. (4.2). Figure 5(b)
shows the extreme situation where x lies on the boundary
of two intervals and V(x,y) has two absolute minima.
For an x near the right boundary of I„+&, one finds in
Gaussian approximation the following equation for the
prefactor:

Z, (x)=(f„') ' Z,
x —a„+&/2

+Z,
x —a„ /2

exp
V(x, (x —a„ /2) /f „' )

(4.43)

A similar equation is obtained if the same boundary is ap-
proached from the opposite side. Equation (4.43) gives
rise to the same cusps on the edges of the steps as dis-
cussed in Sec. III.

If x approaches the unstable fixed point, the barriers
that separate the diff'erent minima of V(x,y) decrease in
proportion to a„, i.e., as (f„') ". Thus the width of the
cusps is of order O(e/x), whereas their height is e in-
dependent (see Fig. 9). Hence, in a neighborhood of or-
der O(&e) of the unstable fixed point, the cusps merge.
In other words, the Gaussian approximation fails there
and one has to consider the exact integral equation (4.2).

The function V(x,y) depends not only on its explicit
variables x and y, but also on the derivative off (x) at the
unstable point and on the parameter ap that fixes the pre-
cise location of the discontinuities of the first derivative
of P(x). From Eqs. (4.3), (4.23), and (4.28) —(4.30), one

I

finds the scaling behavior

V(l,ao, k,x, ky)=A, V(ao, x,y)

and

V( &,a(f„') x, (f„')"y)=(f„')'"V(ao,x,y) .

(4.44)

(4.45)

(4.46)

where

v ( g', i) ) = V( —1,g', i7 ),
z, (g) =Z, (g+e/eo),

(4.47)

(4.48)

These scaling laws allow one to remove the ap depen-
dence from the integral equation (4.2) and to rescale the
noise from the small value e to a large value E'p.
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and

)2k

ao
(4.49)

be generalized to multiplicative noise and to higher-
dimensional problems.

A further generalization is possible to non-Gaussian
white noise g„having a density

where k is chosen in a way that co& [1/f'(0), 1]. The
free overall constant in the solution of (4.46) can be
chosen such that z, (x) matches after rescaling with the

0

outer Gaussian solution. Results of a numerical evalua-
tion of Eq. (4.46) are shown in Fig. 9. For sufficiently
large g=x /+e, the result of the Gaussian approximation
with cusp-shaped corrections is recovered. As g de-
creases, the cusps become broader until they blur the
steps completely.

The behavior of the prefactor Z, (x) in a variety of
cases is shown in Figs. 7 and 8. We note that although in
Figs. 7 and 8(b) discontinuities of the derivatives of P(x)
are hardly visible, the prefactor clearly displays singulari-
ties near unstable points that indicate the existence of
singularities of P(x).

V. CONCLUSIONS

In this paper we investigated the influence of weak ad-
ditive Gaussian white noise on the invariant density of
discrete dynamical systems by means of a path integral
representation and a WKB-type A nsatz. As in the
continuous-time case, the exponentially leading term of
the invariant density at small noise is determined by a
minimal action of all paths that lead in an infinite amount
of time (i.e., infinite number of steps) to a prescribed end
point x. The action of a path is, as in the continuous-
time case, given by an Onsager-Machlup functional. The
minimal action obeys an implicit extremum principle.
This principle justifies a WKB Ansatz proposed in Refs.
[16] and [18]. Besides the continuity and growth proper-
ties of the minimal action, which can also be found
directly from the path-integral representation, we ob-
tained from this extremum principle a functional itera-
tion that provides a very efficient numerical method for
the determination of the minimal action. In the neigh-
borhood of unstable fixed points, the minimal action
shows discontinuities of the first derivative at isolated
points that accumulate at the unstable fixed point. In
continuous time a similar behavior can only occur (and
was observed [15]) in systems with more than one dimen-
sion.

Once the minimal action is known, an integral equa-
tion determines the preexponential factor in the invariant
density. Away from unstable fixed points a Gaussian ap-
proximation leads to a recursive relation that can numeri-
cally be solved, whereas in the vicinity of an unstable
point an appropriate rescaling of the noise strength and
the state variable leads to a numerically treatable integral
equation.

Results of the presented theory for the minimal action
and the prefactor are given for different maps with a
periodic orbit, a Feigenbaum attractor, and a periodic
window as attractor (see Figs. 7 and 8).

The methods presented in this paper can irnrnediately

p(g) =Ne (5.1)

where H(g) ~0 and N is a possibly x-dependent prefac-
tor. Then the WKB Ansatz (4.1) for the invariant density
yields the implicit minimum equation

P(x) =min[/(y)+H(x —f(y) ) ] . (5.2)

If H(g) vanishes only for /=0 and if H(g') is
differentiable, all general properties of P(x) remain the
same as in the Gaussian case.

(i) P(x) is continuous.
(ii) P(x) is differentiable where g(x) is continuous. Its

derivative then reads

P'(x)=H'(x —f(g(x))) . (5.3)

(iii) P(x) decreases along the deterministic path and in-
creases along the most probable path. Consequently,
P(x) is again a Lyapunov function.

Finally, we note that Eq. (5.2) can be transformed into
a functional recursive relation for P(x), analogous to Eq.
(4.31).

APPENDIX A: UNIQUENESS
OF THE INVARIANT DENSITY

In this appendix we give an elementary proof of the
uniqueness of the invariant density for a large class of
Markovian processes in discrete time under the condition
of its existence. For this purpose we assume the con-
trary, namely, that there exist two different invariant den-
sities W, (x ) and W2 (x ) that both satisfy

W, (x)=fP(x y ) W;(y)dy, i =1,2

where both are non-negative,

W~(x) ~0, i =1,2
and properly normalized,

jW(x)dx= 1 .

(A 1)

(A2)

(A3)

The integrals in Eqs. (Al) and (A3) extend either over the
whole real axis or, in the periodic case, over one period.
The conditional probability P(x~y) need not have the par-
ticular form that follows from Gaussian noise [see Eq.
(2.2)]; rather, it is sufficient that for each pair of points x
and y, P(x~y) is diff'erent from zero. Obviously, this holds
in the Gaussian case. Under this assumption the
difference b.(x) of the solutions Wi(x) and W2(x) does
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not vanish everywhere:

b(x) = W, (x)—W2(x)%0 . (A4)

Since, however, its integral vanishes, A(x) must assume
both positive and negative values:

b, (x) =6+(x)—b, (x), (A5)

b, +(x))0, x ER+
b, +(x)=0, x ER

(A6)

Because of the linearity of Eq. (Al), A(x) obeys the same
equation:

where b, +(x) and b, (x) are both non-negative. The re-
gion where 5+{x) is strictly positive is denoted by R+
and its complement by R

APPENDIX B: DETAILED BALANCE

It has been conjectured that for discrete nonlinear
"Langevin" equations of the form (2.1) and (2.2), i.e., for
independent, additive Gaussian noise, the principle of de-
tailed balance cannot hold [24]. In this appendix we shall
prove this conjecture. For this purpose we formulate the
principle of detailed balance in terms of the joint proba-
bility density W(y, 1;x) to find the system in equilibrium
in state x and after one time step in state y and the time-
reversed one W(x, 1;y) (see Ref. [26]),

W(y, l;x)=W(x, l;y) . (B1)

The joint probabilities may be expressed as products of
conditional probabilities to proceed in one step from a
given state, say, x, to state y, or reversed, and the invari-
ant densities at x and y, respectively:

&(x)=f dy P(xly)~+(y) —f dy P{xly)~ (y)

(A7)

—[y —f(x)] ILAW( )
—[x f(y)] ILAW— (

We immediately obtain, from Eq. (B2),

(B2)

where we have used Eq. (A5) and partitioned of the whole
range of integration into R+ and R . Next, we integrate
Eq. (A7) over R+..

f dx b(x)= f dx f dy P(x y)&+(y)
R+ R+

dx dy I' x y 4+ y
+

dx f dy P(x ~y)A (y), (A8)

[y —f(x)]'+4{x)= [x —f{y)]'+4(y), (B3)

f (0)=0,
g(0)=0 .

(B4)

(B5)

whe~e 1t(x)/e denotes the negative logarithm of the in-
variant density. Without loss of generality we may as-
sume that f (x) has a fixed point at x =0 and that itj(x)
vanishes there:

where we added and subtracted the integral

f z dx f ii dy P(x y)b, +(y) on the right-hand side. Us-

ing the normalization of P(xiy), the first term is found to
be identical to the left-hand side, and consequently we
obtain

f dx f dy P(xiy)b+(y)

Choosing y =0 in Eq. (83), we find, for p(x),

g(x)=x f (x) . —

Putting this back in Eq. (B3) yields

yf(x)=xf(y) .

Hence we find

(B6)

(87)

+ f dx f dy P(x~y)h (x)=0 . (A9) f(x)= Ax,
Since neither integral can be negative, both must vanish
separately. With the strict positivity of P(x ~y ), it follows
that b, +(x) and b, (x) vanish, and so does h(x), contrary
to the assumption that there is more than one invariant
density.

We may further relax the assumption on P(xiy). The
invariant density automatically satisfies the iterated equa-
tions

W(x)= fP(x, n~y)W(y)dy, (A10)

where P(x, n[y ) denotes the transition probability in n

steps from y to x:

P(x, nay)= f dz„ i
. f dz, P(x~z„ i) . P(x~y) .

(Al 1)

By the same arguments used above, one already finds the
uniqueness of the invariant density if for each pair x and
y there is a finite transition probability P(x, nay) with
some n ~ 1. This is completely analogous to the case of
Markov chains in a discrete-state space [27].

where A has to be restricted to

(B9)

in order that the invariant density following from Eq.
(86) be normalizable. These arguments can be general-
ized to higher-dimensional processes even with com-
ponents transforming differently under time reversal.
Again, for Gaussian white noise the deterministic map
must be linear and the coeKcients in these linear func-
tions must obey Onsager-Casimir-type symmetries in or-
der that the principle of detailed balance be fulfilled.

APPENDIX C: PROOF OF EQ. (4.11)

First, we replace the first term in the difference
P(x +h ) —P(x) by its variational expression (4.10):

P(x+6 ) —(t {x)=minIP{y) —P(x)+ [x+6 —f(y)] ]

=min[ V(x,y)+h +2h[x —f(y)]]

(C 1)
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where we have used the definition (4.3) of the function
V(x,y). Choosing y =g(x), V(x,y) vanishes [see Eq.
(4.9)] and one obtains the right-hand side of the inequali-
ty (4.11).

We now replace the second term in the difference
P(x +h) —P(x) by its variational expression and obtain
by the same arguments as above the left-hand side of
(4.11).

APPENDIX D: DERIVATIVES OF Q(x)
AND V(x,y)

From Eq. (4.9) we conclude

B V(x,y =g(x)) =P'(x) —2[x f(g(x)—)]=0 (Dl)
x

stant on the periodic orbit, and according to Eq. (4.14),
the most probable path coincides with the deterministic
orbit

x;=f(g(x;)) . (E3)

Consequently, in the neighborhood of the periodic orbit,
g (x) reads

g(x;+5x ) =x;,+h;(5x ),
where h;(0) vanishes. Because of the Lyapunov property
of the minimal action, on the average h;(5x) decreases
for a stable and increases for an unstable periodic orbit.
From Eq. (4.18) and (E2) one obtains, for h,.(5x ),

h, (5x) f,' 2—h;, (h;(5x))
and =f,', 5x —(f, ) h;, (5x) . (E5)

B
V(x,y =g(x)) =P'(g(x))

By

First, we consider a stable periodic orbit. Obviously,
linear functions h, (5x ) may solve Eq. (E5),

—2f '(g(x) )[x f(g(x) )]=—0 . (D2) h;(5x ) =a, 5x, (E6)

Thus we recover Eqs. (4.12) and (4.17). Total
differentiation of (D2) with respect to x yields

where the coeKcients a; are periodic solutions of the
algebraic set of equations following from Eq. (E5):

V(x,g(x) )
d B

dx By

B B B'
V(x,y =g(x))+g'(x) V(x,y =g(x))

Bx By By

=0.

V(x,y)= —2f'(y) .B

Bx By
(D4)

From the definition of V(x,y) in Eq. (4.3), one readily
derives

[I+(f —i )')&;
—f —2&; —ia; =f —i .

With the help of the transformation

z, =(1 f,a; )—
Eq. (E7) goes over into

z, =(f,', ) z, , +1 .

With the periodicity of z;,

zp ZO

(E7)

(E8)

(E9)

(E10)

Combination of Eqs. (D3) and (D4) implies

'(g(x) )V(x,y =g(x ) ) =2
Py~

' g'(x)

APPENDIX E: PERIODIC ORBITS

f«)=x+i od, (El)

Points in the vicinity of the periodic orbit then evolve un-
der the deterministic map according to

In this appendix we generalize the considerations of
Sec. IV B to orbits with a period p, [x;]f:o, of the deter-
ministic map f(x):

i=0 i=0
(El 1)

Hence the transformation (E8) yields the correct decreas-
ing solution for h;(5x) [see Eq. (E6)]. For later use we
note that all z; are positive.

From Eq. (4.12) with Eqs. (E2), (E4), (E6), and (E8), we
obtain the derivative of the minimal action,

Eq. (E9) has a unique solution which leads with Eq. (E8)
to the desired expression for a; in terms of the derivatives

f . We shall not give the explicit expression; we only
mention that, as a consequence of Eqs. (E8) and (E9), the
product of the a, over one period equals the product off:

f(x; +5x ) =x, +,+f,'5x, (E2)
P'(x, +5x)=2z, '5x, (E12)

where f denotes the derivative of f (x) at x, and where
higher-order terms in 5x are neglected. The orbit is
known to be stable if the modulus of the product of the
derivative of f (x) on the orbit is less than unity; if larger
than unity, it is unstable. We disregard the marginally
stable case where nonlinear terms have to be included in
Eq. (E2).

In both the stable and the unstable case, P(x) is con-

which is readily integrated to yield

P(x, +5x)=z; '(5x) (E13)

Hence, with the positivity of the z;, we And a Gaussian
distribution around each point x; of the periodic orbit.

In the neighborhood of an unstable periodic orbit,
another solution of Eq. (E5) is relevant which is continu-
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ous only on intervals I,', l =0, 1,2, . . . , in the vicinity of
the point x;, i=0, 1, . . . ,p —1, and may have discon-
tinuities on the boundaries of these intervals. Since g (x)
maps a point from the neighborhood of x; into that of
x; &, the labeling with respect to the upper index l may
be chosen such that h, (5x) maps points from I into
I:&'. Obviously, a linear function on each interval may
solve Eq. (E5), P'(x;+5x ) = 2B—, 5x HI (E21)

With this value one obtains, from (E16) asymptotically
for large l,

(E20)

With Eq. (4.12) one finds, for the derivative of the
minimal action,

h, (5x )= 3,'5x+B, 5x CI (E14)

provided the coefficients satisfy the set of algebraic equa-
tions

and, consequently,

P(x;+5x ) = 2B,'5—x+ C, 5x HI (E22)

Z =(1—f,A )

yielding an equation analogous to (E9):

Z// (f )2Z/ i + 1

(E17)

(E18)

with some initial condition Z, . Obviously, the solution
0

of (E18) grows infinitely, and the asymptotic value of 2
for large l becomes

lim A =(f, )J~ oo

(E19)

(E15)

(E16)

These equations are not really partial difference equa-
tions, since on the (i, l) lattice from each of the p base
points (i, 0) there is only one ray (i +l, l) along which the
coefficients 3 and B,' are connected with each other
through Eqs. (E15) and (E16). The values A;,B; at the
base points are determined by the full nonlinear problem
and may be considered as initial data to the Eqs. (E15)
and (E16). The equations along each ray following from
(E15) have all the same form as Eq. (E7), and hence their
solution may be obtained by the same type of transforma-
tion (E8),

From Eq. (4.14) one finds, for the integration constants

C/ C/ —i (f ~ B/)2 (E23)

The p initial values C; have to be determined such that

P(x; ) assumes the same value, say, zero, on the periodic
orbit. At last, the intervals I,.' must be determined in the
way as we did for an unstable Axed point by calculating
where different branches of P(x) meet. Finally, we note
that the different solutions of Eq. (E5) correspond to the
solution of Eq. (3.11) for the most probable path that in
case of the stable orbit starts on this orbit and needs an
infinite number of steps in order to escape from it. In
case of the unstable orbit, it starts from some point that
does not lie on the orbit. For each given number of steps
away from this initial point, there exists an interval of
end points with minimal action which is a piece of a para-
bola. End points that are closer to the periodic orbit need
a larger number of steps on the most probable path and
hence are given by a different parabola, which eventually
may be approximated by a straight line.

Once the function g (x) is known, the prefactor can be
determined in Gaussian approximation according to Eq.
(4.41).
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