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Stratified percolation patterns result from hierarchical cascades with continuous overlap. The pattern
construction is a hybrid process, combining continuum percolation with random curdling. Stratified
percolation is a correlated percolation with fractal dimensions that can be continuously tuned. The per-
colation threshold is found to vary with changing correlations. The density of percolating sites is ap-
proximately log-normal and can be described by a multifractal. Trends in the f(a) curves are studied as
fractal dimensions are changed. The finite-size-scaling properties are investigated using Monte Carlo
real-space renormalization. Because the patterns have features at all length scales, stratified percolation
has intrinsically small-cell renormalization properties. However, the small-cell properties can be re-
moved by transforming the occupation fraction into an equivalent occupancy for standard uncorrelated
continuum percolation. The transformed threshold is approximately invariant with respect to changing
correlations and is close to the standard value of a. =0.7 for isotropic continuum systems. Stratified per-
colation has a correlation length exponent of v=1.3310.05.

PACS number(s): 64.60.Ak, 05.50.+q, 05.70.Jk, 92.40.Kf

I. INTRODUCTION

Hierarchical cascades represent sequences of probabili-
ties. A wide range of physical systems arise from random
cascades, as features on smaller scales evolve from
features at larger scales. Examples range from the ex-
treme macroscopic scale (such as clustering of galaxies)
to the extreme microscopic scale (such as hadronization
in high-energy particle collisions). The length scales of
these examples span more than 50 orders of magnitude.
If the successive steps possess self-similarity of some de-
gree, then the cascade leads to fractal structures. Struc-
ture at larger scales produces strong correlations at
smaller scales.

Of interest in some cases are cascades in which features
at larger scales overlap with features at smaller scales.
Overlap mixes the effects at different scales, so that the
processes at one scale are no longer independent of pro-
cesses at other scales. Overlap converts the random cas-
cade into a random process with multifractal scaling
properties and an approximately log-normal distribution
of densities. Two random Cantor bars are shown in Fig.
1, one without overlap, one with overlap. In both cases,
N =3 and the scale factor is b =4. In the case of no over-
lap, the fractal dimension is D =In2/In4=0.79. In the
case with overlap, on the other hand, the fractal dimen-
sion is smaller than this value. The densities of the bar
after three iterations are shown at the bottom of the
figure. By allowing overlap, regions of very high density
occur. The high density produces an extended tail on the
mass distribution that is a signature of random multipli-
cative processes. The high density also influences mul-
tifractal properties that depend on mass moments. In
this paper, we explore some of the consequences of
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hierarchical cascades with continuous overlap, and relate
them to problems in correlated percolation. To illustrate
the properties, we take a model called “‘stratified continu-
um percolation” as a specific example.

Stratified percolation is a correlated percolation model
that generates fractal patterns through a self-similar cas-
cade. Overlap of subcascades is allowed, leading to ap-
proximately log-normal densities. The model was initial-
ly developed to describe the geometry of flow paths in
single fractures in rock [1], and was found to have many
features that accurately reproduced experimental obser-
vations on fracture properties [2]. It was subsequently
discovered to have a percolation threshold that is approx-
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FIG. 1. Random Cantor bars with N=3 and b=4. Without
overlap, the fractal dimension is D =0.79. With overlap, the re-
sulting mass distribution is multifractal.
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imately invariant with respect to changing correlations
[3]. This model is part of a larger class of correlated per-
colation systems, in which occupancy is conditionally
dependent on local environments.

Much of correlated percolation has been motivated
through Ising percolation. Ising clusters in two dimen-
sions (2D) comprise equilibrium systems with near-
neighbor exchange interactions and long-range correla-
tions near T,. The connectivity of clusters in the Ising
model has been related to the geometric critical behavior
of percolation systems [4—9]. In addition to equilibrium
Ising percolation, other correlated percolation systems
have also been studied. These systems include irreversi-
ble cooperative filling [10—13], restricted valence [14,15],
Voter models [16], and other correlated percolation mod-
els [17-19]. Some general properties of correlated per-
colation have been addressed [20], but systematic study
of correlated percolation has been difficult because of the
wide variety of possible correlations that can occur natu-
rally in experimental systems, or in model simulations.

Much of continuum percolation theory [21-24] is
based on random continuum percolation. A continuum
percolation pattern is shown in Fig. 2(a). Squares are
randomly positioned within the region of interest. This
pattern is close to the percolation threshold, with 60% of
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FIG. 2. Standard continuum percolation pattern near the
percolation threshold. The full pattern is shown in (a). The pat-
tern has 5000 squares plotted randomly. The total area fraction
covered is 60%. The critical cluster is shown in (b).
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the figure covered by the squares. A continuum cluster
spans the pattern. This “critical” cluster is shown in Fig.
2(b). The fractal dimension of the critical cluster is
D =1.89, although the pattern including all covered posi-
tions in Fig. 2(a) has D =2.00.

The random pattern in Fig. 2 fails to reproduce the
correlated structure observed in many natural systems.
A natural percolation system is shown in Fig. 3. The
black pattern is the void space inside a fracture in Mon-
zonite granite rock [25]. The white areas are the areas of
contact between the fracture surfaces. The photograph,
showing a region 4 mm by 2 mm in size, was obtained by
making a metal cast of the fracture. The metal fills the
void spaces between the fracture surfaces and represents
the possible flow routes of a fluid percolating through the
fracture. The pattern has spatial correlation. Void
spaces and contact area are separately clumped. It has
similar structures on many length scales and has a fractal
dimension of D=1.94. The area covered by metal (the
flow paths) is 62%. The strong correlations present in
the pattern in Fig. 3 may be expected to have altered the
critical threshold. This shift of critical thresholds is a
characteristic property of correlated percolation systems
[26]. Different degrees of correlation will lead to different
critical thresholds. When confronted with experimental
data, such as in Fig. 3, the primary question is how far
this system is away from the critical threshold. In the
presence of the correlations, it is not immediately clear
what the answer to this question will be.

In this paper we address these questions, and describe
stratified percolation, which produces strongly correlat-

Approximate Scale
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FIG. 3. Scanning electron micrograph of a metal cast of the
flow paths in a fracture in granite rock. The pattern covers an
area 4X2 mm?. The black regions are the metal. The pattern
shows features at all length scales and has a fractal dimension
D=1.94.
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ed, fractal percolation structures. In Sec. II we describe
the overlapping cascade algorithm that generates the
stratified patterns. The construction can be viewed as a
hybrid between continuum percolation and random cur-
dling. In Sec. III the classical geometrical properties of
the patterns are presented. The covered area and site
density are discussed. In Sec. IV the fractal structure of
stratified percolation is developed, including lacunarity
and multifractal properties of the site density. The per-
colation properties are investigated in Sec. V using Monte
Carlo real-space-renormalization techniques to obtain
percolation thresholds and the correlation length ex-
ponent.

II. STRATIFIED PERCOLATION
PATTERN FORMATION

Stratified percolation patterns are generated by a recur-
sive algorithm that defines a self-similar cascade of ran-
dom sites [27]. A demonstration of the algorithm is
shown in Fig. 4. The construction may be regarded as
applying random continuum percolation on successively
smaller scales. The figure contains three scales, or tiers,
that are related by a scale factor b, where b =4 in the
figure. In the first tier, or largest square, N sites are ran-
domly placed. The N second squares are squares with a
linear size reduced by the factor b from the size of the
larger square. The algorithm repeats, now randomly
placing N sites in each of the N second tier squares. The
final black squares are plotted within the third tier. In
Fig. 4, N =5 and there are M =53=125 final squares.

The recursive algorithm is expressed as

Sin=Sjn—1Ftb'"Mry,r;)

in

(2.1)
51,0:(0,0) N

Stratified Percoiation Construction
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FIG. 4. Recursive construction of a stratified percolation
pattern. The figure includes three tiers with a scale factor of
b=4 between tiers. There are five squares plotted randomly at
each sublevel ending with a total 5°= 125 squares plotted. The
cascade structure is clearly evident and introduces strong corre-
lations in the placement of the smallest squares.

D. D. NOLTE AND L. J. PYRAK-NOLTE 44

where s; , is a two-component vector giving the x and y
coordinates of the new site, r; and r, are uniformly dis-
tributed random numbers between 1 and —1, and i is the
ith site on the nth tier inside a square region around the
jth site of the (n —1)th tier. The total number of final
(smallest) squares plotted is N", where N is the number of
squares per tier, and »n is the number of tiers. The first
tier is centered at the origin. During the construction,
some final points land outside of the largest sample re-
gion. We apply wraparound boundary conditions so that
these points are plotted within the sample region inside
the opposite boundary. This boundary condition is
demonstrated in Fig. 4. This wraparound is applied only
on the largest tier. For smaller tiers, points are allowed
to overhang the smaller sample regions.

The stratified percolation construction is intrinsically a
continuum construction. At each scale, the subsquares
are centered randomly within the next larger tier, such
that each tier is a continuum percolation plot of its own.
Even at the smallest level, when the final squares are plot-
ted, the squares are placed randomly as a continuum plot.
In practice, however, the final squares are plotted into a
grid. In our simulations, the grid is 300X 300 pixels. The
final squares are m Xm pixels, and therefore are not
strictly plotted continuously within the regions. If m is
large, then the continuum limit is satisfied. If m is small,
then the discreteness of the underlying grid will begin to
affect percolation thresholds. In particular, if m =1, then
the pattern is in the limit of a correlated lattice percola-
tion system, which has a different threshold than the con-
tinuum case. For our simulations, we choose the scale
factor b and the number of tiers so that a final square size
is 4X4 pixels. This choice allows us to retain all the
essential features of continuum percolation. This size of
the smallest squares in the cascade determines the lower
cutoff for the scaling properties of the patterns.

Examples of stratified percolation patterns are shown
in Fig. 5 for different numbers of tiers, scale factors, and
the number of points per tier. Figure 5(a) has three tiers,
a scale factor of b =4.22 and N =22 points per tier. Fig-
ure 5(b) has five tiers, b=2.37 and N=7. These patterns
exhibit the strong correlations seen in Fig. 3 that were
missing from the uncorrelated percolation construction
in Fig. 2. Both Figs. 5(a) and 5(b) are near the percola-
tion threshold. The fractions of area that are covered are
59% and 65%, respectively. These area fractions are
lower than the threshold p, =0.7 for conventional contin-
uum percolation. The clumped structures introduced by
the cascade algorithm enhance the probability of percola-
tion. More of the continuum percolation properties will
be discussed in a later section. A stratified site percola-
tion pattern below the threshold is shown in Fig. 5(c).
The site percolation properties will not be discussed in
this paper.

Stratified percolation has much in common with cur-
dling. Curdling is a process whereby an originally uni-
form mass clumps together into many small regions with
high density [27]. Curdling processes, especially self-
similar processes, involve a cascade in which the mass
sequentially breaks into smaller subsets of larger subsets.
Many models involving curdling have been developed.



4 STRATIFIED CONTINUUM PERCOLATION: SCALING...

Some older models include scaling models of the mass
distribution in galaxies and the universe [28,29]. The
production of turbulent structures in which the spatial
distribution is generated by a cascade was also modeled
[30]. Multifractal lattices have been generated through
cascade processes [31,32]. The cascade in stratified per-
colation is obvious, leading also to a curdled structure.

FIG. 5. Examples of stratified percolation patterns with
m =4 for (a) three tiers with b =4.22 and N=22 with D=1.95
and A4=0.59; (b) five tiers with »=2.37 and N=7 with
D=1.97 and A4=0.65; and (c) five tiers with »=3.13 and
N=10 with D=1.89 and 4 =0.29. (c) is a correlated lattice
percolation pattern with m =1.
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III. STRATIFIED PERCOLATION
PATTERN STRUCTURE

A. Covered area

The covered area of a percolation pattern is one of the
key parameters used to characterize the system. The crit-
ical threshold is usually expressed as a critical covered
area. For random (uncorrelated) continuum percolation,
a simple expression relates the covered area to the num-
ber and size of blocks written in the pattern. For a num-
ber N of small blocks with area /2, distributed within a
large area L2, the covered area is given by

~N(/L )2)

a=(l1—e (3.1)

The ratio N(I /L )? can also be expressed as N /b 2 where
b is the linear scale factor relating / to L. The area is
therefore given by

_ 2
N/b).

a=(l1—e (3.2)

In the stratified construction, the conventional contin-
uum percolation construction is applied at each scale, or
tier. We can therefore introduce a parameter a (N ) called
the area fraction per tier, given approximately by Eq.
(3.2) for large N. For patterns with many tiers, N can be
relatively small. For instance, in Fig. 5(b) with five tiers,
N=7. In the case of small N, the expression for covered
area is obtained by finding the probability that a position
is not covered after N squares are plotted. The probabili-
ty P, that a position is not covered after one square is
plotted is

P,=1—1/b%.
The probability P, that it is not covered after two squares
are plotted is given by the product of the probability that
it is not covered by the first square with the probability

that it is not covered by the second square because the
probabilities are independent. This is

P,=(1—1/b*)(1—1/b>)=(1—1/b27? .

By extension, the area that remains uncovered (white)
after N squares are plotted is equal to (1—1/b%)V.
Therefore the area covered (black) is

a(N,b)=1—(1—1/b%" . (3.3)

This expression gives the area covered by each tier in the
stratified construction, where N blocks are plotted in the
sample region. The area fraction per tier is a convenient
parameter to help classify the structure of stratified per-
colation. We shall see in a later section that the percola-
tion properties of stratified percolation are naturally ex-
pressed in terms of the area fraction per tier.

The total area of a stratified percolation pattern is ob-
tained recursively from the area fraction per tier. For
one tier, the area fraction is A(1,N)=a(N,b). For two
tiers the covered area is 4(2,N)=1—[1— A(1,N)/b?]",
because the plotted squares are now composed by the first
tier. By extension, the recursive expression for the total
covered area of a stratified pattern for n tiers and N
squares is
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An,N)=1—[1—A(n—1,N)/b*]V
(3.4)
A(1,N)=a(N,b) .

Equation (3.4) would be exact if wraparound boundary
conditions were applied on each tier, i.e., if squares were
not plotted outside the bounds of the smaller tiers. In
our construction, we apply wraparound boundary condi-
tions only for the largest tier. Equation (3.4) is therefore
approximate, and underestimates the true area fraction.
The total area fraction for five tiers with b =2.37 is plot-
ted in Fig. 6 as a function of the area fraction per tier for
N varying from 4 to 11. The data are obtained from
Monte Carlo simulations, and are compared with Eq.
(3.4).

B. Density distribution

The patterns in Fig. 5 are two dimensional; positions
are either covered or not. A third degree of freedom can
be gained by considering the density of covered positions.
The density of sites is obtained during the plotting of the
pattern by counting the number of times that a given po-
sition is covered by a plotted square. The density of sites
for a five-tier pattern with N=10 and b=2.37 is
displayed in Fig. 7. The white areas represent zero densi-
ty; the shades of gray of increasing darkness represent in-
creasingly larger density of sites. The correlations intro-
duced during the cascade algorithm are clearly visible.
Regions of high density and low density are separately
clumped. The distribution of site densities is shown in
Fig. 8. The frequency of occurrence of a specific density
is plotted as a function of site density. The probability
density is not Gaussian, and is approximately log-normal.
Log-normal distributions are characteristic of hierarchi-
cal models [33,34]. The long tail of high densities is
caused during the cascade construction as many squares
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FIG. 6. The total area covered by the stratified pattern as
functions of the area covered per tier for five tiers with b=2.37
for varying N=4 to 11. The data points are from simulations.
The lack of wraparound boundary conditions on the smaller
tiers creates a significant deviation from the values predicted by
Eq. (3.4).

D. D. NOLTE AND L. J. PYRAK-NOLTE

I®

FIG. 7. Density of sites for a five-tier pattern with b=2.37
and N=10. Increasing shades of gray denote increasing densi-
ties. The density of sites is strongly correlated, reflecting the
overlapping cascade construction processes.

overlap with one another. It is interesting to note that
the density of sites can be equated with distributions of
apertures for a fluid-flow network [2]. The long tail of
large ‘“‘apertures” has been found to be particularly
relevant for aperture distributions in fractures in rock
[35-37].

IV. FRACTAL STRUCTURE

The stratified percolation patterns are fractal within
the limits of the upper and lower cutoff lengths. The
upper cutoff length is the initial sample size, and the
small cutoff length is the size of the final squares. Within
these limits, the black-and-white patterns are scale invari-
ant and are characterized by a fractal dimension. The de-
gree of homogeneity of the two-dimensional patterns is
characterized using lacunarity. When the density of sites
is considered, the patterns are multifractal and exhibit a
distribution of fractal dimensions and Lipschitz-Holder
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FIG. 8. Distribution of the site density for Fig. 7 showing
the frequency of occurrence for different densities. The distri-
bution has a long tail of large densities that is approximately de-
scribed by a log-normal distribution.
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exponents. All of these aspects of the stratified patterns
are discussed in this section. The two-dimensional prop-
erties are discussed first, followed by the multifractal
analysis.

A. Fractal dimension

The fractal dimension of the full stratified patterns (i.e.,
not just the spanning clusters) can be estimated by con-
sidering the cascade construction of the patterns. The
fractal dimension is obtained by counting the number of
squares that will cover the pattern for a specific square
edge length. On the first tier, the fraction of the area that
is covered by the covering squares is just a(N), the area
fraction per tier, given by Eq. (3.3). On the second tier, if
squares did not overlap, then the fraction of the area
covered would be a(N)?, i.e., the product of the area frac-
tions. In the construction, however, overlap does occur.
The fraction of area that is overlapped by M squares is
given by

N
M= 3 la(DPM[1-a(N —M)]
L.
N! M
=m[a(l)] [l1—a(N—M)], 4.1)

where we have dropped the notation of a(N,b) from Eq.
(3.3) in favor of the shorthand notation a(/N) with a scale
factor b implied. The overlap is the sum over all distin-
guishable permutations of the products of the probability
[a(1)]™ that a position is covered by M squares, by the
probability [1—a(N —M)] that it is not covered by the
N — M remaining squares. In the regions of overlap, cov-
ering a fraction ao(N)=3 ) —.a,/(N) of the pattern,
there is an enhanced density of small squares, obtaining
contributions from each of the larger squares. This re-
gion consists of double overlaps, triple overlaps, etc. If
the amount of double overlap is considerably larger than
triple overlap, then the covering area fraction is approxi-
mately equal to the product a,(N)a(2N). The covering
area fraction 4(n,N) for the nth tier is therefore approx-
imately

A(l,N)=a(N),
A(2,N)=a(N)[a(N)—ay(N)]+ay,(N)a(2N)
=a(N){a(N)[1—a(N—1)]+a(N—1)a(2N)}

(4.2)
A(n,N)=a(N){a(N)[1—a(N—1)]
+a(N—=1a(2N)}" 1,
where the approximation
aog(N)=a(N)a(N—1) (4.3)

has been used in place of Eq. (4.1). We make this last ap-
proximation in order to extrapolate to the last line in Eq.
(4.2). The error in this approximation 1is order
O(b "2)=~10% on the value for the area fraction. How-
ever, the scaling of the area fraction from one tier to the
next is preserved. Using these expressions, the fractal di-
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FIG. 9. Fractal dimension D vs the area per tier for five tiers.
The data points are obtained from simulations and box counting
by varying the number of points per tier N=4 to 10. The curve
is from Eq. (4.4).

mension is approximately given by

(n—1) ln{a(N)[l—a(N—l)]+a(2N)a(N—l)L
n Inb

D=2+

4.4
With one tier, » =1 and the fractal dimension is strictly
D =2.00, as expected. The fractal dimensions of Eq. (4.4)
are plotted as functions of a(N) in Fig. 9 for five-tier pat-
terns. The agreement with the simulations using the
box-counting technique is good, confirming our use of the
approximations mentioned above. The fractal dimen-
sions are shown in Fig. 10 as functions of the total area
fraction 4 (N,b) for three-and five-tier simulations.

B. Lacunarity

Fractal patterns are not uniquely defined by their frac-
tal dimension. The fractal dimension gives the size scal-
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FIG. 10. The fractal dimension takes on an approximately
universal behavior when it is plotted vs the total area of the pat-
terns. The data are from simulations for three and five tiers
with b=4.22 and 2.37, respectively.
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ing behavior of the pattern, but does not describe how
homogeneously the pattern is distributed. The term ‘“la-
cunarity” was coined by Mandelbrot [27] to refer to the
magnitude of the “gaps” in the pattern. One common
definition of lacunarity A(L) is the mean square devia-
tion of the covered area fractions for a certain size L

_{4XL))—<AWL))?
(A(L))?

where A (L) is the fraction of the area that is covered in a
square of linear size L. Various schemes have been pro-
posed to average A(L ) over L to obtain the lacunarity of
a pattern [38-40]. We have altered the approach of
Taguchi, by using a logarithmic weighting of the A(L),
rather than a linear weighting. A linear weighting will
weight more heavily toward the large sizes. The average
lacunarity A is

A(L) (4.5)

A= 3 AQ) . 4.6

i=1
The measured lacunarities for Monte Carlo simulations
of stratified percolation patterns with three tiers are given
in Fig. 11 as a function of the measured area fraction. In
Fig. 11, the lacunarity increases as the covered area frac-
tion decreases. The lacunarity vanishes when 4 =1.0,
because the pattern is completely homogeneous, i,e., is
entirely covered. As the uncovered areas grow in size
with reduced occupancy, the inhomogeneities in the pat-
tern grow. The lacunarity diverges as the covered area
vanishes, because the denominator in Eq. (4.5) vanishes
faster than the fluctuations. The lacunarity gives only a
limited description of the distribution of mass in a pat-
tern. A much fuller description is given by considering
the multifractal properties of the patterns.

C. Multifractal properties

Curdling processes have a natural connection with
multifractal pattern formation. Multifractals were em-
bedded in weight curdling [27,41], and were developed to
characterize turbulence and strange attractors of deter-
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FIG. 11. The lacunarity takes on approximately universal be-
havior when plotted vs the total area of the patterns. The data
in the figure are from simulations of 2—5 tiers.
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ministic chaotic systems [42-45]. Percolation systems
were also found to consist of multifractal sets [46—48]
when the bonds are assigned values proportional to the
voltage drops across the bonds. Other systems also show
multifractality, such as aggregation processes [31,49,50].
A multifractal set S is the union of fractal subsets S,

S=Us, ,

where a is a scaling exponent that describes the singulari-
ties of the S, subset. This parameter a is called the
Lipschitz-Ho6lder exponent. The mass p, in a cell of size
L of the subset S, varies as

Po LT, 4.7)
The subset S, has a unique fractal dimension f(a)
defined through the expression

Ma,L)da=p(a)L /' da (4.8)

in which M, L )da is the number of boxes of side L that
are needed to cover sets S, in the range of a to a+da,
where the density p(a)da is the number of sets from S,
to .S atda*

When confronted with an experimental pattern, it is
not possible directly to isolate the subsets S, and isolate
the fractal dimensions. However, it is possible to cover
the pattern with N cells with side of length L and count
the total mass enclosed in the cell. A weight u; can be set
equal to the total “mass” enclosed in the ith cell. An ex-
pression for N(L) is obtained by raising u; to the power
g. In this case the power g expresses the mass moment of
the distribution of masses that define the pattern. The
definition for the weighted number of boxes N(q,L ) is

N
Ng,L)= 3 uf

i=1

«L " (4.9)
where the mass exponent 7(q) is given by
__dInN(q,L)
7(q)= Al (4.10)

For the special case ¢ =0, and only for this special case,
the weighted number of boxes N(q,L) reduces to the
number of boxes needed to cover the pattern N(L ) yield-
ing 7(g)=D. Another special case is ¢ =1, for which
7(g)=0 because the masses are normalized to 3,u; = 1.
The connection between the mass exponent 7(g) and
the fractal dimension that describes the gth mass moment
of the pattern is given by the Legendre transformations

fla)y=7(qg)+aq , 4.11)
a(q)z—i‘r(q) . (4.12)
dq

Equations (4.11) and (4.12) make it possible to describe
the fractal dimension f(q) for varying ¢, or f(a) for
varying a, based on the weighted number of boxes in Eq.
(4.9).
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FIG. 12. Mass exponent 7(g) as a function of mass moment g
for a stratified pattern of five tiers with N=7 and b =2.37.

Equations (4.9)-(4.12) were applied to stratified per-
colation simulations. In these calculations, the density of
sites described in Sec. III is used to obtain the mass. The
mass exponent 7(q) for a five-tier stratified pattern with
N=7 and b=2.37 is shown in Fig. 12 as a function of
mass exponent g. The change in the slope around g =0
yields the width of the Lipschitz-Holder exponent spec-
trum. This spectrum of exponents a is shown in Fig. 13.
The exponents vary between 1 and 4 for this example.
Fractal dimensions at ¢ =0 define the fractal dimensions
of the black region in the black-and-white representations
of the patterns.

When the fractal dimensions are plotted as functions of
the Lipschitz-Holder exponents, trends become apparent
as the density of sites is increased. The f(a) curves for
several patterns are shown in Fig. 14. A purely homo-
geneous distribution of sites would produce a Kronecker
& at a=2. The stratified pattern with N=7 has strong
correlations and strong inhomogeneities which lead to a

4
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FIG. 13. The Lipschitz-Hdlder exponent a(gq) as a function
of mass moment g for the stratified pattern of Fig. 12. The lim-
its a,, and @_, are shown for g— o and g— — 0, respective-

ly.

STRATIFIED CONTINUUM PERCOLATION: SCALING ...

6327

Fractal Dimension

Li hi
P

Hélder Exp it

FIG. 14. The f(a) curves for stratified patterns with five tiers
and N=2, 4, and 7. The curves are all tangent to the line D =a.
For N >>10, the curves converge on D =2,

wide distribution. The width of the f(a) curve is defined
as Aa=0a,x— ;. The width Aa relative to the peak
value D is plotted as functions of the total number
M=N" of final squares for three tiers and five tiers in
Fig. 15. The ratio Aa/D is approximately constant and
equal to unity up to 10° squares plotted. The origin of
this invariance is not understood, but is not a general
property of multifractals, and may be peculiar to
hierarchical cascades.

V. FINITE-SIZE PERCOLATION PROPERTIES

A fundamental aspect of percolating systems is a
dependence of the percolation properties on the size of
the system. The percolation formalism was first studied
formally by Broadbent and Hammersley [51]. Many re-
views cover the earlier history and newest trends in per-

2
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FIG. 15. Width Aa/D of the spectrum of f(a) as a function
of the total number of points plotted for three and five tiers.
The relative width remains approximately equal to unity up to
10° points plotted.
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colation theory [51-57]. Percolation probabilities are
functions of the pattern occupancy p. A central feature
of percolation theory is the critical threshold p.. For
infinite systems, when the occupancy is below p., then
connected paths across the pattern do not occur. For oc-
cupancies p —p. >0, a connected path exists, and the pat-
tern is said to percolate. For finite systems, these state-
ments must be modified as described below.

A. Real-space-renormalization group

Percolation is a critical phenomenon. Many of the
macroscopic properties of a random system, such as con-
ductivity in a random resistor network, or the order pa-
rameter in magnetic systems, are singular at the critical
threshold. Of particular interest are the critical ex-
ponents, such as 3 and v [55]. These exponents often de-
pend only on the dimensionality of the space and help
define universality classes. A powerful tool for obtaining
these exponents is the renormalization-group theory.
Renormalization-group theory was developed to study
phase transitions and critical phenomena [58,59], and the
theory, in its real-space variant [60], can be naturally ap-
plied to percolation problems [61].

Consider, as the renormalization group for percolation,
the group of transformations R (b, p) that rescale a select-
ed region of a percolation pattern by a factor of b. After
this “renormalization” of the size of the percolation pat-
tern, the effective occupancy of the new pattern has been
changed to p’ given by

p'=R(b,p) . (5.1)

The concentration p* for which the transformation
R(b,p*) leaves the occupancy invariant (p’=p*=p) is
called the fixed point of the transformation, and may be
used to define the critical threshold of the pattern for the
renormalization factor b. The single-parameter renor-
malization transformation Eq. (5.1) is approximately val-
id when considering a single cell with a size b that is
“large” relative to the resolution size of the pattern, and
is expected to become exact as the cell size goes to
infinity.

A central feature of a real-space renormalization-group
theory is the treatment of finite-size cells. The ideas of
finite-size scaling [62,63] are closely related to those of
the renormalization-group theory [64,65]. At the heart
of renormalization is the scaling hypothesis. As applied
to finite-size systems, this states that a critical probability
that depends on two variables P(p —p,,L ) has the scaling
form

P=L “F((p—p,.)L?) (5.2)

for p—p, and L — . To satisfy the asymptotic rela-
tions

0 (p—p.)<0

R=11 (p—p)>0

(5.3)
as the size of the system L — o, the finite-size spanning
probability becomes [57]

R=H((p—p.)L'"), (5.4)

D. D. NOLTE AND L. J. PYRAK-NOLTE 44

where H(z) is a scaling function, with the property that
H(z)—1asz— « and H(z)—0 as z— — o, that can be
obtained from numerical computation. The correlation
length & (also called the pair-connectedness length) is the
average linear separation between positions of a connect-
ed finite cluster. The correlation length diverges as

D —>Pc>
Ex(p—p) ", (5.5)

where v=4% is the correlation length exponent for two di-
mensions. The goal of finite-size scaling is to calculate
percolation properties as a function of cell size L, and to
extrapolate to the case of L — . The correlation length
exponent v plays a key role for finite-size effects when
L=<¢.

The width o of the transition can be used to find the
correlation exponent v. Near to the fixed point, the re-
normalization equation (5.1) can be linearized to

(p'—p*)=Mp—p*) (5.6)
with the eigenvalue A given by
xz%’i <o (5.7)
P |p=p*

which is related to the correlation exponent v through
the derivative of Eq. (5.4) by

otV (5.8)
Here, we use the Monte Carlo renormalization group to
implement a finite-size scaling calculation of the spanning
probability R(L,p —p,.) from which the critical threshold
p. and the critical exponent v can be obtained.

B. Monte Carlo simulations

To find the probabilities R(p —p,,L) for a percolation
pattern, we start with a 300X 300 array of pixels. Onto
this array, we plot a percolation pattern of squares. The
size of the squares is 4 X4 pixels. This square size retains
the features of continuum percolation. To check for per-
colation, the resulting array is viewed as a site percola-
tion problem. Pixels that are black are available; pixels
that are white are unavailable. Flow can only occur be-
tween two adjacent available pixels. A square cell of side
L is said to percolate if a connected path of available sites
spans the cell from one side to the opposite side. We
check for this connected path for each cell using a cluster
numbering algorithm [66]. The tabulation of the number
of cells that are spanned yields the spanning probability
R(p—p,,L) for that cell size. We take as our rule for a
spanning cluster the condition where the cell is spanned
in either the vertical or horizontal direction. This rule
[61] is called R,. The Monte Carlo spanning probabili-
ties for one stratified percolation pattern are obtained
from
k2
> S;(L)
i=1

R(L)="3

(5.9
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where k=1,2,3,6 with L=300/k. S;(L)=1 if the ith
cell percolates, and S;(L )=0 if it does not. The results of
many patterns are then averaged to obtain smooth func-
tions for R(L,p).

The spanning probability for Monte Carlo simulations
of random (uncorrelated) continuum percolation
[represented in Fig. 2(a) with a fractal dimension
D =2.00] is shown in Fig. 16. The simulations were run
on a 300X 300 grid with a square size of 4 X4 pixels. The
percolation threshold is relatively sharp and occurs at
A,.=0.62. This threshold must be compared with the
critical threshold for isotropic continuum percolation.
The critical area fraction for isotropic continuum per-
colation is [67] A,=0.68. Isotropic continuum percola-
tion can be represented by writing circles to the grid as
the occupying elements, rather than squares. We chose
to use squares, because circles are not well defined on a
square grid. The difference in thresholds between circles
and squares arises because squares are not isotropic, like
circles. Increasing anisotropy of the occupying elements
decreases the threshold when the elements are distributed
randomly (i.e., when the anisotropic elements still pro-
duce isotropic percolation patterns). In addition to this
anisotropy, the discreteness of the underlying grid, and
the 4 X4 pixel size for our squares, reduces the threshold
by a few percent from the continuum limit.

The results for continuum percolation can be com-
pared with the probabilities in Fig. 17 computed for
Monte Carlo simulations of stratified percolation patterns
constructed using three tiers and a scale factor of
b=(300/4)""*=4.22 between tiers. The simulations
were again performed on a 300X 300 grid with a smallest
square size of 4 X4 pixels. The most dramatic difference
between stratified percolation and standard continuum
percolation is the width of the transition. The width of
the stratified percolation transition is roughly ten times
broader than standard continuum percolation. This is an
intrinsic feature of stratified percolation. Stratified per-
colation has structure on all length scales. The long-
range structure is generated at the scale of the largest
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FIG. 16. The spanning probability R vs the covered area for
standard continuum percolation using 4X4 squares on a
300X 300 lattice for 50 simulations per data point.
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FIG. 17. Spanning probability R(L, A) vs covered area for
three-tier stratified patterns. The four cell sizes are L =50, 100,
150, and 300. The data are from simulations of 300 patterns per
data point, and the solid curves are the fit from the beta func-
tions.

tier. The initial subsquares define large areas of the pat-
tern that will be either dense with sites, or empty. The
largest cell size in the renormalization is the same size as
the largest tier. The subsquares are smaller by a factor of
b=4.22. The renormalization of the stratified pattern
therefore reflects aspects of renormalization with a small
cell of size 4.22. The construction of the stratified pat-
tern forces the renormalization to be intrinsically a
small-cell renormalization.

C. Critical percolation properties

To obtain a smoothly varying approximation to the
discrete spanning probabilities, the spanning probabilities
for stratified percolation in Fig. 17 are fit to a beta distri-
bution. The beta distribution gives better agreement with
small-cell renormalization than do Gaussian fits [61].
The smooth fit will allow us to obtain critical thresholds,
and inverse widths. The beta distribution is given by

Fin+m)
C(n)T(m)
where the mean and the variance of the distribution are
given by

_ m
<x>—m+n ’

B, (x)= x" M 1—x)"1 0<x<1 (5.10)

n (5.11)
2

C(mAnPmAn+1)

The spanning probability is fit by integrating the beta dis-
tribution

R, (x)= foxBnm(x)dx

(5.12)

and adjusting m and r to fit the correct dependence of the
simulations near the threshold. .

The threshold of a finite system is not uniquely defined.
Different criteria used to define the threshold yield



6330

different thresholds. In the face of this ambiguity, one
may want to choose a “best” criterion. In fact, any cri-
terion for finding the threshold can be used, as long as the
dependence of the threshold on the sample size L is taken
into account. From Eq. (5.4) one finds that any finite size
threshold p,. (L) will differ from the true threshold p, (for
an infinite sample size) by

p(L)—p, <L, (5.13)

By plotting the finite-size thresholds p.(L) vs L ~!/*, for
different values of v, a good linear fit can be found. This
procedure not only gives a value for the exponent v, but
also yields p, by extrapolating to L = . Any choice of
criterion for the thresholds p (L) should extrapolate to
the same p, with the same exponent v.

We choose two different criteria for our thresholds:
the fixed points p*, and the average p,, = {x ). From the
resulting fit to the beta distribution, the fixed points p*
and the averages p,, are obtained as functions of cell size.
The thresholds from this analysis for the Monte Carlo
simulations are plotted in Fig. 18 as functions of L ~!/¥
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FIG. 18. Threshold values plotted as functions of cell size by
fitting the data with beta functions. The fixed points p* and p,,
are plotted vs L ™!/Y for (a) three tiers and (b) five tiers. We
have chosen a value of v=1.33 for the analysis. The extrapola-
tion to infinite sample size leads to an ambiguous threshold.

D. D. NOLTE AND L. J. PYRAK-NOLTE 44

for three tiers and five tiers. A value of v=1.33 was
chosen to check if stratified percolation is consistent with
standard percolation. This choice of correlation length
exponent does yield linear plots, within the accuracy of
the simulations. According to Eq. (5.13), extrapolating to
L — o should lead to the threshold value for an infinite
sample size. Furthermore, different criteria for defining
the threshold should yield the same p.. This is not the
case in these simulations. The thresholds defined by p*
differ by 4% from the thresholds defined by p,,. The
reason for this discrepancy may be caused by the small-
cell character of stratified percolation. The renormaliza-
tion procedure is only expected to be valid in the limit of
large-cell sizes.

An additional aspect of the critical threshold should be
mentioned here. The threshold for an isotropic continu-
um system without correlations is around 70%. In
stratified percolation, the strong correlations (i.e., bunch-
ing) have reduced that threshold to around 50%. Other
strongly correlated systems have also been shown to have
thresholds that approach 50% [10]. In particular, it is in-
teresting to consider that the threshold for Ising correlat-
ed percolation is at 50%. While the stratified percolation
clusters clearly do not have structures similar to Ising
clusters at the critical temperature, they appear to have
near symmetry between the black-and-white (up and
down) regions. This raises intriguing questions of simi-
larities (and differences) between stratified percolation
and other strongly correlated systems.

An alternate critical occupancy can be defined for the
stratified patterns. Instead of considering the area frac-
tion of the patterns, we can consider the area fraction per
tier a(N,b), given by Eq. (3.3). The area fraction per tier
defines how much of the pattern is covered at each tier.
From Eq. (3.4), there is a direct one-to-one correspon-
dence between the area fraction A(N,b) and the area
fraction per tier a(N,b). The spanning probabilities for
three tiers and five tiers are plotted in Fig. 19 against the
area fraction per tier and are refit to new beta distribu-
tions. The threshold is now close to 70%, which is the
canonical value for isotropic continuum percolation.
Furthermore, the threshold in the spanning probability is
considerably sharper, and appears to be much more like
large-cell renormalization (cf. Fig. 16) than small-cell re-
normalization (cf. Fig. 17). The finite-size extrapolation
for the thresholds is shown in Fig. 20 assuming a value of
v=1.33. When plotted against the area fraction per tier,
rather than the area fraction, both thresholds p* and p,,
extrapolate to the same critical threshold for a given
number of tiers, although the fits are worse than in Fig.
18. This is evidence that when the patterns are con-
sidered in terms of the area fraction per tier, the renor-
malization procedure is closer to large-cell renormaliza-
tion. Therefore the difficulties associated with the intrin-
sic small-cell properties of stratified percolation can be
removed by considering the area fraction per tier.

Rather than assuming a value for v in Figs. 18 and 20,
a value for the correlation exponent v can be obtained
through the inverse of the beta function width ¢ ~! from
Egs. (5.7) and (5.8). The inverse widths are plotted in
Fig. 21 versus the cell size L. The inverse width should
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FIG. 19. Spanning probability R(L,a) vs the area fraction
per tier for (a) three tiers and (b) five tiers. The sample sizes
were L =50, 100, 150, and 300. The data are from simulations
of 300 patterns per data point and the solid curves are the beta
function fits. The thresholds are considerably sharper than in
Fig. 17.

vary as L" for large L. The straight lines are fit to the
values for the three largest L. The resulting correlation
exponent is found to be v=1.33+0.05. This value is in
good agreement with standard percolation. The strong
correlations introduced during the recursive construction
do not change the correlation length exponent. This may
not be surprising, considering that stratified percolation
is constructed of successive layers of standard percola-
tion. Some properties of standard percolation are there-
fore retained and incorporated in the new stratified per-
colation.

D. Invariant threshold in stratified percolation

One interesting correspondence between stratified per-
colation and standard percolation is the critical threshold
near 70%, when expressed in terms of the area fraction of
a single tier. The strong correlations therefore have also
not altered the critical threshold: the threshold of
stratified percolation appears to be relatively invariant.
However, the origin of this invariance is not obvious. It
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v=1.33 to infinite sample size in each case yields a well-defined
threshold: a.=0.70 for three tiers and a, =0.72 for five tiers.
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FIG. 21. Inverse width 1/0 of the transition plotted vs sam-
ple size L for five tiers. The widths were obtained from the
spanning probabilities R(L, A) and R(L,a), respectively, for
the area fraction and the area fraction per tier. The slope of
these curves for L — « yields the exponent v=1.33+0.05.
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is caused by the cancellation of two opposite trends: the
decrease of the threshold for small-cell sizes; and the in-
crease of the threshold for successively “punctured” tiers.

To demonstrate these two trends, it is simplest to con-
sider the case of two tiers with a scale factor of b=4.22,
as in Fig. 22(a). On the first tier, the construction is iden-
tical to a standard continuum construction. The use of
squares (which are anisotropic), and a small cell reduces
the threshold from A4,=0.68 to 4,=0.62. Now consid-
er the effect of replacing each solid square in Fig. 22(a),
with a square composed of multiple smaller squares. This
is shown in Fig. 22(b). When parts of the original squares
are removed, connections that allowed the first pattern to
percolate may be broken. To regain percolation, the ini-
tial concentration of squares must be increased to com-
pensate for the fact that gaps occur. This increases the
area fraction per tier that is necessary for percolation.
The critical threshold for five tiers is a,=0.717+0.002
(with statistical error only), slightly larger than for three
tiers at a,=0.7001+0.002. Therefore the relatively in-
variant threshold near 70% may be viewed as a coin-
cidence caused by the cancellation of finite-size effects by
the gaps in the subsquares. Despite this coincidence, the
near invariance of the threshold for three to five tiers is
useful for estimating when this correlated system is near
its threshold.

VI. CONCLUSIONS

Correlated continuum percolation has a wealth of be-
havior that makes it a fruitful area to compare against
scaling patterns in nature. Many systems in nature show
strong correlations in connected continuum systems, such
as the flow paths through single fractures in rock. In this
paper, we have outlined one correlated continuum per-
colation model, stratified continuum percolation, that has
particularly interesting behavior, is well defined, and may
be used to model physical systems. The model is con-
structed as a self-similar hierarchical cascade with con-
tinuous overlap. The cascade generates a multifractal
distribution with fractal dimensions that can be continu-
ously tuned by varying the scaling parameter b and the
number of squares per level, N. The patterns have per-
colation thresholds of approximately 4.=0.50, implying
that the strong correlations introduce a symmetry be-
tween the covered and uncovered areas. The finite-size
scaling properties are intrinsically small cell because of
the structure of all length scales. This leads to broad per-
colation transitions. When the covered area is
transformed according to the area fraction per tier,
large-cell properties are regained with a threshold near
A,=0.70, and with a correlation exponent of v=1.33.

Stratified percolation is a general construction that
should find applications in many situations. The log-
normal distribution, due to the random multiplicative
processes in the generation, may make it particularly use-
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FIG. 22. Finite-size patterns with N=21 and b=4.22 for (a)
one tier, and (b) two tiers. Connections in (a) can fail when the
solid squares are replaced by another tier, as in (b). This drives
the critical area to larger values for increasing number of tiers.
This effect cancels small-cell effects that drive the critical area
down, resulting in an approximately invariant threshold for
stratified percolation.

ful for certain situations. Future applications of stratified
continuum percolation may include generation and study
of hierarchical fracture networks, and invasion percola-
tion into strongly correlated continuum systems. The
continuously tunable fractal dimension, while retaining
the features of standard percolation, may make this mod-
el especially attractive for modeling the fractal geometry
of connected patterns generated by critical phenomena.
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