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The theoretical basis of the first-principles molecular dynamics introduced by Car and Parrinello
[Phys. Rev. Lett. 55, 2471 (1985)] is investigated. We elucidate how the classical dynamics
generated by the Car-Parrinello Lagrangian approximates efficiently the quantum adiabatic evolution
of a system and discuss the role played by the spectrum of the eigenvalues of the Hamiltonian of
Kohn and Sham [Phys. Rev. 140, A1133 (1965)]. A detailed characterization of the statistical
ensemble sampled in the numerical simulation is given. By combining theoretical arguments and
numerical results we demonstrate that the motion of the electronic variables is a superposition of
a direct drag due to the ions and of high-frequency normal modes. By making a connection with
the averaging methods of classical mechanics, we argue that whenever it is possible to get a large
separation between the time scales of these modes and the ionic frequencies, the dynamics of the ions
closely approximates that resulting from the adiabatic approximation. We introduce simple n-level
models, easily amenable to analytic treatment, to add clarity and study the possible mechanisms of
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broken adiabaticity encountered in the actual calculations.

PACS number(s): 05.20.—y, 61.20.Ja, 71.10.+x

I. INTRODUCTION

The study of the dynamics of the ions using interparti-
cle forces evaluated from electronic quantum-mechanical
calculations has been beyond computational possibility
for many years. For this reason, computer simulations
of realistic systems have until recently only been per-
formed by modeling the ionic interactions with empirical
potentials. While reliable potentials for many physically
interesting systems have been derived so far, their lim-
ited transferability and the lack of systematic techniques
for their derivation have caused a continuing desire for a
true “first-principles” simulation method.

In a seminal paper, Car and Parrinello [1] demon-
strated the feasibility of an ab initio molecular-dynamics
(AIMD) calculation. By that we mean the numerical in-
tegration of the Newton equations of motion for a given
number of ions with forces derived, at each time step,
from the instantaneous electronic configuration.

The Car-Parrinello (CP) approach to the AIMD pro-
vides an algorithm that is very efficient from the com-
putational point of view because the updating of the
electronic degrees of freedom for each ionic configuration
does not involve explicit minimization of the electronic
density functional. The basic idea is to introduce a fic-
titious Newtonian dynamics for the electronic variables.
For a subset of the possible initial conditions, the cou-
pled set of equations of motion for the ionic and elec-
tronic variables generates an ion dynamics that closely
approximates a microcanonical evolution, and the ions
interact through forces indistinguishable from those de-
rived from the Born-Oppenheimer energy surface. So far,
a number of investigations have been performed, or are
in progress, on very different materials as semiconductors
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(in crystalline, amorphous, or liquid phases), s-p bonded
metals, alloys, microclusters, and for different properties,
such as defect properties, grain boundaries, and surface
properties.

While considerable progress has been made on many
computational aspects of the method, little attention has
yet been given to developing the underlying theory. Con-
sequently there have been some misunderstandings about
the justification for the method. Furthermore, practi-
tioners in the field of AIMD lack a theoretical framework
to organize empirical observations about the numerical
results and to investigate possible improvements of the
original method. We think that the time is ripe for a first
attempt to closely examine the theoretical issues under-
lying the Car-Parrinello method.

In this paper we pursue a twofold task: first, we give
a brief review of the method from a purely classical me-
chanics perspective. In this context, we discuss the char-
acterization of the statistical ensemble sampled by the
CP dynamics by working out the first integrals of this dy-
namical system. Second, we study the relations between
the spectral properties of the electronic Hamiltonian and
the classical adiabatic evolution of the electronic degrees
of freedom in the CP simulation system.

In particular, we show that the CP dynamics of the
electronic variables consists of small oscillations whose
eigenfrequencies are approximately given by the differ-
ences between eigenvalues of the effective Schrédinger
equation. By making connection with the “averaging”
method of classical mechanics [2, 3], we argue that pre-
cisely this oscillating dynamics makes it possible to ap-
proximate the desired Born-Oppenheimer dynamics of
the ionic system. Furthermore, we relate the possibility
of maintaining the ionic subsystem as close as possible
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to a microcanonical system to the well-known existence
of adiabatic invariants in a system of fast oscillators. Fi-
nally, by using simplified models which have only a few
electronic levels, we investigate in greater detail the pos-
sible mechanisms of the adiabaticity breakdown in the
CP dynamics.

The paper is organized as follows. In Sec. II we briefly
summarize the CP formalism and describe how it is used
in actual calculations. The constants of motion related
to the symmetries of the CP Lagrangian are discussed.
We also give some typical examples of the results of ac-
tual calculations, and illustrate the empirical relations
between the spectrum of the Hamiltonian and the numer-
ical behavior of the simulation. In Sec. I1I we analyze the
theoretical justification of the CP method from a purely
classical point of view. In Sec. IV we introduce a class of
simple few-level systems that can be used to model the
cases of broken adiabaticity in the CP method. In the
same section we discuss, with numerical examples, the
similarities and differences of the few-level models and
the actual calculations. Final conclusions are collected
in Sec. V.

II. AB INITIO MOLECULAR-DYNAMICS
SIMULATION

A. Electronic quantum adiabatic evolution
and classical ionic dynamics

The existing methods of calculating the interionic
forces from first principles require the validity of the
quantum adiabatic approximation. As a consequence of
the large mass difference between ions and electrons, the
time scales of their motions are usually well separated
and the (fast) electrons have enough time to readjust
and thus follow the (slow) ionic movement. Within a
time-dependent quantum description, departures of the
electronic wave functions from the instantaneous ground
state during the lonic evolution are always present but, in
many cases, remain very small. The quantum adiabatic
approximation amounts to a reduction in the original dy-
namical problem to that of the parametric evolution of
the ground state.

Deviations from the quantum adiabatic approxima-
tion are expected whenever the gap in the electronic-
excitation spectrum is such that the electronic-transition
frequencies become comparable to, or smaller than, the
typical frequencies of the ionic motion. However, even in
the case of metallic systems, the effect of such deviations
on many physical properties is not dramatic (a detailed
discussion of the physical justification of the adiabatic
approximation in metals is summarized in Ref. [4]).

The quantum adiabatic approximation allows us to
separate the electronic and the ionic degrees of freedom
in such a way that a partial average of the electronic
variables and the classical limit on the ionic degrees of
freedom is equivalent to introducing an effective classical
ionic system. The effective Hamiltonian is

Hy = HY{Rs,Rr}) + F({R}), (1)

where HY contains the ionic kinetic energy and the bare
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lon-ion interaction ({R} are the ionic positions and
{R} the ionic velocities). F({R}) is the free energy of
an inhomogeneous electron gas in the presence of fixed
lons at positions {R;}.

The free energy F({R;}) can be evaluated using
density-functional theory (DFT) [5]. Within DFT the
electronic ground state is described in terms of the den-
sity p(r) that is obtained by minimizing F({R}) consid-
ered as a functional of p(r). We will indicate the func-
tional dependence by square brackets.

Many existing implementations of the DFT are based
on the Kohn and Sham (KS) formulation for the
electronic density functional F([p(r)],{Rs}) within
the local-density approximation (LDA) [6]. This is
one of the most accurate and commonly used ap-
proaches for present-day electronic structure calculations
in condensed-matter physics. For temperatures much
smaller than the Fermi temperature the electronic free
energy is well approximated by the ground-state en-
ergy U({R}). Thus the technology developed for total-
energy calculations [7, 8] can be used to derive the effec-
tive interaction.

The forces on the ions due to the electrons in
the ground state can be obtained from the Born-
Oppenheimer (BO) potential energy surface:

Uso({Rr}) = min E([p(r)], {Rr}) 2)
as
= - 2eollls) G

Thus, a straightforward numerical simulation of the
ionic motion with the electrons lying on the BO surface
would require that at each time step the electronic de-
grees of freedom are quenched in their ground state. This
procedure would require the solution of a self-consistent
electronic-structure problem at each time step in typical
simulation runs of about 10 — 10° time steps. Even with
a very small time step for the ionic evolution, present
state-of-the-art minimization algorithms require of the
order of 10 iterations to converge to the BO forces. More-
over, it i1s not safe to reduce the accuracy of each mini-
mization. With a poorly converged electronic minimiza-
tion, a systematic damping of the ionic motion occurs
[9]. In the next part of this section we shall describe the
alternative approach proposed by Car and Parrinello.

B. The Born-Oppenheimer evolution
and the Car-Parrinello Lagrangian

We shall concentrate on the CP method to perform an
AIMD within the framework of the LDA-KS functional
using norm-conserving pseudopotentials to replace ionic
cores and a plane-wave basis set [8]. However, we stress
that most of our conclusions have more general validity
and can be easily adapted to the case of different func-
tionals.

Within the pseudopotential implementation of the
LDA in the KS scheme, the ionic potential energy cor-
responding to the electrons in the ground state can
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be found by minimizing the KS total-energy functional
FExs [{¥:i(r)}, {R}] with respect to the one-particle wave
functions ;(r) describing the valence-electron density
(here 7 represents any set of suitable quantum numbers)

Fics i), (R = 3 [ w049t +

G. PASTORE, E. SMARGIASSI, AND F. BUDA 4

subject to orthonormalization constraint. The explicit
expression of Fkg in terms of orthonormal one-particle
orbitals ¥;(r) is

L [,

+ / exc(p(r)p(x)dr + Eor( [$:(0)], {Re}) + US({R1}). (4)

The terms on the right-hand side of the previous equa-
tion are, respectively, the electronic kinetic energy, the
electrostatic Hartree term, the integral of the LDA ex-
change and correlation energy density exc, the electron-
ion pseudopotential interaction, and the 1on-ion interac-
tion potential energy. The electronic density p(r) is given
by

p(r) = filti(x)l?, (5)
2
where the f; are the occupation numbers. The electron-
ion coupling term generally includes local and nonlocal
components of the atomic pseudopotentials [8].
The gradient of the functional Exs with respect to the
electronic coordinates can be written as

6 Exs
697 (r)

This equation defines Hxg—the KS Hamiltonian opera-
tor.

Consistent with the quantum adiabatic approximation,
the time evolution of the electronic variables — ;(r, 1)
— would be given by the solution of

Hys ()9 (r;1) = e()$i (xr31), )

where the time dependence of Hks comes from the slow
ionic evolution given by Newton’s equations:

~F, = _%. (8)
1
Here, Uks is the minimum of Exs with respect to ;.
The Car-Parrinello dynamics, instead, aims to approx-
imate this parametric evolution through the classical dy-
namical evolution of the electronic and ionic variables
generated by the Lagrangian

Lcp=p Z / i (x)|?dr + 1 Z MR} — Exs [{#:}, R/]
i 7
+ ZAU (/d’:(ﬂ’/’;‘(ﬂdr - 52‘]’) ) (9)

where the 1; are regarded as classical fields, M; are
the ionic masses, Fks is the LDA-KS functional, u is
a masslike parameter with dimensions of an energy times
a squared time, and the last term ensures orthonormal-
ity of the wave functions. In this paper, we express all

= fiHgs¥i(r). (6)

MR,

[

quantities in atomic units, unless explicitly stated. In
particular, we will express the fictitious mass g in a.u.,
meaning that the natural atomic unit for g is 1 hartree
x1 atu? (atomic time units; 1 atu= 2.42 x 1077 s).

The constraints ([ ¢7%; = &;) on the KS orbitals
are clearly holonomic and stationary, and are completely
equivalent to the well-known rigid constraints of classical
mechanics. These constraints do not do any work on the
system and no dissipation occurs due to their presence.

In systems with few degrees of freedom it is custom-
ary to eliminate these kinds of constraints by a transfor-
mation to a suitable system of independent coordinates
(Lagrangian coordinates) that automatically satisfy the
constraints. However, when the number of the degrees
of freedom is large, such a procedure is not practical and
one is forced to account for them by introducing in the
Lagrangian a term containing the constraint equations
multiplied by suitable unknown Lagrange multipliers A;;.
The matrix A is Hermitian if the Lagrangian has real val-
ues.

The equations of motion resulting from the Lagrangian
Eq. (9) are

pbi(r,t) = —filHksts(x,t) + Y Aij(r),  (10)
J
. 6EKS
MR, = — , (11)
rivy 3R1 ,
and
Nij(t) = / 07 (e, )5 (x, t)dr = 65 (12)

from which the unknowns %;(r,t), R;(t) and A;;(t) can
be obtained for any choice of the initial conditions
R[(O), R](O), ’l/)i(l‘,()), ¢i(r, 0) such that Nij(O) = 6,jj and
N;;(0) = 0. A couple of comments are in order.

(1) The dynamics generated by Egs. (10) and (12) for
the KS orbitals is generally different from the adiabatic
evolution on the BO surface [Eq. (7)] and so the forces
on the ions in Eq. (11) are generally different from the
BO forces [Eq. (8)]. Only if the wave functions remain
close to the solutions of Eq. (7) can we expect the ionic
trajectories to be good approximations to the evolution
obtained from the true BO energy surface.

(2) An explicit, formal expression for A;j(t) can be
obtained from Eqs. (10) and (12):

Aij = %/T/)}Hmwidr—ﬂ/%d”idr' (13)
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This expression is not suitable for numerical integration
of the equations of motion, as discussed by Car and Par-
rinello [10]. Here, we stress that this is the only form
of the Lagrange multiplier matrix compatible with the
equations of motion. In particular, the term depending
on ¥ cannot be ignored without destroying the conserva-
tive character of the system [(10)-(12)] over long times.
Details of the practical solution of the equations of mo-
tion can be found in some recent overviews of the method

[9, 10].

C. Constants of motion

The knowledge of the constants of motion is an ob-
vious starting point to study the dynamics of complex
systems. Moreover, if the dynamics is used to sample
configurations in a numerical simulation, information on
such constants is essential to characterize the relevant
statistical ensemble. In addition, it can provide exact re-
sults that can be used as a test of the numerical accuracy
of the integration scheme.

Since the CP Lagrangian is time independent, a first
obvious constant of motion is the total energy of the
whole system defined as

H=K;+Hj, (14)

where K; = p3, [|il*dr is the classical kinetic en-
ergy of the KS orbitals. This quantity has no relation
to the physical quantum kinetic energy and, to stress
this point we follow Remler and Madden [9] by referring
to it as the “fake” kinetic energy. Hy is the physical
Hamiltonian of the electron-ion system. The constance
of H has no direct physical interpretation. However, as
long as the fake kinetic energy remains negligible with
respect to the other terms ( Ky <« |H|) the total energy
H; = K; + Eks, where Ky is the ionic kinetic energy, is
almost constant. From the statistical-mechanical point
of view, this dynamics can be used to sample the ionic
microcanonical ensemble (Hy =const), provided that the
ergodic hypothesis is satisfied. This approximate micro-
canonical dynamics is effective in simulating the quantum
adiabatic behavior if the forces on the ions in Eq. (11)
closely approximate the correct forces [Eq. (8)]. In ad-
dition to the total energy, the system described by the
CP Lagrangian may have additional constants of motion
corresponding to other symmetries.

In the case of a complex representation of the KS or-
bitals 1;(r), an almost trivial symmetry is related to the
invariance of the Lagrangian with respect to multiplica-
tion of the orbitals by a (constant) phase factor.

As a consequence of this invariance, in the case of a
complex representation we have the constants of motion

Jii = /(«L;wi — gre)dr. (15)

Another obvious but more interesting conservation law
is the generalization of conservation of the linear momen-
tum of the center of mass in isolated classical systems.

It is evident that, in the absence of external forces,
Lcp is invariant under a global displacement of the ionic
coordinates by an arbitrary vector a :
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RI] :RI +a, (16)

if the electronic terms in Eq. (9) are invariant under a
change of the KS orbitals

V) = bl - ), (7
P0) = Uil — ). (18)

Within a plane-wave-expansion scheme this is equivalent
to a phase change of the Fourier coefficients ¢ of the ¥;:

cé = eia'GciG (19)

and of the conjugate momenta

pily = S i, (20)
with the induced change
p/G = pGeia'G (21)

in the Fourier transform of the charge density. Then,
in the absence of external forces, the CP Lagrangian
is invariant with respect to this transformation whose
infinitesimal generators are constants of motion. It is
straightforward to verify that the following expression
for the £th component of the (vector) generator induces
the infinitesimal global translation of the system along
the ¢ spatial direction:

PE= MR +p ) iG'eE . (22)
I G n

In general, as a consequence of the conservation of P*,
the sum of the forces on the ionic center of mass is not
zero at each time step. However, we can on average re-
cover the usual conservation of the total ionic momen-
tum. Due to the periodic-boundary conditions, the CP
Lagrangian is not invariant under rotations.

Finally, there is another set of constants of motion
whenever a subset of the KS orbitals has the same oc-
cupation numbers. It is easy to show that every group
of unitary transformations (orthogonal for a real repre-
sentation) of a set of occupied orbitals with the same oc-
cupation numbers f; is a (continuous) symmetry group
for the LDA-KS functional. Moreover, the fake kinetic-
energy term is also invariant, provided the unitary trans-
formation is time independent.

This symmetry is reflected in the presence of additional
constants of motion only referring to the occupied or-
bitals. The explicit expressions of such constants are the
off-diagonal elements of the anti-Hermitian (antisymmet-
ric in the case of real ;) matrix

Jij = / (75 — piy)dr. (23)

Their constancy over the trajectories when f; = f; can
be checked by differentiating J;; with respect to time and
using the equations of motion as well as the fact that A
is Hermitian.

We explicitly note that, if the initial conditions for the
electronic variables are such that not all the J;; are zero,
there will be a “rotation” of the KS orbitals superim-
posed on the coupled ionic and electronic dynamics, and
completely decoupled from the ionic dynamics as can be



6338

checked by the invariance of the forces on the ions [Eq.
(11)] with respect to the previously mentioned transfor-
mation of the occupied states.

D. Molecular dynamics

The practical way of performing AIMD with the CP
Lagrangian is as follows.

(1) For a given initial ionic configuration, the electronic
system is put, as closely as possible, in its ground state.

(2) With these starting conditions for R;(0) and
1;(r,0) and suitable initial conditions on the velocities,
one starts to integrate numerically the equations of mo-
tion. The simplest choice for the initial velocities is
R;(0) = 0 and #;(r,0) = 0 for a nonequilibrium ionic po-
sition but other choices may be more efficient, provided
that the compatibility condition N;;(0) = 0 is fulfilled
and that the initial fake kinetic energy is small.

(3) If p is small enough and as long as Ky remains
very small, one empirically finds that the resulting ionic
trajectories approximate the true adiabatic ionic motion
and allow one to evaluate suitable statistical averages as
in the usual microcanonical molecular dynamics (MD).

Thus, AIMD is a conventional MD for an enlarged sys-
tem (ionic and electronic degrees of freedom) with the ad-
ditional requirement that the electrons have to follow the
evolution of their instantaneous ground state as driven by
the ionic dynamics and that their kinetic energy must re-
main very small. In other words, the system has to stay
in a metastable state corresponding to a very low tem-
perature of the electronic variables regardless of the ionic
temperature.

As an example of the typical behavior of different quan-
tities during a successful simulation with the CP method,
in Fig. 1 we show the behavior of some dynamical vari-
ables for a typical simulation of a crystalline semicon-
ductor. The example uses a very simplified model of
bulk crystalline silicon. We have used an fcc elemen-
tary cell of side 10.26 a.u. with the diamondlike basis of

-7.16 |-
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~ =718}
S -7.18F
£ [ B
& -718L
T~ -7.18F
@ -7.18
= 3x107°F
L L
o ]
0 7 140 147 262 259
time (10° atu)
FIG. 1. Typical behavior of some dynamical quantities

during the CP dynamics for a system with large gap (see text).
From top to bottom: CP Hamiltonian (H); ionic Hamiltonian
(H1); electroionic total energy (Fks); fake electronic kinetic

energy (Ky).
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two Si atoms. The electron-ion interaction has been de-
scribed by the pseudopotential of Bachelet, Hamann, and
Schliiter [11], used in a separable form [12] and includ-
ing only the s and p components of the pseudopotential.
The fictitious electronic mass g was 300 a.u. The small
cutoff in the plane-wave expansion (6 Ry) and the use of
only the T’ point to sample the Brillouin zone make this
system a caricature of real silicon. For example, it turns
out that the diamond structure for this system is only
a local minimum. The direct gap at I' for the diamond
lattice we obtain is 2.24 eV.

However, for the purpose of illustration of the behav-
ior of the CP method, the accuracy of the representation
of the experimental data is irrelevant and this silicon-toy
model has the advantage of showing the typical behavior
of realistic simulations for semiconductors with a small
number of electronic degrees of freedom (only 33 inde-
pendent plane waves for each of the four states, resulting
in a computational cost of about 0.04 s per step on a
CRAY-YMP computer) and an easily controllable ionic
dynamics [12].

In Fig. 1 we show three time intervals of about 3.15 x
10713 s each, corresponding to the first, the middle, and
the last thousand time steps out of a run of 20000 time
steps (At = 13 atu). The equations of motion were inte-
grated using Verlet’s algorithm [13]. From the top to the
bottom the displayed quantities are H, H;, Exs and K
in hartrees.

The almost constant behavior of H gives a check of the
numerical accuracy in the integration of the equations of
motion. Actually, very small fluctuations, due to the
discretization of the time evolution, are present but not
visible on the scale of the figure since they correspond to
relative variations of energy less than 10™6 and there is no
systematic drift around the average value, as guaranteed
by Verlet’s algorithm.

Due to the boundedness and to the small value of the
oscillations of Ky, the ionic Hamiltonian H; = H — K
also has very small fluctuations around its average value.
These fluctuations are two or three times larger than the
fluctuations of H. Nevertheless their size remains of the
same order of magnitude as the numerical fluctuations
due to the discretization of the time. Thus, for all practi-
cal purposes, the ionic dynamics keeps H; constant like in
the conventional MD. The total energy (Eks), which acts
like the potential energy in a classical MD, shows a trivial
oscillating behavior due to the simplicity of the possible
1onic modes in this system. A minimization performed
at the end of this series of 20 000 time steps showed ex-
plicitly that the departure from the BO surface was less
than 10~5 hartree.

Finally, the bottom part of Fig. 1 shows the fake ki-
netic energy K; on a scale enlarged by five orders of
magnitude with respect to the other. First of all we
note that this function steadily oscillates with a maxi-
mum value of about 2.5 x 1075 hartree. This is far from
the estimated equipartition value of 9.5 x 10~3 hartree
and there is no indication of a systematic gain of kinetic
energy of the electronic variables over the time interval
covered by 20000 time steps.

We also notice that the motion of the electronic or-
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bitals as shown by K contains two main components.
The first component, the slowest, corresponds to a “drag-
ging” by the ions with their own frequency. A second
component has a higher frequency than the first and is
more visible upon further magnification of Fig. 2. It is
due to the intrinsic dynamics of the KS orbitals. As we
will argue it is just the presence of this high frequency
component of small amplitude which makes the CP dy-
namics able to follow the slowly changing ground state.

The example shown here is representative of systems
well suited to AIMD. These can be empirically charac-
terized by the presence of a large gap which separates the
occupied electronic energy levels from the empty ones.

In some other cases, the numerical behavior shows that
the equilibration between ionic and electronic degrees of
freedom is faster and systematic transfer of energy is
clearly visible over a scale of few hundreds or even tens
of time steps. For example, in Fig. 3 we show the be-
havior of K; and of the average ionic temperature (T)
for a crystalline sample of 63 silicon atoms in the pres-
ence of a vacancy. The electronic mass p is 400 a.u., the
integration time step is 7 atu, and the plane-wave cutoff
is 12 Ry. The fake kinetic energy steadily increases as a
consequence of an irreversible transfer of energy from the
ionic to the electronic component. Correspondingly, the
value of H; decreases and the average ionic temperature
lowers. In this system, due to the presence of the va-
cancy, there is a small electronic excitation energy. The
behavior shown in Fig. 3 is typical of many systems with
a small slowly varying gap.

In other cases, the transfer of energy to the electronic
components is faster. In Fig. 4 we show data for the
first few oscillations of a tin dimer on the lowest-energy-
singlet surface. An fcc cell with a lattice parameter of 30
a.u. was used in connection with a cutoff of 6 Ry. Only
s and p components of the pseudopotential were used.
The fictitious mass of the electronic degrees of freedom
was 2400 a.u. and the time step was 12 atu. There is an
evident correlation between the phase of the ionic motion
and that of the gain of kinetic energy of the electronic
degrees of freedom. A direct calculation of the KS energy
levels for this case showed that a degeneracy of the lowest

3.0
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b
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<
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=
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FIG. 2. Same system as in Fig. 1. Fake kinetic energy on

an enlarged scale. Note the high-frequency oscillations.
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FIG. 3. Fake kinetic energy (lower curve) and averaged

ionic temperature (upper curve) in a simulation of a vacancy
in a hot bulk-silicon crystal.

unoccupied level and the highest occupied one, which
occurs at distances smaller than the equilibrium distance
(about 5.0 a.u.), is removed at larger distances by the
opening of a small gap (about 0.3 eV, at the interatomic
distance of 5.2 a.u.) between these two levels. Thus,
in this system the gap is periodically opened and nearly
closed as a consequence of the ionic motion.

In Fig. 5, we show the less systematic but even more
catastrophic transfer of energy from the ionic to the elec-
tronic components in a sample of 16 sodium atoms start-
ing in a bcc structure at the initial ionic temperature
close to 200 K. The cutoff used was 9 Ry and the inte-
gration time step was 7 atu, in connection with an elec-
tronic mass of 300 a.u. Once again, this behavior can
be related to peculiar features of the KS eigenvalues. In
the present case, the starting configuration is the ideal
bee structure, then the highest orbital is a member of a
degenerate multiplet of six levels. During the ionic evo-
lution, just before the jump in Ky, one of these empty
levels becomes lower in energy than the highest occupied
one. This behavior of K; is also reflected in a jump in

2x107*

U
E
1

K, (hartree)

d (a.u.)

time (10* atu)

FIG. 4. Time evolution of the fake kinetic energy and in-
teratomic distance of a vibrating tin dimer in its lowest singlet
state.
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FIG. 5. Evolution of the fake kinetic energy of 16 sodium
atoms in a bcc bulk crystal at low temperature.

the ionic total energy Hy. Depending on the tempera-
ture of the sample, the jump in the fake kinetic energy
displayed in Fig. 5 can be followed by others, each one
increasing the average value of K.

The previous observations are quite general: every
time some classical nonadiabatic effect is detected, one
can empirically relate it to characteristic features of the
energy gap between the occupied and unoccupied KS
states.

On physical grounds, one might suspect a correlation
between the energy spectrum and the validity of the clas-
sical adiabatic approximation, since in such situations
the quantum adiabatic approximation itself is expected
to be poor. However, while physical intuition can provide
useful hints in analyzing this kind of situation, it is not
completely evident how to fill the gap between physical
arguments based on the gquantum-mechanical nature of
real systems and the purely classical nature of the CP
Lagrangian. Moreover, the exact nature of the process
of energy transfer is left unidentified by this analogy. In
the following section we present a natural explanation for
this phenomenology.

III. CP DYNAMICS, THE SPECTRUM
OF THE KS HAMILTONIAN,
AND ADIABATIC BEHAVIOR

A. Oscillatory motion of the electronic variables

The metastable two-temperature regime set up in the
CP dynamics is extremely efficient at approximating the
constraint of maintaining the electronic energy functional
at the minimum without ezplicit minimization. The ori-
gin of this behavior can be traced back to the classical
adiabatic nature of the dynamics of the electronic de-
grees of freedom. At the beginning of a numerical sim-
ulation, the electronic subsystem is in an initial state
which is very close to the minimum of the energy sur-
face. When the ions start moving, their motion causes a
change in the instantaneous position of the minimum in
the electronic parameter space. The electrons experience
restoring forces and start moving. If they start from a
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neighborhood of a stable equilibrium position, there will
be a range of initial velocities such that a regime of small
oscillations is originated. As we show in Appendix A,
for small perturbations of the LDA-KS ground state, the
instantaneous force on orbital v; is

Fo=— Y0 filer—ebaba(r)

l=m+1

- gi%f_i)(si —eabaix(r), (24)
=1

where m is the number of occupied states, ¢; are the
eigenvalues of the KS Hamiltonian, and 6} are the vari-
ation of the coefficients of an expansion of the state v;
[initially in the eigenstate x;(r)] over an orthonormal
set of eigenstates—yx(r)—of the instantaneous Hamil-
tonian. If the KS Hamiltonian were a linear operator,
from this result one could immediately derive that the
intrinsic dynamics of the orbitals consists, for small os-
cillations, of harmonic modes with frequencies equal to

wi) = Ufi(e —e)/m'?

and

W = [(f; = fi)ei — €5)/2u]' ),

where ¢} indicates the eigenvalue of the ith unoccupied
and ¢; the jth occupied level. As one could expect, in
the case of the actual KS Hamiltonian, the nonlinearities
quantitatively modify this result, although in many cases
a semiquantitative agreement holds between the ideal lin-
ear case and the real normal-mode spectrum.

If we neglect the dependencies of the eigenvalues on
b we can conclude that the system will be stable (pure
real frequencies) if the occupied states correspond to the
lowest m one-particle eigenvalues and, in the case of un-
equal occupation numbers (f;) of these occupied states,
if states with increasing eigenvalues have decreasing oc-
cupation.

If the occupation numbers are equal (f; = f; for all 7
and j), there will be no component of the first-order force
in the subspace of the occupied orbitals and the second
summation in Eq. (24) will be missing. According to the
discussion about the constants of motion in Sec. 11, this
result remains valid also after including the dependency
of the KS eigenvalues on the state.

As an illustration, in Fig. 6 we show the vibrational
density of states (VDOS) of the electronic degrees of free-
dom of the two-atom silicon system previously discussed.
This spectral function is the Fourier transform of the
temporal velocity autocorrelation function of the Fourier
coefficients of the KS orbitals

(25)

(26)

2(w) = /0 S (1) (0)) coswt)d, (27)
1,G

where the time average is performed over 3000 time steps
(At = 5 atu). The ions were taken at fixed positions (cor-
responding to the ideal crystal). The electronic variables
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FIG. 6. Vibrational spectrum of the normal modes of the
electronic degrees of freedom (continuous curve) for the same
system as Fig. 1. The solid triangle indicates the position
of the highest ionic frequency. The vertical bars below the
spectrum represent the frequencies obtained from Eq. (25).

started the dynamics with zero velocity and with a max-
imum random displacement of 4% from the configura-
tion corresponding to the minimum energy. Checks with
smaller maximum displacements proved that the oscilla-
tions are in the linear regime. Additional averaging over
four independent initial conditions have been used. A
Gaussian cutoff function was used to allow the Fourier
transform of this nondecaying correlation function.

With the present choice of p and the parameters re-
ported above, the frequency spectrum spans about 5000
THz in w starting from 1010 THz and with a maximum
frequency of about 6700 THz. Due to the cutoff func-
tion, we cannot attribute absolute meaning to the height
of the peaks. Notice however that, since there are 254
independent electronic degrees of freedom, there should
be a large number of quasidegenerate modes. For com-
parison we have reported as vertical segments under y(w)
the positions of the frequencies resulting from Eq. (25)
(i.e. assuming a non-self-consistent KS Hamiltonian). It
can be seen that the position of the minimum frequency
and the bandwidth resulting from the simple linear ap-
proximation are in reasonable agreement with that from
the calculated VDOS.

The VDOS obviously scales with u'/2. As a guide a
triangular mark shows the position of the highest ionic
frequency © (about 140 THz). As we will argue, the im-
portant parameter which makes the CP method work is
the ratio between Q and the lower edge of the electronic
VDOS at fixed ionic positions: to ensure a good sepa-
ration of the intrinsic ionic and electronic time scales,
provided that the smallest eigenfrequency in the VDOS
is not zero, it is enough to decrease the value of the ficti-
tious mass p to scale the whole spectrum toward higher
frequencies. However in choosing the optimal value for
p one has to reach a compromise between this require-
ment of having the largest minimum frequency in the
VDOS and the competing observation that the highest
frequency is inversely proportional to the maximum in-
tegration time step. If, for the moment, we assume that
the relevant character of a dynamics which has to gen-
erate a good approximation to an adiabatic evolution is
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a good separation between 2 and the smallest electronic
frequency (wmin, say), we see that, for comparable ra-
tio wmin /2, the dynamic evolution generating the VDOS
with the smallest bandwidth will allow the largest inte-
gration step.

In the previous analysis of the electronic VDOS we
neglected the ionic motion. In the cases studied here,
we have found that the only observable effect due to its
inclusion was a small (less than 1%) decrease of the ionic
frequencies. However, we think that the general behavior
of the total (ionic and electronic) dynamical matrix could
deserve a more thorough investigation, in particular in
the presence of a very strong electron-ion interaction.

B. Classical adiabaticity in the CP system

Now, coming to the justification of the CP method,
we notice that the intrinsic high-frequency motion of the
electronic variables has two main consequences: (1) It
allows the electronic degrees of freedom to follow the
slow evolution of the ionic variables; (2) it makes the
irreversible exchanges of energy between fast and slow
variables very small.

These statements can be put on a sounder basis by
making connection with the general theory of asymptotic
perturbation of Hamiltonian systems [3, 14, 15]. Let us
recall in an informal way two major results of classical
mechanics relevant to our case.

The first is the so called “averaging method” [2,3] that
gives a justification for the fact that the Hamiltonian
of a system containing fast and slow variables can be
approximated very closely by an “averaged” Hamiltonian
obtained by performing an average of the fast coordinates
in the original one.

The second related result is the existence of high-order
adiabatic invariants in almost integrable systems [3, 16].
This implies the existence of quantities which remain al-
most constant over times very rapidly increasing with the
rate of change in the Hamiltonian.

The formal statements of the previous results as well
as the extension of conditions of validity and the range of
applicability to the broadest class of system are the sub-
Jject of contemporary research in the field of dynamical
systems [16]. We do not claim that they are applicable
without qualification to the behavior of the CP system.
Rather, we take a more empirical attitude and refer to
these two principles to explain qualitatively the behavior
of the CP system in actual simulations.

The averaging method can naturally explain the pre-
vious point (1). According to this principle, a system of
rapidly oscillating variables perturbed by a slow variation
of the parameters (at a rate v) can be approximated by
the system obtained by averaging over the fast motion. If
this motion consists of oscillations around the minimum
of the electronic density functional, the averaged posi-
tion of the electronic coordinates will remain very close
to the position of the minimum. Then, the trajectory
of the real system remains close, within order v, to that
of the “average system” over times proportional to some
inverse power of v. Notice [3] that the nontrivial part
of this result is related to the nondivergence of the two
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trajectories over times inversely increasing with v. As a
result of the continuous dependence of the interatomic
forces on the KS orbitals [Eq. (11)], the oscillations of
the CP electronic variables around the BO surface will
also induce oscillations in the forces on the ions close to
the exact forces.

In Fig. 7 we illustrate the way the averaging method
works for the forces on the ions as obtained from the CP
Lagrangian. We show as a continuous curve one compo-
nent of the force on one silicon atom in the same system
as Fig. 1. Dots correspond to a straightforward imple-
mentation of an AIMD by fully minimizing the energy
functional at each ionic time step.

On the scale of this figure, it is evident that the forces
in the CP system closely follow the BO forces. In Fig. 8
we can see the difference of the CP and BO forces over
the first period of the ionic motion. On this enlarged
scale it is possible to see that the instantaneous forces in
the CP dynamics may differ from the BO value, but the
absolute differences are small. The difference shows two
main frequencies. The fastest one is due to the intrinsic
fast electronic dynamics. The slowest one comes from a
small component of the electronic motion with the ionic
frequency. This is due to the (weak) coupling between
purely electronic and purely ionic modes. The important
point to notice is that all these deviations from the BO
forces are very small and oscillatory.

The existence of adiabatic invariants, again a conse-
quence of the fast dynamics of the electronic variables,
accounts for the quasimicrocanonical behavior of the CP
system [i.e., the previous point (2)]. In a regime of small
oscillations, for each normal mode the quantity E;/w;—
where F; is the energy of the mode and w; its frequency—
is an adiabatic invariant. This means that

E(T) _ Ei(0)

()~ w(0) -

for every time T less than v~". The value of r depends

on the spectrum of the eigenfrequencies and, in any case,
is not less than § [15]. We believe that in many cases of
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time (10® atu)
FIG. 7. Component z of the force on one silicon atom of

the system of Fig. 1 as a function of time. Solid line: force
from CP dynamics (Fcp). Dots: force from a well-converged
electronic minimization performed at each ionic step (FBo).
Not all the data for Fgo were plotted.
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an enlarged scale.

the CP dynamics, the effective value of r is larger than
this lower bound.

Equation (28) can be interpreted as the condition of an
approximate reversibility of the unavoidable exchanges
of energy between the ith mode and the rest of the sys-
tem. Indeed, every time a quasiperiodic evolution of the
frequencies makes w;(7T") close to the initial value w;(0),
E;(T) will take values close to the initial one. Since for
linear oscillators E; is proportional to the average kinetic
energy of that mode, we can maintain the metastable
two-temperature regime over times of the order v=7.

If the electronic frequencies become comparable with
the ionic frequencies, there will be no adiabatic invari-
ant and we can expect a “disordered” transfer of energy
from the ionic to electronic degrees of freedom with the
following rapid equilibration of the whole system. The ef-
fectiveness of this energy transfer depends, of course, on
the strength of the electron-ion interaction: the weaker
the latter, the smaller the former can be.

IV. THE »-LEVEL MODELS

The previous discussion has elucidated the role played
by the gap between the energies of the occupied and
empty orbitals to establish the fast oscillations of the elec-
tronic variables and the importance of having the largest
possible separation between electronic and ionic frequen-
cies. It is clear that if the gap of the system always re-
mains larger than some positive nonzero value, it is pos-
sible to choose a value of the effective mass u that pushes
the lowest electronic frequency towards higher values.

However, in some cases it is impossible to predict in
advance what the evolution of the spectrum of the elec-
tronic eigenfrequencies will be. The ionic evolution itself
may cause some initially empty level to become lower in
energy than an occupied one. In these cases it is not pos-
sible to find a fictitious mass u such that the conditions
for the applicability of the adiabatic and the averaging
principles will be satisfied.

Thus, it seems necessary to investigate in more detail
the nonlinear dynamics of the electronic oscillations to
understand the possible mechanisms of the broken clas-
sical adiabaticity. A direct analysis of the nonlinearized



4 THEORY OF AB INITIO MOLECULAR-DYNAMICS CALCULATIONS

dynamics of the electronic degrees of freedom of the full
CP Lagrangian would be necessary, but, due to the com-
plexity of the KS Hamiltonian and to the large number
of electronic variables which requires the use of Lagrange
multipliers, it is not easy to go beyond perturbative re-
sults. To simplify the problem we shall study the model
problem of the CP dynamics generated by a linear (non-
self-consistent) Hamiltonian for a system with a finite
dimensional state space. We claim that this simplified
model contains most of the relevant physics of the real
case and we shall show numerically that, under normal
conditions, the effect of nonlinearities does not change
the qualitative picture very much.

Let H be a Hamiltonian matrix defined on a finite di-
mensional, n-state, Hilbert space. The matrix elements
H;; slowly depend on time. In addition, at variance with
the KS case, H is alinear operator. The functions {®;(r),
t=1,...,n} belong to an orthonormal set of basis func-
tions which, for simplicity, may be taken as eigenfunc-
tions of H at the time t = 0:

H(O)Q’,(I‘) = E,'<I>,'(I‘). (29)
Let the first m (m < n) levels be occupied with occupa-
tion numbers 0 < f; < fmax- The ground state at t = 0
will be described by the determinant made of the first m
eigenstates of H(0). We investigate the behavior of the
classical system obtained by writing the CP Lagrangian

at fixed ionic positions (without loss of generality we can
assume that the states are represented by real functions):

cp(¥, ) = %,qui/zbfdr— %Zfi/%Hiﬁidr
- ZA,‘]' (/wilbjdr- (Sij) . (30)
)

Notice the factor % for real degrees of freedom and the
definition of the fictitious mass p, different from that
originally introduced by Car and Parrinello [1], which
makes the occupation f; explicitly appear in the kinetic
term. In the case of equal occupation (f; = fmax for all
1), this choice makes the eigenfrequencies of the electronic
variables independent of the occupation.

We can exploit the possibility offered by the small num-
ber of variables to reduce explicitly the electronic degrees
of freedom to the independent ones by a change of vari-
ables. In terms of suitable Lagrangian coordinates, the
Lagrange multipliers are redundant and the last term of
Eq. (30) disappears. The equations of motion of the elec-
tronic degrees of freedom, at fixed ionic configuration,
follow from the usual Euler-Lagrange equations. The ex-
plicit form can be obtained as soon as an explicit repre-
sentation of v; is found.

In Appendix B we discuss a general way to repre-
sent the electronic variables of a finite dimensional space
in terms of special unitary (or special orthogonal, for
real representations) matrices. The derivation of the ex-
plicit form of the Lagrangian and of the equations of
motion is straightforward but quickly becomes cumber-
some with increasing dimensionality of the space (n) and
the number of occupied one-particle orbitals (m). We
have worked out in detail some cases corresponding to
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small values of n and m. Here, we discuss the cases
n=2m=1and n = 3 with m = 2. Despite their
simplicity, we believe that these cases are typical enough
to represent the full class of models.

A. The case n =3, m = 2

We can express the occupied states ; and 5 as func-
tions of the Lagrangian coordinates #, ¢, and ¢ as

Y1 = (cos 8 cos )P + (cosbsinpsin € + sin b cos &) P

~+(—sinp cos€ cos 6 + sin € sin 6)P3, (31)
Y2 =(—sin b cos )P +(—sin fsin psin & + cos § cos &) P2
+(sin ¢ cos € sin @ + sin € cos ) P3. (32)

The full expression of L&p in terms of these Lagrangian
coordinates is given in Appendix C.

By linearizing the equations of motion, we arrive at the
following simple expressions consistent with Eqgs. (25)

and (26):

p(fi + f2)0 + (fL — f2)(e2 — £1)0 = 0, (33)
uso +(es—€1)p =0, (34)
pé + (e3 —€2)€ = 0. (35)

We see that the coordinates used in Egs. (31) and (32)
reduce naturally to the normal coordinates for the lin-
earized system.

The physics behind these equations is clear. We have
chosen the phases in such a way that, when the inde-
pendent variables are zero, ¥, corresponds to the lowest
eigenstate ®; and 1, to the next ®,. A perturbation
will make ¢; and ¥, acquire components of all the other
states. The restoring forces induce oscillations with fre-
quencies proportional to the square root of the differences
of eigenvalues.

For equally occupied states (fi = f2) Eq. (33) gives
zero frequency for the restoring force. Correspondingly,
the nonlinear equation of motion for # resulting from the
full Lagrangian (Appendix C) can be integrated immedi-
ately to give the following constant of motion:

0 + € sin = const. (36)

One can easily check that it corresponds to a free “rota-
tion” in the two-dimensional space of the occupied states
(see Sec. II) and that Eq. (36) can be derived from for-
mula (23) for the constant of motion J,5.

If, as a consequence of a broken adiabaticity, the ampli-
tude of the electronic oscillations increases the linearized
equations of motion will not be able to describe the real
evolution of the system. The nonlinear equations in the
case n = 3 are quite complicated. However, we note that
while three is the minimum number of levels which allows
us to represent the whole phenomenology of the real case,
if the main interest is in the instabilities originating from
the dynamics of the energy gap it is possible to get the
correct qualitative picture by analyzing the simpler case
n = 2. We think that the relevance of this very simpli-
fied model to the analysis of the full KS dynamics close
to instability points is due to the fact that in most of
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the practical cases the subspace involved in the instabil-
ity is just one-dimensional. More complex instabilities
involving higher-dimensional subspaces seem to have a
very small probability.

B. The casen =2, m =1

In this case, we have only one Lagrangian coordinate
— 0(t) — in terms of which we express the wave function

as
Y = cosg ®, + | sin ¢ ) (37)
2 2
and the exact equation of motion is
. AE
0(t) = o sin[0(t) — 6o] (38)

which is the equation of motion of the nonlinear oscillator
(pendulum). The gap AE = €3 — ¢; and the equilibrium
angle 6y appearing in Eq. (38) can be expressed in terms
of the matrix elements of H. In particular, they are in-
dependent parameters.

Now, let us consider the effect of the ionic motion.
For slow variations of the matrix elements, the electronic
variables will be able to readjust themselves to follow
the instantaneous values. However, when AF decreases
we can expect two regimes where, at different levels of
severity, the classical adiabatic behavior of the system
will be destroyed.

The first regime corresponds to the case of a system
where the energy gap becomes so small that the elec-
tronic frequencies are comparable to or smaller than the
ionic ones. In such a situation the flux of energy between
the ionic and the electronic component may find efficient
channels.

In the second regime, as soon as AE becomes negative
(at the crossing of the two levels) a real dynamical insta-
bility appears in the electronic subsystem. In the analogy
with the physical pendulum, this occurrence corresponds
to a change of the equilibrium angle from 6y to 69 + .
It is as if the gravitational force changes from pointing
downwards to upwards. The effect is the appearance of
an instability in the oscillating motion and a rapid in-
crease of electronic kinetic energy.

The simple Eq. (38) can be exactly integrated in terms
of elliptic functions if the parameters AFE and fqy are con-
stant. For a specific choice of a periodic time dependence
on time of the gap, the linearized equation would reduce
to the Mathieu’s equation. However, as far as the present
authors know, analytical studies relevant to the case of
instability in the nonlinear case (A E which becomes neg-
ative) are lacking. For this reason, in the present paper
we have limited the study of the dynamics of the two-
level model to numerical investigations. More analytical
investigations are planned.

In order to use the two-level model to numerically
study the mechanism of broken adiabaticity in the CP
system, we have added a term for the additional ionic-
like variables to the electronic Lagrangian [Eq. (30)]. By
considering the ionic role in the determination of the elec-
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tronic gap and ground state, it seems a natural choice to
treat AE and g as independent degrees of freedom.

A very simple choice for the intrinsic dynamics of
G(t) = AE(t) and 6o(t) — hereafter referred to as ionic
degrees of freedom — is a harmonic dynamics with nat-
ural frequencies significantly smaller than the electronic
one.

A possible Lagrangian is the following:

L= 1p6% + IM,G? + LMo + G cos(8 — 0o)
—1Q2M (G — Go)? — Q3 M6;, (39)
where

G(t) = Gog(t) = [€2(0) — £1(0)]g(2).

The potential energy has always a global minimum at
G = 1/Q2+Go, 0 = 0 and 8y = 0. The resulting equations
of motion are

(40)

pé(t) = —Gog(t)sin[0(t) — bo (1)), (41)
bolt) = %gmsin[e(t) — Bo(1)] + 9260, (42)
. 1

1) = =2 lo(0) = 1]+ g coslo) = u(0)). (43

The form of this Lagrangian has been chosen to give
an ionic motion that, for suitable choices of the param-
eters, would correspond to slightly perturbed harmonic
oscillations at frequencies 2, and 5.

In the following we present results of a numerical in-
tegration of the previous equations of motion for three
cases that have strong connections with the behavior of
the real numerical experiments with the CP method dis-
cussed at the end of Sec. II. We have, respectively, (a)
the case of a system with a large gap, (b) the case of a
system which periodically becomes gapless, and (c) the
case of a real level crossing.

In case (a) we have not considered the gap as dy-
namical variable. We have fixed its value to AF =
0.12 hartree. By using atomic units, the parameters of
the model are the mass of the “electronic” degree of free-
dom (u) is 300 and that of the “ionic” degree of freedom
(Mp) is 1.5 x 10°. The intrinsic frequency of 8y (§22)
is 1,445 x 1073 to ensure a separation of the two scales
of time similar to that realized in the system of Fig. 1.
The initial conditions are 6(0) = 1.01, 6o(0) = 1, and
6(0) = 60(0) = 0. In Fig. 9, we have reported results
for the “fake” kinetic energy Ky, the “electronic” vari-
able 6 and its difference with respect to the instantaneous
ground state (6 = 6y). The plot of Ky is very similar to
that of Fig. 2. The high-frequency mode is superim-
posed to the slow mode that can be regarded as a drag
by the ionic degrees of freedom. Notice that these two
components both contribute to K. The result for 8 — 6o
nicely illustrates the averaging principle. Here, in anal-
ogy with the situation depicted in Fig. 8 for the forces in
the CP system, the deviations from the BO surface show
high-frequency components as well as contributions at
the ionic frequency due to the finite coupling between
the two subsystems.

Case (b) is illustrated in Fig. 10. It has to be com-
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FIG.9. Two-level model: the case of a large constant gap.
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gree of freedom (#); deviation from the instantaneous ground

state (6 — 6p).

pared with Fig. 4 (tin dimer). In that case, the energy
gap between highest occupied and lowest unoccupied or-
bitals was periodically opening and closing. Here, to
simulate such a variation within our model system, we
have suitably chosen the parameters and the initial con-
ditions. The parameters were u = 300, My = 6.0 x 104,
2, =113x10"3, Qy, =4.2x 1074, and Gy = 2 x 1073,
We set the initial conditions to 6(0) = 1.02, 60(0) = 1,
g(0) = 7, and all the starting velocities were zero. Only

the behaviour around the crossing is shown. In the real

case of the tin dimer and in the two-level model we find
the same characteristic transfer of energy from the ionic
to the electronic degrees of freedom.

Finally, in Fig. 11 we show case (¢). The parame-
ters were u = 300, My = 6.0 x 104, My, = 15 x 108,
Q; =1.09x 1074, Q2 =42x 1074, and Gy = 8 x 1073,
We set the initial conditions to 6(0) = 1.02, 0¢(0) = 1,
g(0) = 190, and all the starting velocities were zero.
With these parameters, an empty state goes below an oc-
cupied one during the CP dynamics. With a small delay,
the system responds to the creation of the instability by
increasing Ky. Then, the adiabatic invariance is lost and
the larger amplitude of the oscillations around the new
ground state (fp = 7) increases making the averaging
principle less effective. Such a behavior of the nonlinear

K; (hartree)

G (eV)

time (10* atu)

FIG. 10. Two-level model: time evolution of the fake ki-
netic energy and the energy gap in the case of a periodically
closing gap.
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oscillator model shows that the level crossing is actually
a catastrophic event in the CP dynamics. After crossing,
the highest occupied orbital acquires a large velocity of
mixing between the two crossed levels with subsequent
increased inaccuracies in the evaluation of the forces and
in the ionic dynamics.

V. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the dynamics generated
by the CP Lagrangian from the point of view of classi-
cal mechanics. We have given a characterization of the
statistical ensemble relevant for the CP-AIMD in terms
of the first integrals of the system. From our analysis it
follows that, for all practical purposes, the sampling of
the ionic configurations in the “CP-ensemble” is equiva-
lent to that of a microcanonical ensemble at fixed value
of total ionic momentum, as in the ordinary MD.

We have studied how the regime of small oscillations
around the electronic ground state is approximately con-
nected to the spectrum of the energy levels of the KS
Hamiltonian. From our discussion it is straightforward
to derive a criterion to choose an optimal value of the
free parameter — p — of the CP Lagrangian.

We have sketched how to put the theoretical justifica-
tion of the method on a sounder basis by making contact
with contemporary research on asymptotic methods in
Hamiltonian systems [16]. As we have noticed, we need
such methods, more powerful than the usual perturbation
theory, to account for stability over a long-time scale.

We are aware that our rather informal discussion on
the justification of the method remains at the level of
qualitative arguments. However, we think that it allows
analysis of actual numerical experiments within a uni-
fied conceptual framework. A substantial amount of fu-
ture work seems to be necessary to get more formal and
quantitative results. In this respect we hope that our
presentation of the problem will stimulate further work.

We have introduced simplified two- and three-level
models to make the analysis of the CP dynamics easier.
With the help of these models we have studied two main
mechanisms driving nonadiabaticity in the CP system.
In both cases, as a consequence of a reduced gap, the
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time scale of the electronic motion becomes comparable
with the ionic one.

In the first case, an “effective” resonance between the
ionic and electronic frequencies may open a channel to
transfer energy from the ions to the electronic variables
in a continuous irreversible way. In the second case, a
level crossing between occupied and empty levels drives
a true structural instability of the potential surface that
affects the electronic degrees of freedom.

Further quantitative study of the relative efficiency of
these two mechanisms is desirable to get realistic esti-
mates of the actual equilibration times of the CP sys-
tem. In any case, from the point of view of performing
an AIMD, if the electronic dynamics is not faster than
the ionic one, the almost exact error cancellation of the
forces on the ions is not valid. However, from our analy-
sis we can also argue that not all the electronic variables
will be affected equally but only the — possibly small —
subset of the highest occupied orbitals.

In conclusion, from our analysis it is clear that physi-
cal systems with a well-defined and stable energy gap are
the most suitable for simulation using the CP method.
While the occurrence of adiabaticity breaking is a slow or
rare event it is possible to use the standard CP dynam-
ics by periodically correcting the deviation from the BO
surface with electronic minimizations. However, as soon
as this deviation rate becomes comparable with the ionic
velocities, different approaches are required to efficiently
perform an AIMD.

So far, the practical solution [17] of these nonadiabatic-
ity problems is to partially recover the direct approach
to the AIMD by performing explicit electronic minimiza-
tions when the departure from the BO surface becomes
substantial, and to give up a microcanonical ionic evolu-
tion in favor of a canonical one. Although such a method
works pretty well in practice, we believe that there is
room for improvement and our analysis can provide a
useful guideline to such an aim. We are currently investi-
gating possible alternative methods to deal with metallic
systems within a microcanonical scheme.
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APPENDIX A: PERTURBATIVE ANALYSIS
OF THE FORCE ON THE ELECTRONIC
DEGREES OF FREEDOM

The generic state |i;) in the infinite dimensional
Hilbert space H can always be expanded as

[e o]
i) = > adlxx) (A1)
k
where |xx) is an orthonormal basis. If we choose it to be
made by eigenstates of the KS Hamiltonian Hgg (in the
following briefly referred as H), the canonic ground state
orbital |$?) of a system with m occupied states can be
written as in Eq. (A1) with coefficients

oi _ J bk, k<m
X = 0, k>m.

A state |1;) close but not equal to [¢?) will have coef-
ficients

ab = all + 6at. (A2)

Notice that, due to the orthonormalization of the states,

for each pair of states i and j we have, at the first order
in éa,

§al* + 8ol = 0. (A3)
The matrix elements

Hi; = (i H [3;) (A4)
between two occupied orbitals can be written as

Hy = Z(a,k + ) (bik + bk )e. (A5)

k

At the first order, the force on the perturbed orbital
|;) will be

Fi=—fiH:) + D Aal) = —=filHlpi) + > (f"—;f’)Hulwz)
i 1§

(e o]

=—fi > (o} + 6o} )exlxx)

k
m oo oo
i+ f . * i i
+ Y LI S0 4 sadr)(aff + Sa)er S (o + skl
1 k k’

=— Y filex —e)baklxx)

k=m+1

+ Z (—f,f;éaf + fieibal + g6t + (s ; fl)sléaf + (i ; fl)eiéaﬁ*) Ixi) + O((6a)?)
=1

== 3 sl —enbailne) — 30 LI e — csadi + 050,
=1

k=m+1
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In simplifying the last term Eq. (A3) has been used.

APPENDIX B: THE LAGRANGIAN
COORDINATES FOR ORTHONORMAL
ORBITALS

If S is a suitable special orthogonal matrix ( special
unitary in the complex case) belonging to some irre-
ducible representation of the SO(n) group [SU(n) in the
complex case], we can represent the general occupied
state ¥; at the time ¢ as

Yit) =D Si)®i, i=1,...,m

i=1

(B1)

Due to the orthogonality of the matrix S and of the
base functions ®;, the first m rows are orthonormal vec-

J
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tors. Then, if we use a set of m[n—m(m+1)/2] generators
of the representation of the group—{a;(¢)}—as indepen-
dent variables to describe the electronic degrees of free-
dom we have a representation of the electrons through
a system of coordinates that satisfy the constraint by
construction (Lagrangian coordinates). Notice that the
configuration space of our system is exactly isomorphic
to that of an m-dimensional rigid body with a fixed point
in an n-dimensional space.

APPENDIX C: THE CP LAGRANGIAN
OF THE THREE-LEVEL MODEL

With the expression of ¥; and ¥, given in Egs. (31)
and (32) the explicit form of the Lagrangian in terms of
the independent variables €, ¢ and 6§ is

L3 = +%u{¢2(f1 cos? 0 + fosin? 0) + €2 [f1+ fo— cos? p(f1 cos? @ + fosin? 0)]
+02(f1 + f2) + 2(f1 + f2)EBsin o + 2(f2 — f1)Epsin b cos B cos p}

+%(521 + €33 cos? £) cos? o

(fr — f2)

+—{es cos? € 4 2e35 sin € cos € sin @ cos O sin ¢

2

+cos? 6 [632(1 — 2cos? £) + (€21 + €37 cos” £) cos® <p] },

where ¢;; = ; —¢;.
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