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Various models for fragmentation and partitioning phenomena are developed using methods from per-
mutation groups and combinational analysis. The appearance and properties of power laws in these
models are discussed. Several exactly soluble cases are studied. An application to nuclear fragmentation
and clusterization is given. A connection with Ewenss approach [Theor. Popul. Biol. 3, 87 (1972);
Mathematical Population Genetics (Springer, Berlin, 1979)] to genetic diversity is mentioned. Applica-
tions to the social behavior of a vervet monkey troop and to the group behavior of people are given.
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I. INTRODUCTION

Fragmentation and clusterization phenomena are ob-
served in many difFerent areas of physics. A fragmenta-
tion process produces a cluster distribution of objects fol-
lowing a collision or some other method of excitation or
deexcitation. The mass or size distribution that results
from some types of processes is of interest, and this distri-
bution gives the number of clusters of a given size as a
function of their size. Examples are nuclear fragment
distributions following a collision of two heavy ions [1],
meteoritic distributions reaching the earth [2], earth-
quake sizes [3], avalanche [4] and sandpile [5] slides, lu-
nar crater sizes [6], percolation cluster distributions [7],
droplet sizes [8] in aerosols, and in condensation phenom-
ena. One remarkable feature in these examples is the ap-
pearance of a power law in the size distribution. That is,
the distribution of sizes falls as a power of the size of the
object. Power laws appear in many other areas. Exam-
ples are Zipf's law [9] in linguistics for word frequency
use, Pareto s law [10] in economics for income distribu-
tions, and 1/f noise [11]. Moreover, 1/f noise appears
in many phenomena [5] from starlight Aicker to sand flow
and traffic flow. A more detailed summary of power
laws can be found in Mandelbrot [12] and in Montroll
and West [13].

In a previous set of papers [14,15], a model for a frag-
mentation process was introduced and developed. A con-
nection of this model with a thermodynamical descrip-
tion of a nuclear fragmentation process is given in Ref.
[16]. This paper considers further developments, exten-
sions, and applications of this model. The various cases
considered all have hyperbolic power-law behavior at
some particular point. A link between these models and
the symmetric group S„ is developed, and combinational
methods are also employed in our studies. Applications
of our approach to various fragmentation phenomena
and partitioning problems will be given and compared
with data.

An outline of this paper is as follows. In Sec. II, a rela-
tionship between fragmentation partitions and permuta-
tion cycles of the symmetric group S„ is developed.
Canonical ensemble partition functions are derived in
Sec. III and used to obtain general expressions for the
distribution of cluster sizes in fragmentation phenomena
and group sizes in partitioning problems. Section IV con-
siders various exactly soluble cases. This model is also
related to probability theory. Section V gives some appli-
cations of the results developed in Sec. IV. These appli-
cations include nuclear fragmentation, the solar abun-
dance of the elements, genetic diversity, and social behav-
ior of a troop of monkeys and people. Section VI is for
the concluding remarks. Some generating functions are
given in the Appendix.

II. PARTITIONS, DKCOMPOSITIONS,
FRAGMENTATION S,

AND PERMUTATION CYCLES

In a fragmentation process, an object made of A ele-
ments is divided into pieces of smaller size. Specifically,
the initial 3 elements end up in smaller groups or clus-
ters of varying sizes characterized by the number of ele-
ments j in the cluster. Here the number of objects of size
j is called n and a sum rule

A= gjn (1)
j=l

exists as a constraint. The listing of the partitions of A
objects into such groups also appears in number theory as
the decomposition of an integer A into integer summands
without regard to order. The integer j will be identified
with the cluster of size j. The notation

=(n))n2). . . ) ng )
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TABLE I. Partitions (II & ) of 3 = 5 and 6. The parity and the Cauchy numbers (M& ) are also given.

p(A) p(w, m)

5

1,4
23
1,3
1,2
1,2

15

6
1,5
2,4

32

1,4
1,2,3

23

1,3
12 22

14,2
16

15

2, 1

2, 1

3,1

32
4, 1

5
16

2, 14

22 12

23

3,1

3 2 1

32

4, 1

4,2
5, 1

6

Parity

24
30
20
20
15
10

1

120
144
90
40
90

120
15
40
45
15

1

is used to specify a particular decomposition of an integer
A, a particular fragmentation of an object made of A ele-
ments, or division of A objects into smaller groups. The
multiplicity of a given partition is

m =n&+nz+ . +n„= g n
j=1

(3)

The possible values of m are m =1,2, . . . , A. The num-
ber of possible partitions of A without regard to order is
called p(A) and the number of possible partitions of A
into m parts is called p ( A, m ). Here
p( A ) =g Ip( A, m ). Table I lists all the partitions for
A =5 and 6.

For large A, the total number of partitions of A is the
Hardy-Ramanujan asymptotic result [17,18]

2 A /31

4&3A

Also, for large A and m ((A [m -0( A ' )],
A rn —1

m!(m —1)!

(4)

Generating functions for p(A) and p(A, m ) are given in
the Appendix.

The p( A ) and p( A, m ) also appear in level densities.
If the number of elements A is replaced by the number of
levels goE at a given energy E, then substitution of
A =goE turns Eq. (4) into the level density p(E ) of a Fer-
mi gas [19] and Eq. (5) into the level density for states
made of m particles plus holes [20]. Specifically,

2(m goE/6)p(E)=gap(A =goE)= — e
4&3E

(goE)
p (E)=gap(A =goE, m)=go

m! m —1!
Here the go is the level density parameter. Moreover, a

generalization of Eq. (4) can be used to study statistical
mechanics of cosmic bosonic strings [21] and the
Hagedorn level density of strong interactions [22]. The
importance of p(A) here is in counting the number of
possible fragmentations. Each fragmentation is specified
by II~(I nl ) of Eq. (2) so that gn 1=p(A ), where the

sum is over all partitions of A, i.e., all sets of I n; J which
satisfy the constraint Eq. (1). For a collision involving

Ur+ Ur, the number of possible fragmentations
p( A ) is of order 10

The partitioning of A also appears in permutation
groups. In Ref. [14] a correspondence between clusters in
a fragmentation process and cycles of the permutation
group were established. One aspect of this paper is to ex-
plore this interrelationship between clusters, partitions,
and cycles of the permutation group. Specifically, a clus-
ter of j objects corresponds to a cycle of length j, and n
is either the number of clusters or cycles of that size. The
II„ofEq. (2) is then a classification of a permutation of
A objects by its cycle class structure. The group is called
symmetric group S„,with n = A here, and S„has A f ele-
ments. The p ( A ) counts the total number of cycle
classes. The number of permutations of A objects in a
specific cycle class with n1 unit cycles, n2 cycles of length
2, etc., is given by Cauchy's number

M2( A, I n~ ] ) =
H 1j n-.

(7)

The number of cycle classes p(A) is also the number of
irreducible representations of S~ [23]. The correspon-
dence between the partitioning of an integer, cycles of a
permutation, and fragmentation possibilities of an object
is shown in Fig. 1.

A partition is sometimes specified by a decreasing set
of numbers A, ; defined by the transformation
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A, , =n, +n2+ +n~,
A2=n2+ ' ' +ng

~w =no ~

Here A =g;A, ; and m =A, Note also A, , ~ kz ~ A, 3
~

1 ~1 ~2 n 2 ~2 k3 etc. For example, the
division of 5 into 3+2 which is n=(2', 3')=(0, 1, 1,0,0)„
in the n; representation becomes (2, 2, 1,0,0)& in the A, ;
representation or A, =(2,2, 1)z=(2, 1)&, where zeros are
dropped. The partition 2+2+ 1 is represented by
n=(2, 1) in the n representation and by A, =(3,2) in the
representation A, . For each partition in the n representa-
tion, there is a partition with the same structure in the A,

representation. As an example, for a given structure
(2, 1), A, =(2, 1) represents the partition of 3+2, and
n =(2, 1 ) represents the partition of 2+ 2+ 1. The
A =g;A, , can also be considered as the partition of an in-

teger A into summands of smaller integers A,;. For exam-
ple, A, =(2, 1) can be considered as a partition of 5 into
g;A.;=2+2+1 and A, =(3,2) as 3+2. Thus, as we can
see from Table I, the representation A, is conjugate to the
representation n.

The conjugate property between two representations n
and A, can easily be visualized in terms of block diagram
similar to a Ferrer diagram [17] or a Young tableau [23].
Here we can consider four types of diagrams. In Ferrer's
block diagram, illustrated in Fig. 2(a), the partition

(n„n2, . . . , nj, . . . , n„)=n is represented by n rows of
j horizontal blocks. They are placed in a diagram in des-
cending order with the longest or largest j at the top.
The Ferrer's diagram can also be viewed as a block dia-
gram in A, = ( A, 1,A, z, . . . , A, „) space. Here A, ; blocks are
put vertically in the ith column. The total number of
rows (A, i } is the multiplicity m and the area of this dia-
gram (the total number of blocks) is A. A Young tableau
in permutation groups is a similar type of diagram but,
here, k,. blocks are put horizontally in the ith row as
shown in Fig. 2(b). We can obtain a Young tableau from
Ferrer's block diagram by first turning the block diagram
upside down and then by rotating it through 90' clock-
wise. This transformation between Ferrer's diagram and
the Young tableau exhibits the conjugate relation be-
tween two representations of n and A.. Table I also shows
this conjugate relationship. Again, the total number of
blocks is A and the number of columns (A, , ) is the multi-
plicity. A diagram constructed through the upside down
version of a Ferrer s block diagram, Fig. 2(c), is useful in
connecting a partition to the one-dimensional avalanche
and sandpile slide models [4,5]. Avalanche models are
generated by imposing a condition on block diagrams
such as a constraint nk ~ o., where o. is a fixed number.
Each slide is presented by a roll of a block to a lower
column. With the constraint of nk ~1, the number of
partitions q(A} of an integer A into integer summands
without regards to order can be obtained through the
generating function of Eq. (A5) in the Appendix. It is
also useful to picture a nuclear fragmentation distribution

Partitions
of

Integer

Cycles
of

Permutation

Fragmentations
of

Object
(a) Ferrer's Diagram:

n = (14, 4~, 6', 7, 9 )

(b) Young Tableau:

$=(11 7~ 52 4 2~)

4+1

3+2 000

3+1+1

2+2+1 ~eO
5.
~e oe ~

(c) Avalanche: (d) Fragmentation:

2+1+1+1 ~t ~ 0 ~

1+1+1+1+1 ~ ~ ~ 4 ~

FICJ. 1. Partitions of the integer 5, cycles of permutation
group S5, and the fragrnentations of an object with five constitu-
ents. The solid circles represent the constituent elements. The
large circle indicates the cyclic permutation of elements in the
cycle and the constituents of the cluster are dots inside the cir-
cle in the fragmentation scheme.

FICJ. 2. Block diagrams for a partition II& of A =50 into
n=(1,4,6', 7 9 ) which is k=(11,7,5,4, 2 ).
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in terms of a block representation with the cluster size j
the vertical column and with the number of clusters of
that size, the n, given horizontally. The columns are ar-
ranged in descending order from left to right as shown in
Fig. 2(d). This fragmentation diagram is the horizontally
reAected version of a Young tableau or the 90' counter
clockwise rotation of a Ferrer s diagram. The multiplici-
ty is just the number of columns. With this fragmenta-
tion diagram, a fragmentation process can be represented
as the stepwise descent of blocks from a higher column to
a lower one [14]. In these block diagrams, the p( A) sim-

ply counts all possible arrangements of A blocks. Each
arrangement of blocks is a unique partition represented
as a staircase in Figs. 2(c) and 2(d). The p(A, m ) counts
all possible arrangements with m fixed rows for a Ferrer's
diagram or an avalanche diagram and with m fixed
columns for a Young tableau or a fragmentation diagram.

r

Qg(n)= A.'A =( —1) A! (13)

where the binomial coefficient

n

and the negative binomial coefficient

—n

are

I (x) is the gamma function. This canonical partition
function Q„(x ) has zeros at x =0, —1, —2, . . . , —( A
—1) and the number increases with increasing A. When
x is an integer, x=n, the Q„(n) =n(n +1) (n+A
—1) can be written as a binomial or a negative binomial
coefficient. In particular,

III. CANONICAL PARTITION FUNCTIONS
FOR FRAGMENTATION PHENOMENA

AND CYCLE INDICATORS OF S„
Consider an ensemble of partitions or cycle classes of

objects into smaller clusters or cycles which are
weighted by x according to their size j. The weighted
sum of all the partitions II~ of 3 objects becomes the
corresponding partition function. Let W~ (n, x) be a
weight function for a particular decomposition or parti-
tion n. Here x= [xJ]=(xi,xz, . . . , x~ ) and
n =

[ n~ ]
= ( n i, n z, . . . , n ~ ). The canonical partition

function Q„(x) is given by

Q„(x)= g W~(n, x) .

n
'

n(n —1) (n —A+1)
A!

I (n+1)
r(n —A+1)r(A+1) '

—n
'

( n)( —n ——1) ( n —A—+1)
3!

I ( n+1)—
I ( n —A+1—)I (A+1)

=( —1) n+3 —1

I (n+A )

I (n)I ( A+1)

(14)

When Wz(n, x) is taken as

A

8'„(n,x)=Mz(A, n) g x ',
j=1

(10)

Here the binomial and the negative binomial are

(x+x)"= g A
x xz

A =0
with Mz( A, n) given by Eq. (7), then Q„(x) is also the cy-
cle indicator of the permutation of symmetric group Sz.
In Refs. [14] and [15], a generating function for the
canonical partition function was developed for fragmen-
tation phenomena. Specifically, a generating function

QO g J oo

Q(u, x)=exp g xJ . = g Q~(x)j 3!
was used to find the canonical partition function Q~(x)
and the mean number of clusters of size k. A more gen-
eral form for the grand canonical partition function
Q(u, x) is given and discussed in Ref. [16]. A physical
meaning for x will be discussed for various physical sys-
tems in Sec. V.

When all the x - in x are equal,

Q(u, x ) =Q(u, [x,=x ] ) =(1—u )

(x, +x, )
"= y A" xi~xz '"+~',

3 =0

(15)

and the coefficients in front of x, m =1—5, are signless
Stirling numbers ( —1)" S( A, m ) of the first kind [18].
In general,

I (x+A)
I (x)

A

( —1)" S( A, m )x
m=1

(16)

respectively. At x = 1, Q„(1)= A!.
Q„(x) is useful in studying permutations and fragmen-

tations by the total number of cycles or multiplicity m
with m =g n=Xi. For exa.mple,

Q~(x ) =x(x+1)(x+2)(x+3)(x+4)
=24x'+50x +35x +10x +x

Q„(x)=Q~(jxJ=x])=x(x+1) . . (x+A —1)

I (x+A)
r(x) (12)

The sum of the coefficients (signless Stirling numbers) in
Q~(x) is Q„(1)=A! which is 5!=120 for A =5. The
signless Stirling numbers appear in the theory of the mul-
tiplicity distribution developed in Ref. [14]. When each
cycle is tagged with a different x., as in Q~ (x), then
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Qs(x) =24Xs+ 30X4X, +20X3X2+20X3X

+ 15x2x1+ 10x2x1+x1,
where the subscript i in x; corresponds to the length of
the cycle or the size of the fragment and the power of x;
is n, . The coefticients of each term are the Cauchy's
number M2 given by Eq. (7) (see Table I).

We next define a quantity Q„(x):

QA (x)= g WA (n, x),

where the sum is over all partitions HA of A with m

fixed. Also, a quantity QA" (x) is defined by

xk xj A!
k j (A —k —j)! (24)

while the second factorial moment is

X.„FA",,=2(x)
&nk(nk —1))=

x

ing mean cluster size distribution of Eq. (22) is that aris-
ing from a microcanonical ensemble with fixed multiplici-
ty m and A [16].

Correlations and moments are also easily obtained
from Q„(x). The correlation & nknj ) for k&j is given by

QA-k-, (x)
Elk n

Q„(x)

QA"(x)= g WA(n, x),
t

Xk A! QA —2k(x)
k ( A —2k )! Q„(x)

(25)

with the sum over all partitions H „of A with nk

specified. Q„(x) and QA" (x) are more constrained than
Q„(x) and

In fact, defining nk=nk(nk —1) (nk —p+1), the fac-
torial moment of order p is given by

A A/k

QA (x)= & QA(x) = X QA" (x) . (19)
m=1 n =0

k

For a system that has a total energy proportional to m,
QA(x) becomes a microcanonical partition function. Fi-
nally, define the pth order factorial [16]as Also, for kAj,

A! QA —pk(x)

( A —pk )! Q„(x)

FA (x)=nk(nk —1)(nk —2) . (nk —p+1)QA"(x) & nkpn, ') = xJ A!
( A —pk —1j)!

(A k)! QA —pk
Q A ,k ij(»——

X
QA(x)

(27)

These quantities are used in describing the distribution of
clusters as indicated in the following.

Once the canonical partition function Q„(x) is deter-
mined, the distribution of fragments in the canonical en-
semble follows using general results obtained in Refs. [15]
and [16]. Letting &nk) be the mean number of clusters
of size k,

Xk Xj Xi A!
k j I [ A —(k+j+I + )]!

X
QA —(k+j+I+ ](x)

QA(x)
(28)

The above results are easily generalized to three and
more sizes, i.e.,

& n ) = I'„(k,x) = X.,FA",p =i(»
Q„(x)

A!
k (A —k)! Q„(x)

(21)

where k,j,l, . . . , are all difFerent from each other.
From the factorial moment of Eq. (26), we can find the
usual moment &ng'j. We next turn our attention to a
determination of the partition functions QA(x) for the
various exactly soluble cases.

The contribution of partitions with fixed multiplicity m
to the mean cluster distribution & nk ) of size k is simply

&nk)
A! QA —k(x)

k (A —k)! QA(x)
(22)

&~k)= g &nk)
m=1

(23)

When the denominator QA(x) in Eq. (22) is replaced by
the microcanonical partition function QA(x), the result-

The total yield of clusters of size k is then made from a
sum of contributions from each multiplicity m

IV. VARIOUS EXACTLY SOLUBLE MODELS

The previous section summarizes general expressions
for properties associated with cluster sizes arising from
fragmentation phenomena and related partitioning prob-
lems. Once the partition function Q„(x) is evaluated, the
expressions given in Sec. III can be used to obtain the
desired quantities. This section gives some special cases
which are exactly soluble. Various models for the canon-
ical ensemble partition function Q„(x) are discussed.
The various models show a rich variety of difFerent possi-
bilities and behaviors. They will be related to various



MODELS OF FRAGMENTATION AND PARTITIONING. . . 6299

areas such as nuclear physics, astrophysics, population
genetics, and social behavior in Sec. V. (n )=k

n+A —k —1'
A —k

A. Model based ou a single tuning parameter x:
Length scales and scale invariance

When all the x.'s are equal to x, then the canonical
partition function becomes Qz (x ) =x (x + 1)
(x+ A —1) as given by Eq. (12). Thus, using Eqs.
(21)—(25),

x A! I"(x+A —k )

k (A —k)! I (x+A)

x
(n (n —1))=k k

A! I (x+ A —2k)
(A —2k)! I (x+A) (29)

(n, n, &= A!
(A —k —j)!

I (x+ A —k —j)
I (x+A)

Properties of the distribution of cluster sizes were dis-
cussed in detail in Refs. [14] and [15]. Moreover, a ther-
modynamic model for x was developed [14,16]. A com-
parison between the population genetics model [24,25]
and the x model of fragmentation is developed in Ref.
[26]. The physical contents of parameter x is discussed in
Sec. V.

We note the following features of the x model. At
x=0, only one cluster of size A exists; we called it the
fused mode. At x = ~, only A monomers exist, i.e., total
fragmentation (vaporization) mode. These two extreme
cases have zero fluctuations. At x =1,

1
(n n)=

k
=(n„&(n, &,

1
(30)

1
(n/, (n/, —1))=, =(n/, )',

(31)

for k ~ A, k+j ~ A, and 2k ~ A, respectively. Other-
wise, the quantities in Eq. (30) are zero. The last result of
Eq. (30) shows that the fluctuation is the same as the
mean number of clusters for 2k ~ A, i.e.,

=( —1)
n —

pg

A —k (33)

and, thus, in terms of the binomial or negative binomial
coefficient given by Eq. (14). Here x ranges from zero to
inanity. A simple transformation to a variable
t= 1/(1+x) changes the domain of x to the interval
from 0 to 1: x =0 to t =1, x = (x& to t =0, and x =1 to
t= —'.

2

As already noted, the cluster size distribution at x = 1

is (nk ) =1/k and is thus scale invariant (i.e., indepen-
dent of A) except for the trivial constraint k & A. A dis-
tribution having a length scale of length X is character-
ized by

( )~ —k/K (34)

To obtain a scale invariant behavior such as 1/k from
Eq. (34), a distribution of length scales must be present as
can be seen from

I (n+1) dX
kn+1 0 g ~+2 (35)

Thus, the hyperbolic behavior 1/k can be thought of as
arising in a system in which all length scales E are
present with a density 1/K . This result is well known in
1/f noise where a similar discussion is given for the ori-
gin of this noise [11]. Moreover, since
( nk ) —( nk ) = ( nk ) = 1/k, the Iluctuation has all length
scales present in ( nk ) at x = 1. When x ))A, the behav-
ior of ( nk ) for large k [14] is

( ) &
—(k —1)ln(x/3 )

&
—k ln(x/2 )Ak' =e (36)

so that a length scale is K = 1/ln(x /A ). Scale invariance
also appears in sandpile and avalanche theories [4,5] and
in other power-law behaviors.

Before ending, we note that the scale invariant distri-
bution ( nk ) = 1/k can be rewritten as a distribution of
frequency sizes. A given cycle of length k is cyclic with
period k. The length 3 permutation

The results of Eqs. (30) and (31) are independent of the
size A so long as the constraints are satis6ed. When x is
an integer x =n, we have

n (A —k+1)(A —k+2) . (A —k+n —1)
k (A+1)(A+2) (A+n —1)

(32)

This result shows that ( nk ) depends on the size A except
at the point x =n =1. Equation (32) can also be rewrit-
ten as

1 2 3

2 3 1

is such that a =e, the identity element. Note that a fre-
quency can be associated with a period k such that
kf k

= 1, and thus fk
= 1/k. In nuclear physics, the

harmonic-oscillator frequency fk associated with a nu-
cleus of size k (having k nucleons) is given by
hfk =A'o/k =a/k', where a =40 MeV for k large. Us-
ing the transformation of n (f ) = (nk )dk/df, we obtain
n(f ) —1/f when (nk ) =1/k for the permutation cycle
and the nuclear harmonic oscillator.
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B. Sum rules, cumulative mass, moments,
and correlations

g &n„&=&m&,
k=1

y k&n„&=A .
k=1

(37)

The first moment result follows from the conservation
constraint gkknk= A. The results of Eq. (37) are true
for arbitrary x -'s and not just for the x =x case.

Another quantity of interest is the cumulative mass
M(s),

This section considers the gross features of the distri-
bution & nk & of cluster sizes by considering sum rules and
moments of this distribution. The moments are obtained
by multiplying each & nk & by some power of k and sum-
ming over k. The zeroth and the first moments are the
mean multiplicity and the total number of elements A,
respectively,

k=1
(41)

When x; =x for all i and using Eq. (39), the following re-
sults are obtained:

& nknj & Yg (k x) Yg —k(j x) Yg —J(k x) Yg (j x)

& nknj & =0 for k+j) A. Then we obtain the following
result for correlations in cluster sizes:

A A A A —k

g k j'&nkn, &
= g k Y~(k, x) g j 'Y„„(j,x) .

k=1 j=1

(40)

Specifically, using Eq. (37) for arbitrary x.'s, we have

A A A A —k

g kj &nl, n &= g kY„(k,x) g j Y~ k(j, x)
k=1 j=1 k=1 j=1

A

&nk &k(A —k)
k=1

[s]+1
M(s)= g k&n„&, (38)

xA(A —1)g kj&n„n &=
k=1 j=l

(42)

where the [s] is the greatest integer in the continuous real
value s, i.e., [s]~s ([s]+1. Due to the sum rule Eq.
(37), the cumulative mass becomes A for s ) A —1, i.e.,
M(s ) A —1)= A. For the x =x =1 case, this cumula-
tive mass M(s) becomes a uniform staircase in which the
step size is independent of the position k and the size A
of the staircase. This result is shown in Fig. 3(a). For
x =n ) 1, the cumulative mass M(s) is no longer a uni-
form staircase as can be seen from Eq. (32), i.e., the step
size depends on k and A [see Fig. 3(a) for x =3]. For x.
chosen such that x.=0 for some specific j's and x for oth-
ers, intermissions or breaks appear in M(s) of Eq. (38).
An extreme example in a continuum model is a Devil' s
staircase obtained by Cantor's rule [14].

Using Eq. (48) in the next subsection, we can obtain all
higher-order moments for the x; =x case. Specifically,
the second, the third, and the fourth moments are

A(A+x)
(x+1)

xA(A+x)[A(A+x) —(x+1)]
(x+1)(x+2)(x+3)

10

(b)

10

Similar types of correlations have been used in Ref. [28]
to study critical behavior in nuclear multifragmentation.
For the case of x =1, the results of Eq. (42) reduce to
A ( A —1)/2 and ( A +2)( A + 1)A ( A —1)/24.

A(A+x)(2A+x)
(x+1)(x+2)

A ( A +x )[6A ( A +x )+x(x —1)]
(x+1)(x+2)(x+3)

(39)

0
0

I W ~ e ~e I
hfdf ~ ~ ~ ~

10

0
I

J
0
X
+

0
0

Cl Xg Xqill
+g

I ~ 8 ~ p%
~ 4

10

At x =1 [14], the second moment is a statement that the
sum of the first A integers is A ( A + 1)/2, while the third
moment is the result that the sum of the squares of the
first A integers is A ( A + 1)(2A + 1)/6 and the fourth is
the sum of cubic integers, which is A (A+1) /4. Mo-
ments of a size distribution have been used in Ref. [27] to
study the energy dependence of critical exponent of mass
distributions in nuclear multifragmentation.

Using the notation Y~ (k, x) of Eq. (21), Eq. (24) can be
rewritten as

FIG. 3. Staircases M(s) (solid and dashed lines), cluster dis-
tributions A ( nk ) (circles and squares), and probabilities
P&(k, x) (cross and plus) for various models with A =10: (a)
One-variable x model of Sec. IV A with x =1 (solid line, circle,
and cross) and with x =3 (dashed line, square, plus); (b) two-
variable x-y model of Sec. IVD with x =1 and y =0; (c) even
(solid line, circle, cross) and odd (dashed line, square, plus) per-
mutations of Sec. IV E with x = 1; (d) the case of xk = 1/(1 —q")
of Sec. IVCx with q= —1 for A =10 (solid line, circle, cross)
and for A =9 (dashed line, square, plus).
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k(n, )
P„(k,x)= (43)

P~(k, x) is the fraction of the total mass in clusters of
size k and is thus the probability of a particle belonging
to clusters of size k. Pz (k, x) also represents the ratio of
the step height of a staircase Eq. (38) to the total height
A (see Fig. 3) at the kth step. AP„(k, x), in a continuum
limit for k, corresponds to the slope of the cumulative
mass M(s). The probability of Eq. (43) is developed and
related with various probability theories in Ref. [29] for
the x =x case. With the probability distribution of Eq.
(43), gkP&(k, x)=1 and the (1+1)th-order moment of
(nk ) becomes the average of the lth moment (k') of
Pz(k, x) times A:

C. Fragmentation and probability theory

Since the sum rule for the first moment Eq. (37), which
is the total number conservation Eq. (1), is independent of
the parameter x.'s, we can define a probability distribu-
tion P~(k, x) as

(k') = y k'P (k, x)= y k'+'(n„) .
k=1 k=1

(44)

Specifically, the second, third, and fourth moments of Eq.
(39) are A ( k ), A ( k ), and A ( k ), respectively, when

I

When all the x 's are x, P~(k, x) is

P~(k, x)=x k 1
B(x+A k, k—) .

Here,

(45)

Since

I'(Q)I'( 5) d g i( 1 )b
r(a+5)

=
0

PP (46)

is the binomial coefficient given by Eq. (14) and
B(x + A k, k )—is a beta function given by

k(k+1) . (k+n —l)B(x+ A k, k)=(—x+ A )(x+ A+1) (x+ A+n —l)B(x+ A k, k+n —),
the factorial moments in P„(k,x ) are given by

(k(k+1)(k+2) (k+n —1))= g k(k+1)(k+2) (k+n —1)P&(k,x)
k=1

I (x+1) I (x+ A+n)
I"(x+1+n ) I"(x+A )

(47)

(48)

Here we have used the integral representation of the P
function. From Eq. (48) or (39), the average of (k ) and
its fluctuation Ak become

(k)= y kP, (k,x)= x+1

(k2) ~ k2 (k
(A+x)(2A+x)

(x+ 1)(x+2)

~) ( )~ (A+x)(A —1)x
(x+1) (x+2)

(49)

dp, , p 1 p) u(x,p),

where

u(x,p)=x(l —p)"

The average of ( k ) is A for x =0 and 1 for x = co with
zero IIuctuation (b,k =0) for both of these cases. When
x =1, the average of (k) becomes (A+1)/2 with its
Iluctuation hk =( A —1)/12.

Using the integral representation of Eq. (46) for the P
function, P~ (k, x ) can be rewritten as

P~(k, x )

Jou(x, p)dp= 1. Thus, u(x, p) can be considered as a
density function weighting each point in p space, that is,
the probability p of a binomial distribution. This expres-
sion for P„(k,x) is a special case of a randomized Ber-
noulli distribution [30) where the probability of success p
for a trial is treated as a random variable with a density
u(x, p). The number of successes out of A —1 trials be-
comes s =k —1. The density function u (x,p ) has the fol-
lowing simple properties: u (x = l,p ) = 1 which is a uni-
form distribution giving Pz(k, xl)=l/A from Eqs.
(46) and (50); lim ou (x,P ) =5(1—P ) which has a proba-
bility of success equal to unity and Pz(k, x =0)=5k z',
lim„„u(x,p ) =5(p —0) so that the probability of suc-
cess is zero giving P~(k, x = oo ) =5k i.

Using Eq. (43), we can also relate the fragment distri-
bution (nk) to the probability Pz(k, x) of k —1

successes (heads) out of A —1 trials (throws) of a skewed
coin [u(x,p)]. (nk ) can also be related to the probabili-
ty that a face with k dots of a lopsided die with A faces
touches the table. Here the size k of a cluster corre-
sponds to the number of dots on a face. The total num-
ber of elements A is the number of faces of a die. The
probability P„(k,x) that the ith nucleon belongs to one
of the clusters of size k corresponds to the probability
that the face with k dots touches the table on the ith
throw of the total A throws of a die with A faces. The
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(k) = y kP~(k, po)=(A —1)po+1,

bk =( A —1)po(1 —po) .

For this case, we have

(53)

!
( ) = '

[p ( )]" '[1—p ( )] ", (54)

extra factor u (x,p ) of Eq. (51) determines the skewness
of a coin or the lopsidedness of a die. Inversely, if we
know a probability P~(k, x), then the distribution of
clusters is ( n& ) = ( A /k )P~ (k, x) through Eq. (43)

If u(x, p ) in Eq. (50) had been a 5 function at po, such
as u (x,p ) =5[p —po(x ) ], then

PA(k~po) k 1 po (1 pO) (52)

which is a binomial distribution with probability po(x).
This is the probability of having k —1 heads in the A —1

tosses of a two-sided coin which is skewed with probabili-
ty po of heads. With this probability, the mean cluster
size ( k ) and its fluctuation are

the canonical partition function Q„(x,y ) for this model
as

A

When y =1,

Q„(x,y=l)=Q„(x)=x(x —1) (x+A —1) .

Having obtained Q„(x,y ), ( nk ) follows Eq. (21):

xy "' A! Q~ -k(x»)
k (A —k)! Q„(x y)

Also, the correlations and fluctuations follow from Eqs.
(24)—(28). At x =1 and y =1, (nk) =1/k, which is a
power-law behavior. Further details are studied in R.ef.
[15] with general y values; here we will study the y =0
case in more detail.

As mentioned above, when y =0, no monomer exists.
We call Q„(x,y =0)=D~ (x), which can be rewritten as

and thus a scale invariant distribution does not exist.
The probability of Eq. (52) is also the same as the Rowlin-
son urn [31,32] containing two colored balls with a frac-
tion pp of one color and a fraction 1 —

pp of another color. Q(u, x,y =0)= 1

(1—u )"

QO A

e ""= g D„(x)
O

A !

Dg(x)= g . ( —x)'Q„,(x)
j=0

from Eq. (56) and is generated by

(57)

D. Models with two tuning parameters:
Situations without monomers

Q„(x) is given by Eq. (12) or (16) and Qo(x)=1. Ex-
panding D„(x) in powers of x, we have

XQ XQ
Q(u, x)=Q(u, x,y)=exp xyu+ + +

x(y —1)ue
(1—u )" (55)

where x=(xy, x,x, . . . ). From Q(u, x), one can obtain

k1In our next level of complexity, we take xk=xy "';
that is, x=(xy, x,x, . . . , x). Even though only a single
term in the set of [x, ] is treated difFerently, the expres-
sions are much more comp1ex than the previous case with
one parameter. In this x-y model, the monomer is put on
a different footing because it may behave quite differently.
For example, quarks and antiquarks are always bound
into clusters of size two or more to form color singlets
(hadrons). This situation excludes the existence of mono-
mers and this physical situation corresponds to setting
y =0. Here the objects are taken to be one type and we
hope to generalize the model to more complex situations
in the future. For the symmetry group S„,the case y =0
corresponds to the subclass of permutations with no unit
cycles. A monomer is also quite different because of its
lack of binding and internal excitations. An application
of the x-y model to nuclear fragmentation can be found in
Ref. [16]. An illustration of the results of this section to
astrophysics and social behavior will be given in Sec. V
along with other models developed later.

The exponential generating function of Eq. (11) for
Q„(x) is now

D„(x)= g D(A, m)x
m=1

A

D(A, m)= g . (
—1)" +JS(A —j,m —j),J

(59)

D„+,(x)= ADq(x)+ AxD„)(x) (60)

with Do(x)=l and D&(x)=0. For example, D2(x)=x,
D3(x)=2x, D4(x)=3x +6x, and D5(x)=20x +24x.

For y=0, (nk ) =0 for k= 1 and k= A —1. For all
other k,

xA
k(A —k)

(61)

for x &&1 and y =0. The mean number of clusters at
x =1 andy =0 is

1 A! Da r,

k (A —k)! D„ (62)

except for k =1 and A —1 which do not exist at y =0.
From Eq. (56) or (57), D„ is given by

where S( A —j,m —j ) is a Stirling number of the first
kind and D( A, m ) is called an associated Stirling number
of the first kind. This associated number is obtained by
summing the Cauchy number M2( A, n) of Eq. (7) over all
partitions of 3 with fixed multiplicity m and with n

&
=0.

Dz (x) satisfy a recurrence relationship [17]
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(
—1)'D„=D„(x=1)=n!g jl (63)

1D =nt-
n e

(64)

Thus, for small k and large A, P„=1/e and ( n& ) = 1/k
for x =1 and y =0. However, Eq. (62) is not a perfect
power law in k for all k. Figure 3(b) shows the cumula-
tive mass M (s) for this case.

Through the relation of Eq. (43), we can relate a frag-
rnentation process without rnonomers to a dice problem.
At y=0 and x =1, the probability Pz(k, x)=k(nj, )/A
1s

gA k( 1 )1/j/
P~ (k, x = l,y =0)=

A g,"=,( —I)'/j! (65)

except for k =1 and A —1 which do not exist, i.e.,
Pz( =kl, x=1,y=O)= Oand P„(k=A —1,x=1,y=O)
=0. Thus, this special case of the fragmentation of A ob-
jects without monomers is the same as rolling a die with
A —2 faces. On the die, there is no face with either k = 1

or A —1 dots. Equation (65) fixes the probability of each
face of a lopsided die.

Before ending, we note that the generating function for
cases when a certain fragment size (say I) is treated with
different weight given by x& =xy is

Q(u, x)= 1

(1—Q )"
e (y —1)xu /1

Then the corresponding canonical partition function
Q„(x) follows through Eq. (11). The case without mono-
mers discussed above has I = 1 and y =0.

E. Separation by even and odd permutations:
The appearance of a jump at the end

of a uniform staircase

This section also looks into the question of what hap-
pens to the distribution of clusters if we are limited to a
subset of partitions which is a fraction of the complete

and is called the number of derangements. From the re-
sult of Eq. (63), it is easy to show that D„satisfy a re-
currence relationship

D„=nD„,+( —1}".

This relation is very similar to the recurrence relationship
for factorials; the result differs from it because of the
second term (

—1)". D„appears in card shuflling and
matching questions [17] and counts the number of per-
rnutations in which no card is in its original position once
the deck is shuffled. This problem is known as "le
probleme de rencontres "P„.=D~ /A! is then the proba-
bility that no card will be in its original position after
shuNing. Thus, the mean total mass in clusters of size k,
k ( n& ), is the ratio of two such probabilities, consisting
of a deck of cards of size A —k and a deck of cards of
size A [see Eq. (62)]. When n in D„ is large, then

set. The y =0 or no monomer situation discussed in the
previous section also considered a subset of all partitions.
The subsets that will be taken here are either the even or
odd permutations. A permutation is even if it contains
an even number of transpositions and odd if it contains
an odd number of transpositions. A cycle of even length
is odd and one of odd length is even. The cycle indicators
of even or odd permutations, Q„+ or Qz, respectively, are

Qz (x) =
—,
' [Q~ (x+ )+Q„(x ) ] . (68)

Qz(x+)=Qz(x) of Eq. (12), which is the partition for
x=[x =x] and

Q&(x )=x(x —1) (x —A+1)= g S(A, m)x
m=0

(69)

which is for x= Ix =( —1)J+'x]. All properties of the
cluster sizes are determined by the results of Sec. III.
However, due to diFerent sets of xj's in Q~(x+) and in
Qz(x ), we should use the proper xl, 's in the corre-
sponding Qz(x ) in Eqs. (20)—(28). Notice here that
Qz(x ) has zeros at x =0, 1,2, . . . , A —1, which are
positive integers in contrast to Q„(x ) of Eq. (12), which
has zeros at negative integers. If we consider the
Q„(x ) piece only, then the mean cluster distribution
(nl, ) in the ensemble of Q„(x ) becomes negative for
some k depending on the value of x which is nonphysical.

Here we look at the mean number (nl, ) of clusters of
size k in the ensemble of even or odd permutations
Qq(x):

Qg (I)=
—,
'

[Q„(x,,x„x,,x4, . . . , x ~ )

+Qz(x&, —xz, x3, —xz, . . . , ( —1)"+'x„)] .

(67}

The parity, which is plus for even and minus for odd per-
mutations, is determined by the number of even cycles;

l1 p + n 4 + 7l 6 +
specifically, the parity is (

—1) ' ' ' . Due to Eqs.
(1) and (3), the parity of a given multiplicity m for a given
A is ( —1)"+ . Thus, states of the same multiplicity,
even though they contain different classes, have the same
parity (see Table I).

The even permutations form a group [23], the alternat-
ing group A„containing n!/2 elements (n ) 1). In fact,
the alternating group A„ is the only invariant subgroup
of the syrnrnetric group S„ for n &4. The quotient group
or factor group S„/A„has two one-dimensional repre-
sentations, one being the identity or symmetric represen-
tation and the other the antisymmetric representation
with characters +1 for even and —1 for odd permuta-
tions.

Models based on this distinction between even and odd
cycles are easily solved. We consider the case x.=x for
all j. Since

Q(u, [x =( —1)J+'x])=(1+u)

we obtain
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(1/2) I(x/k )Q~ „(x+)+[(—1)"+'x/k ]Q~ „(x ) j(n~)+—=
(A —k)! Q~(x)

(70)

For integer x =n & A, Q~ (x ) =0 and thus

Q~ (x ) = Qz (x) for A ~ (n + 1). Thus, when x =n, all
properties for clusters of size k & ( A n) —are the same as
the Q~ (x) case considered in Sec. IV A. For example, at
x =1, Eq. (70) becomes (nI, ) +—=1/k for k =1 to A —2,
while, for k = A —1 and k = A,

1 )
A +1

A

(71)

Thus, the distributions ( nl, )+—fall exactly as a hyperbolic
power law from k =1 to A —2 and a break appears at ei-
ther k =A —1 or k =A [see Fig. 3(c)]. For even A,
(n~)+=0 and (n„) =2/A, and for odd A,
(n~ )+ =2/A and (nz ) =0. Also, the k = A —1 clus-
ter is not present in even permutations ((nz i)+=0)
for A odd and is not present in odd permutations
((n~, ) =0) for even A. The results of Eq. (71) can be
understood as follows. Only one cluster of size A can ex-
ist alone ( A = A ) and only one cluster of size A —1 can
exist together with only one monomer [A =( A —1)+1].
For A even, a cycle of length A is odd; thus, the cluster
of size A exists only in odd permutation for even A. The
cycle of length A —1 is even for A even and is odd for
odd A. However, the unit cycle is always even. Thus, a
partition into one cluster of size A —1 together with one
monomer becomes even for even A and odd for odd A.
The more remarkable feature is that a hyperbolic power
law is maintained until the last two k's, k = A —1 and
k = A [see Fig. 3(c)]. These results show that the power
law is exactly maintained until the last two clusters even
when only-half of the partitions are used. The previous
subsection also used a subset of partitions when y =0 (all
those with n, =0) and the distribution is approximately a
power law only for small-k values [see Fig. 3(b)].

For this model, the probability defined by Eq. (43) for
even and odd permutations Q„+—(x = 1) becomes
P„(k,x=1)=1/A— for k=1 to A —2. For k =A —1

and A, either P~ (k = A —l,x = 1) of Pz (k = A, x = 1) is
zero and the other one is 2/A. In other words,

P„+(k = A —l,x =1—)+P„—(k = A, x =1)=2/A .

Here the probability for the size of k = A —1 or
whichever is even (odd), is zero for even (odd) permuta-
tions and the other one is nonzero. This situation is the
same as a die with A —1 faces. The number of dots on
the A —2 faces are 1 to A —2, which are equally weight-
ed with 1/A. The last face has A —1 or A dots, which-
ever is odd (even) for even (odd) permutations. This face
is weighted by 2/A. We can also relate this to a die with
A faces, with all faces equally weighted by 1/A. In this
case, the number of dots on the first A —2 faces are k = 1

to A —2. The last two faces have the same number of
dots either k = A —1 or A, which depends on whether A

is even or odd and whether even or odd permutations are
being considered. This is not a lopsided die, i.e., all the
faces are weighted equally. But the numbers of dots on
the faces are distributed differently from the usual die.

The cumulative mass [cf. Eq. (38)], defined by
[s]+1

M (s)= g j(n ) +-
,

j=l
(72)

is shown for A =10 at x =1 in Fig. 3(c). We note that
M —(s) is a uniform staircase function until the last two
steps are reached. Then, for A even [Fig. 3(c)], an inter-
mission appears as a double step at s = A —2 with a Iniss-
ing rise at s = A —1 (i.e., missing Ath step) in M+(s) and
in M (s) as a missing rise at s = A —2 with a double step
at s = A —1. The same situation happens for the A odd
case but with M+(s) and M (s) interchanged.

F. Cayley's theorem and Gauss polynomials:
The transformation to a state of dimers only

We next consider a very particular model in which all
the xl, 's are different, but the choice for each x& is gen-
erated in a particular way. Namely, we take

1 q
(73)

where q is a parameter whose range is —1 & q & 1 to keep
xI, and nI, positive. For this particular choice, the parti-
tion function Q~ (x) is again simple and is obtained by us-
ing a theorem due to Cayley [33]. Cayley's theorem for a
decomposition is the following:

1

(1 —q)(1 —
q ) . (1—q")

Mz( A, n)/A!

( 1 q )
1
( 1 q

2
)

2
( 1 q

4
)

(74)

with Mz( A, n) the Cauchy's number of Eq. (7). The sum
in Eq. (74) is over all partitions of A. Using this result,
the partition function for the model is

At
Q~(x)= A! + xi, =

k =1 (I —e)(I —0') (1—~ ") (75)

The ensemble-averaged nI, 's can easily be obtained using
the results of Sec. III and they are

xk x1x2 xA —k

k x)xp ' ' 'xg kkII =ix~ —)+i
(76)

then

This result can be rewritten in terms of Gauss polynomi-
als [33]. Defining

(77)
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[q]k —1

k (78)

where

is a Gauss polynomial defined as [q] z /( [q]k [q]z k ).
Properties of the distribution of &nk & are as follows.

At q =0, which gives xk=1 for all k as in Sec. IVA,
& nk &

= 1/k and a scale invariant power law emerges. As
q~l, xk=k 'lim i(1 —q) ' by Eq. (73) and

&n, &=A . (79)

(80)

and all other & nk &'s are zero. For A odd,

All other nk's are zero, so that only monomers are
present. The same results can be obtained at x ~ ~ from
Sec. IV A also. The model has an interesting solution at
q ~—1. Equation (73) gives xk =

—,
' for odd k and

xl, =k 'lim~ i(1+q) ' for even k. For A even,

As q —+~, xk=limq „q" and thus &nk &=1/k. This
large-q limit corresponds to the case in which each con-
stituent is weighted the same, independently of the clus-
ter to which it belongs. Thus, the weight xk =q for the
cluster of size k has no effect on the cluster distribution
and becomes effectively the same as the x =1 case. This
behavior has also been shown in Ref. [16].

At q = —1, x=(0,2, 0, 2, 0, . . . ), so that the xk for odd
k's are zero and for even k's are 2. For even A

&n &=-=2
k

for even k and &nk &=0 for odd k. This case shows a
scale invariance but with missing clusters of odd sizes.
The cumulative mass M(s) shows this situation well with
missing rises at each position of even integer s, i.e., miss-
ing steps at each odd number of step position [see Fig.
3(d)]. In this case, the probability of Eq. (43) becomes
Pz(k, q= —1)=2/A for even k and zero for odd k.
Thus, this specific model can describe a die with A/2
faces with even number of dots on each faces of k =2 to
A. All the A /2 faces are weighted equally by 2/A.

For odd 3, as q ~—1,

(81)
2
k

3 —k+1
3+1 (85)

and all other & nk &'s are zero. Thus, only clusters of size
2 (dimers) exist for even A. For odd A, only one mono-
mer is present and all other clusters are dimers. The re-
sult of Eqs. (80) and (81) is an example of pairing phe-
nornena and is an interesting solution for studying social
behavior. A peak appears at the group size of two in a
closed Vervet monkey troop and in the size of parties
reserving at a restaurant [34]. The detailed comparison
of the social behavior of monkeys and people with our
various model predictions will be discussed in Sec. V.
Pairing phenomena appear in various areas of physics.

G. Transitions to modes made of clusters
with even number of elements only

In the last section, xk was taken as 1/(1 —
q ). Here

we take xk = 1+q with —1 ~ q & ~ and generate anoth-
er solution to illustrate the many possibilities which exist.
For this choice of xk, the generating function of Eq. (11)
1S

(I A+1)
Q„(x)= A!

(1—q)
from a result in Ref. [17]. This gives

(82)

1+q
k

A —k+1—
q

A+1 (83)

At q =0, xk =1 for all k and & nk &
= 1/k as in Sec. IV A.

Q(u, x) = [1/(1 —u )
—q/(1 —qu )]/(1 —

q ) .

The partition function Q~(x), with x=(1+q, 1+q,
), can then be shown to be

for even k, and

2
A+1 (86)

for k odd. This case corresponds to a lopsided die and we
lose the scale invariance. The cumulative mass M(s)
shows the position s dependences [see Fig. 3(d)].

V. APPLICATIONS TO VARIOUS SYSTEMS

In this section we will apply many of the results
developed in the previous section to various phenomena.
Applications cover such diverse areas as nuclear physics,
astrophysics, population genetics and social behavior.
Results will be compared to existing data.

A. The x model: Nuclear fragmentation,
atomic ionization, and population genetics

In the x model of Sec. IVA, the quantity x contains
the physical contents of the corresponding system. To il-
lustrate this remark we consider an application of this
model to the particular case of nuclear fragmentation
produced by nuclear collisions. For example, a proton
hitting a target nucleus will fragment the nuclear target.
Similarly, a collision between two nuclei produce frag-
ments of varying sizes. After the collision, the distribu-
tion of nuclear fragments or clusters is measured. In a
statistical development of the fragmentation process, a
weight is assigned to each possible partition of the frag-
rnentation phenomena. The partitions are given by Eq.
(2) subject to the constraint of Eq. (1) where the subscript
j is the number of nucleons in the cluster of size j. A pro-
ton hitting a target made of 49 nucleons to make a com-
bined system of 50 nucleons can produce a partition
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(1,4,6', 7,9 ) which has four monomers or single nu-
cleons, two mass 4 clusters, one mass 6 cluster, two mass
7 clusters, and two mass nine clusters (see Fig. 2). This
partition is one of many possible fragmentations of the
combined system with A =50 nucleons and the total
number of possible fragmentations is given by P ( A ) dis-
cussed in Sec. II, which becomes Eq. (4) for in a large-3
limit. Each possible partition is then treated as a member
of an ensemble of fragmentation schemes, and a resulting
distribution of cluster sizes is obtained by ensemble
averaging with a weight. The weight used in Ref. [14] is
given by Eq. (10) with a single tuning parameter x; x.=x
for all j.

Thermodynamic considerations developed in Refs. [14]
and [16] give the following simple form for x involving
the interplay of many different effects:

1000-

100-

vp

—a /kB T —( kB T/co) To /( T+ TO )
e ' B e (87)

The various quantities appearing in x are as follows. Vis
the freeze-out or equilibrium volume. This volume is the
interaction volume of the collision in which the various
processes take place that produce the various products of
a nuclear collision. The quantity T is the freeze-out or
equilibration temperature of the system. vp is the quan-
tum volume given by vo=h (2rrMk&T) and is a
volume associated with a thermal de Broglie wavelength

such that vo =A, T. In turn, A, z. =h /PT, where
PT = (2m Mki/ T )

' is a characteristic momentum associ-
ated with particles with energies Er-k~T-PT/2M.
The quantity a, is the binding-energy coeScient associat-
ed with a cluster. Specifically, the binding energy of a
cluster made of k nucleons was taken to be of the simple
form E//(k)=a„(k —1). Ez is backshifted by 1 in k so
that a single nucleon has no binding, i.e., Ez(1)=0. The
binding energy per particle, E//(k)/k =a„(1—k ), satu-
rates at a value a, which can be taken as 8 MeV.
a„=E//(k) —E//(k —1) is also the separation energy or
work function which is the energy necessary to remove
one nucleon from the cluster. cp is the level spacing pa-
rameter with Eo= 1/go, where go is the level density pa-
rameter discussed in Eq. (6). The quantity Eo relates to
the spacing of excited levels in a cluster. cp-8 MeV
from experiment and this value is about —,

' the Fermi-gas
value Eo=4E~/rr, where EF is the Fermi energy. To is a
cutoff temperature for internal excitations of a cluster.

From the above discussion, the single quantity x con-
tains the interplay of many physical quantities which re-
late to the fragmentation process and which determine
the final distribution of products resulting from a col-
lision. x is treated as a parameter. Properties of the dis-
tribution of fragments produced in a collision are deter-
mined by the single parameter x. Specifically, Eq. (29)
gives expressions for the distribution of fragment sizes in
( nk ) and for the correlations of fragment sizes in
(n/, (n/, —I)) and (nknj).

Figure 4 illustrates a comparison of the x model versus
experiment for the cluster size distribution function ( nk )
for the case of Ne+Au~k+X at the beam energy of
2100 MeV per nucleon [35]. The solid line is the fit of the

10
0 20 40 60

Nuclear Mass k

FIG. 4. Nuclear mass distribution in Ne+Au~k+X reac-
tions at the beam energy of 2100 MeV per nucleon. The solid
line is the fit of x model with x =10 for A =200. The solid cir-
cles are the data [35] and the dashed line is the fit of Ref. [36]
having surface effects also.

x model with x =10 for 3 =200. The prediction of our
simple x model for (nk ) gives a good fit to the experi-
mental data as can be seen from the figure (solid curve).
This is comparable with the more complicated fit of Ref.
[36] (dashed curve) having surface energy effects. Equa-
tion (87) shows that the temperature corresponding to
x =10 is T=14 MeV if we put Tp=0 and take the
freeze-out volume V to be the same volume as a nucleus
with A =200 nucleons with normal density. For a
volume twice this size, the temperature would be 10
MeV. However, to extract a more accurate temperature
for this reaction, a better treatment of the fragmentation
volume and inclusion of degeneracy factors as discussed
in Ref. [16] is required.

As discussed in Ref. [14], the above choice of x when
substituted into the Eq. (29) for (nk ) has the following
interesting properties. For small x, the behavior of ( n, )
is a result due to Fermi for the evaporation of a particle
from a heated Fermi gas. Namely,—a /kBT(ni ) =( V/vo)e ",where the exponential factor in-
volving the work function or separation energy a, acts as
a barrier that inhibits evaporation. Replacing a, by the
ionization energy y, required to remove one electron
from an r-times-ionized atom, the small-x behavior of
( n i ) becomes the Saha equation [37,38] for ionization:

n„+in, G„+ig, (2rrm, k~T) x gk T
n, r B

n, G,
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where G„and g, are the so-called partition functions of
the r-times-ionized atoms and the electron, respectively.
n„ is the number density of r-times-ionized atoms and n,
is the number density of free electrons.

The large-x behavior of (nk ) is the Saha equation or
law of mass action for abundances of species [14]. The
large-x behavior of ( nz ) can be written as

E3 ( k)/kg T b( k)kg TTp ( T+ Tp )3 B e B p
7

(88)

where E~ (k ) =a„(k —1 ) and b ( k) = ( k —1 ) /so. The first
exponential factor is the well-known Boltzmann binding-
energy enhancement factor for cluster formation while
the second exponential factor arises from internal excita-
tions. Thus, evaporation of nucleons from a heated nu-
clear liquid, multifragmentation of a system into nu-
cleons, and nucleons recombined into clusters can be de-
scribed in terms of one underlying framework. This
framework gives an expression for (nk ) whose limiting
forms are the evaporation result and the cluster recom-
bination result previously derived from independent ther-
modynamical considerations.

The x model also appears in population genetics. The
population genetics model was developed by Ewens
[24,25]. A comparison between the Ewens model and the
fragmentation model is developed in detail in Ref. [26].
One aspect of population genetics is concerned with allel-
ic partitions which measure genetic diversity. At the ge-
netic level, different alleles or genes differ because of
different DNA sequences. In a given sample of genetic
material, many different alleles may exist and some alleles
will have copies of themselves present in the sample. The
genetic diversity distribution gives a relationship between
the number of different types of alleles n;, of which each
type appears i times, versus the frequency of occurrences
i Thus, . the partition (1,4,6', 7,9 ) of Fig. 2 in the ge-
netic case represents four different alleles each appearing
once, two different alleles each appearing four times, one
type of allele appearing six times, two other types each
appearing seven times, and finally two other types each
appearing nine times. Here the total number of alleles in
the sample is 50. The Ewens model assigns a weight to
each possible genetic partition which is given by Eq. (10)
with all the x.'s equal to a single parameter x. The
correspondence between the nuclear cluster distribution
produced in the fragmentation of a nucleus and the ge-
netic diversity distribution of an allelic partition is as fol-
lows. The cluster size k becomes the number of copies of
a given gene, while the number of clusters of size k, the
nk, becomes the nuxnber of different types of genes each
having k copies as discussed in Ref. [25]. Thus, partition-
ing in this biological case is by different types of genes
and by number of copies of these different types. By con-
trast, the fragmentation partitions are by size of the vari-
ous clusters and by the number of clusters of a given size.
The quantity m=gnj. , which is the multiplicity in the
nuclear fragmentation case, becomes the total number of

different types of genes present in the biological case.
The quantity A =mijn is the total number of genes
present in the sample.

Just as the x in the nuclear case contains the physical
quantities that determine the fragmentation behavior, the
x in the genetic case contains the biological quantities
that determine the genetic diversity. Namely, in popula-
tion genetics, the x (called 9 in Refs. [24] and [25]) is
given by

B. The x-y model: Solar element abundance

In the x-y model of Sec. IV D, the quantities x and y
contain the physical contents of the corresponding sys-
tem. Thermodynamic considerations developed in Ref.
[16] give the following simple form for x and y involving
the interplay of many different effects:

x = (2~M) V(k T)
I 3 B (90)

Clv

y =exp
kBT

kBT Tp

Ep T+ Tp
(91)

Here g =4 is the spin-isospin degeneracy and the binding
energy for k%1 is Ez(k)=a„k without backshifting in
contrast to the x model case, Eq. (87), which uses a back-
shifted Eli. Ez(1) is set equal to zero. Therefore, mono-
mers are treated differently from other clusters by using
y&1. This model has been applied to a nuclear fragmen-
tation process in Ref. [16].

A nuclear fragmentation is a breakup process of a large
system. However, our model can also describe a clusteri-
zation process of A individuals such as a crystalization or
condensation phenomena. As an example, we consider
an application of the x-y model to a particular case in as-
trophysics, the solar element abundance [38]. Going
from a finite nucleus to an astronomical system, the num-
ber of nucleons 2 and the volume of the system V be-
come very large keeping the density p= A /V finite; simi-
lar to taking a thermodynamic limit. As we will show

0—:x=4K, u .

X, is the effective population size and the u is the muta-
tion rate. N, relates to the effects of genetic drift arising
from the finite size of a population. Larger population
size N, has less genetic drift. Genetic drift tends to elimi-
nate genetic diversity. By contrast, mutations enhance
genetic diversity and the Ewens model assumes that every
mutation produces a new allele not already present. An
equilibrium, or more precisely, a steady state, is estab-
lished between mutation and genetic drift. In the Ewens
model the interplay between these two forces can be ex-
pressed in terms of a single parameter 0 which plays a
role similar to x in the fragmentation model. Small 0
corresponds to very little genetic diversity with one type
of gene having many copies of itself present in a sampling
of a genetic material. Large 0 corresponds to many
different types of genes each appearing as singles or with
few copies of themselves present. The genetic diversity
distribution [24] are characterized by values of 8 ( 1.
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later in this section, in this limit, the relevant quantity
which determines the distribution of cluster sizes is then
the ratio

g (2~Mk~T) ~

A p
(92)
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FIG. 5. The abundances of the elements in the solar system.
The atomic mass distribution is converted from the atomic
number distribution of Ref. [38]. The solid (x =35}and dashed
(x=45) lines fit up to mass number of 120. The dash-dotted
line (x = 10) fit the larger mass region. In the fit, the maximum
mass is set to A =250.

where p= 2/V is the baryon density. Thus, x/3 is an
intensive quantity involving the density and temperature
of a system. However, in the solar element abundance
distribution, there is a cutoff for the cluster size since nu-
clei greater than k=250 spontaneously fission. By re-
stricting A to be A =250, we can account for this insta-
bility of very heavy nuclei. Correspondingly, the exten-
sive quantities V and x will then reAect a system with this
A. In using this procedure, we have divided a very large
system where nucleosynthesis takes place in much small-
er regions. Notice here that the range of nuclear force
which is responsible for the nucleosynthesis is the order
of fermi (10 ' cm) and the mean free path in a sun sys-
tem is the order of angstrom (10 cm).

Figure 5 shows the fit of the x-y model with the max-
imum size of A =250 nucleons for the solar element
abundance [38] formed through nucleosynthesis from free
nucleons. This figure shows a good fit to the gross
features of the data with x-40 for masses up to the
atomic mass of 120. The larger elements can be fitted
with x —10. The conditions of density and temperature
or thermonuclear conditions that give this value of x are
not well known. We therefore consider several cases.
For the x value of -40, Eq. (90) gives the temperature
kz T of 1 eV with the density p taken to be 3.3 X 10 po,
where po is the nuclear matter saturation density. At

1 x, x
k A A

(93)

The relevant quantity which determines the distribution
of cluster sizes is then the quantity 1/(1+x/A ), where
the ratio x /A is given by Eq. (92). The A in the previous
paragraph was cutoff at A =250 to account for the fact
that very heavy nuclei spontaneously fission and are thus
not stable. The corresponding x which is determined
with this 2 is then x = 10—45 (Fig. 5). However, the in-
tensive quantity x/A is the relevant quantity in (nk ) for
large A and this ratio is 0.1 for x =25 and A =250. This
x/A can also reflect the x/A of the macroscopically
much larger system where nucleosynthesis takes place.
The quantity 1/(1+x/A ) is 0.909 for x/A =0.1. It
should be noted that the distribution ( nk ) /A as given by
Eq. (93) appears in Fisher's theory of species diversity
[39]. Specifically, Fisher was able to fit the species diver-
sity distribution of butterflies and moths using Eq. (93)
where (nk ) is the number of types of butterflies with
each type appearing k times in a sample. Again, as in the
case of genetic diversity discussed in the previous subsec-
tion, the index k is changed from cluster size to frequency
of occurrence for each type in going from the physical
realm to the biological area [26]. Data on the butterfly
distribution of Corbet and Williams [39] has
1/(1+x /A ) =0.997 4281, i.e., x /A =0.002 5785, which
determines the distribution by Eq. (93).

C. Pairing phenomena and socia1 behavior

Pairing phenomena appear not only in various areas of
physics but are also quite common in social beha. rior. So-
cial behavior can also be considered as a partitioning
problem and can be studied using techniques developed
in this paper. Then, instead of clusters made of nucleons,
one investigates clusters or groups of individuals. How-
ever, the underlying forces responsible for the group
structure in social behavior are less quantitatively under-
stood than in nuclear fragmentation or in genetic diversi-
ty. In these later situations, the forces are associated
with the thermodynamic variables, volume and tempera-
ture, and by binding energy and internal excitation effects

k~ T=1 eV, the lower coexistence density for an infinite
nuclear matter equation of state is the order of 10 "po.
If we require the temperature to be kz T= 1 keV, then the
density p is about 1.0X 10 po for the x value of 40. The
temperature k& T= I MeV requires the density to be
p=3.3X 10 po. For these temperature regions, Eq. (91)
gives an almost zero value of y; even at k&T=1 MeV,
y=1.3X10 . It should be noted that our simple x-y
model with Eqs. (90) and (91) is based on an equation of
state having a zero-range nuclear interaction and does
not have Coulomb or surface energy effects. Further
refinement of this simple model is required to determine
the actual condition, temperature and density, for ele-
ment formation.

When x and A are large, i.e., in a thermodynamic limit
with a large nk, the cluster distribution function in the x
model of Eq. (29) is simply [15]

—k
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FIG. 6. Group size distribution of a closed Vervet monkey
troop. Solid circles are for the observed values [34] and dotted
and short-dashed curves are from Ref. [34] as discussed in the
text. The solid line is the model of Sec. IVF with q= —0.83
and the long-dashed and dash-dotted lines are the x-y model of
Sec. IV D with x =2.0 and y =0.4 or with x =2.5 and y =0.3,
respectively. Here A = 17 and the frequencies ink are normal-
ized to ~kknk =599 which is the same as the data.

in the nuclear case, and by genetic drift and mutations in
the biological case. Nevertheless, it is interesting to see if
simple expressions can be found which fit data on social
behavior based on the partitioning models developed in
Sec. IV. For this purpose, we consider two pieces of
data. One example is the social behavior of a troop of
monkeys while the second example is the group structure
of people reserving at a restaurant. For example, the par-
tition (1,4,6', 7,9 ) of Fig. 2 considered in Sec. VA
when discussing nuclear fragmentation and genetic diver-
sity will now correspond to a group structure of four in-
dividuals, two groups of size four, one group of size six,
two groups of size seven, and two groups of size nine.
This partition is one of many possible arrangements of 50
individuals. A weight can next be given to each possible
partition of the group, and the resulting distribution of
group sizes can be obtained. These remarks will now be
illustrated by comparing some of the results of Sec. IV
with observed data on social behavior mentioned above.

Figure 6 illustrates the distribution of sleeping group
sizes of a Vervet monkey troop [34] and some attempts to
fit the distribution of group sizes. A truncated negative
binomial [34], the x-y model of Sec. IV D, and the pairing
model of Sec. IVF are compared with the data. The
truncated negative binomial model of Cohen [34] gives
the following ratio:

("k+i) k+r
(n„) k+1

where r and q =1—p are the parameters of the negative
binomial distribution, r represents the growing rate of a
group size, and q represents the decreasing rate of a
group size. Cohen also considers a model (model III in
Ref. [34]) where this ratio is given by

k+1) k+7 A —k
&n ) k+1 (M —1)r+A —k —1

(95)

The parameter r is the same as in Eq. (94) and the param-
eter M is the maximum number of groups allowed in-
dependent of the size A. While, no simple relationship
exists for (nk+, ) /(nk ) in our x-y model, the x model of
Sec. IV A has

& "k+i) A —k
x+A —k —1

(96)

Comparing Eq. (95) with Eq. (96), we see that model III
of Cohen would reduce to the x model result when
(M —1)r~x and r~0, which implies that M~ ac. On
the other hand, Eq. (95) reduces to Eq. (94) for a finite k
when A —+ Oo and M —+ ao with finite value of
Mr/3 =(1—q)/q. We will come back to these compar-
isons later in this section. However, we note here that
the truncated negative binomial model Eq. (94) is for an
open system with A —+ ~, and model III and the x model
are for a closed system with a fixed finite A. The x model
does not fit the data very well because it does not
suppress the individuals (k =1) compared to the pair
(k =2). Otherwise (for k &2), the x model fit is quite
similar to the x-y model fit with the same x value. The
truncated negative binomial fit of Cohen shown in Fig. 6
(short-dashed curve) has r=1.92 and p= 1 —q=0. 35
while model III (dotted curve) has r=0. 64 and M=6.
These values of r and M give ( M —1 )r =3.2, which is
comparable to the x values of x-y model fits. All models
give essentially the same behavior for large group sizes,
i.e., with k & 8.

The peak at group size k =2 appearing in the monkey
data of Fig. 6 reAects a common characteristic of social
behavior. The x-y model of Sec. IV D fits the qualitative
features of the data and can even account for the peak
when y is taken less than 1 [15]. The negative binomial fit
of Ref. [34] does not peak at k =2 while it is better than
model III for small k &5. We feel that the peak at the
k =2 pair is a very important aspect of social behavior
and obtaining it is a very important feature of any model.
The pairing model of Sec. IVF oscillates with peaks at
even integers and valleys at the odd integers. The troop
data of Fig. 6 does not have these oscillations. However,
the behavior of people reserving at a restaurant [34] as
shown in Fig. 7 shows such oscillations between even and
odd group sizes and has a strong suppression of singles.
The model of Sec. IVG, which considers the clusters
with even number of elements, can also account for this
oscillating behavior and the suppression of singles. Also
shown is the x-y model fit to the data. While all three
models fit the overall behavior of the size distribution of
parties, the pairing model of Sec. IV F best fit the oscillat-
ing behavior. The variable q in xk =(1—q") ', Eq. (73),
accounts for the strength of pairing. Further study of q
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—r —(M —1)r
k 3 —k

—Mr

where we have changed the notation used by Cohen to
our notation; s~k, k~M, and n~A. Here we first
note that G(k)/M is a Polya-Eggenberger distribution
[30]. The Polya-Eggenberger distribution can be ob-
tained from an urn model with two colored balls. Initial-
ly the urn contains 8 red balls and G green balls. Each
time a ball is drawn, the drawn ball and S additional balls
of the same color are replaced. The probability in n trials
of obtaining m red balls is then [30]

—a —p —(a+p)
m n —m n

p„(m, a,p) =

where a=R /S and p=G/S. These a and p are the ini-
tial number of red and green balls in the unit of S.
P„(m,a,p) can also be written as

n B(a+m, p+n —m )

B(a,p)
(99)

B(a, b ) is a P function given by Eq. (46). Here
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may reveal the underlying forces responsible for the pair-
ing in social behavior.

As we have seen previously in comparing Eqs.
(94)—(96) to each other, our model and Cohen's model
are closely related. Cohen's model III, which is based on
Kingman's Markov chain model [40], is compared with
our x model. Cohen's model III (Eq. (11a) of Ref. [34])
gives

G(k) =MP(k)

(a+I )S=R +mS is the total number of red balls in the
urn after n trials and (p+n —I )S=G+(n —m )S is the
total number of green balls after n trials. Comparing the
Polya-Eggenberger distribution with Cohen's model III,
we obtain a=R/S=r, P=G/S=(M —1)r, n = 3, andI =k. Thus, the parameter r =e in Cohen's model III
corresponds to the initial number of red balls divided by
the number of additional balls added each time (S). M is
the ratio of the initial number of total balls (R+G) to
the number of red balls (R ).

The distribution P„(k,x)=k(n k)/A of Eq. (45) in
the x model is also a Polya-Eggenberger distribution [29]
with a =R /S = 1, P=G /S =x, n = 2 —1, and m =k —1.
Condition a = 1 gives R =S and x =P= G /R. In
Cohen's model III, r=a=0. 64 and M=6 which give
x =P=(M —1 )r =3.2.

The Cohen result Eq. (97) for G(k) in the limit M ~ ao

and r ~0 with finite Mr ~x gives

g xr(x+ ~ —k)r(k)
1(x+3) (100)

which is the (nI, ) in the x model. Thus, a strong similar-
ity exists between model III and our x model. As can be
seen in the generating function Q( u, x ) of Eq. (11) for the
partition function Q„(x), M= oo in our x model. The
multiplicity M is the power of the Mth order expansion
term of the exponential generating function Q ( u, x ) of
Eq. (11). The limit M ~ A only exists when we consider
3 fixed. Both model III and the x model can be viewed
as a distribution of 2 objects among M indistinguishable
boxes allowing for empty boxes. Here a weight to each
specific distribution is assigned by the parameter r or x.
Cohen's model III has a finite number of boxes M which
is less than the number of objects A in contrast to the x
model in which there is no limit on the number of boxes
M. Also the number of parameters in the Cohen's model
III is reduced from two (r and M) to one (x) in taking the
above limit M ~~ and r ~0 with Mr ~x.

The x and y quantities relate the underlying behavior
of the fragmentation process to volume, temperature,
binding energy, and level density effects. In population
genetics, the corresponding quantity involves the balance
between genetic drift and mutations. Cohen's model III
is a stationary distribution in which a balance exists for
the arrivals and departures of monkeys from one group
to another without a change in the total number of mon-
keys (closed system). The truncated negative binomial
model considers such a balance and also allows for the
birth and death of monkeys in the troop (open system).

0
0 10 15
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FICx. 7. Size distribution of parties of people reserving at a
restaurant [34]. The solid line is the pairing model of Sec. IV F,
the dotted line is the even cluster model of Sec. IV Cx, and the
dashed line is the x-y model of Sec. IVD. These fits are with
A =20 and the normalization condition of ~„",k(nk)
= 11 614, which is the same as the data.

We have shown that simple models of fragmentation
and partitioning phenomena can be developed which
show a rich spectrum of different types of behavior. The
models considered here are based on a correspondence
between clusters and partitions with cycles of the permu-
tation group. Methods from combinational analysis are
used to obtain analytic expressions for canonical ensem-
bles. These canonical ensembles are then used to obtain
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exactly soluble models of fragmentation and clusteriza-
tion phenomena and other types of partitioning prob-
lems. Properties of the distribution of cluster and group
sizes are studied.

A wide range of fragmentation behavior can be ob-
tained from these models depending on the choice of tun-
ing parameters. In some cases, exact scale invariant hy-
perbolic power laws emerge in the distribution of cluster
or group sizes. Situations in which no monomers exist
and in which only pairs exist are also studied. One model
developed, which is based on a theorem due to Cayley,
has the interesting property of having only dimers or
pairs present at a particular point. Other situations are
discussed. Various properties of the distribution of clus-
ter and group sizes are given. Simple expressions are
found for moments, correlations, and fluctuations of the
distribution of cluster sizes. Fragmentation and clusteri-
zation phenomena are also related to simple probability
pictures based on coin and dice models developed in in-
formation theory.

Section V gives some applications of the results
developed in Sec. IV to some speci6c problems in the
physical, biological, and social sciences. The distribution
of cluster sizes resulting from a nuclear collision is ac-
counted for in terms of a simple soluble model. Another
application of our approach is to the solar abundance of
the elements. An interrelationship between nuclear frag-
mentation and Ewens theory of genetic diversity in biolo-
gy was noted. An application of the approach to the so-
cial behavior of monkeys and of people was also given.
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f(u)= g
„=~ n(1 —u") (A2)

with P a constant of the order of unity. The steepest-
f(uo)

descent contour integration, i.e., P ( u o ) =e

=p(A )uo, where uo is such that d[f(u) —A lnu ]/du
=0 at u =uo, leads to Eq. (4) up to an unimportant nu-
merical factor.

The enumerating function for p ( A, m ) is a two-
variable function [41]

P(u, t) = 1

(1 tu )—(1 tu )(1—tu —)

1 —tu' g P(u, m)t
m=0

(A3)

with P(u, m ) a generating function for partitions with m
parts which is

P(u, m)= g p(A, m)u"
3=0

(1 u)(1 ——u ) . . (1 u)— (A4)

Again the steepest-descent method leads to Eq. (5).
Other quantities of interest in partition enumeration

are the following. The division of A into factors such
that no n; is greater than 1 is defined by a symbol q( A).
q( A) is generated by [18]

Q(u)=(1+u)(1+u )(1+u )

for u ( l. Using g„&l/n =0.57721+lim„ inn and
&1/n =sr /6, it is easy to show that, near u = 1,

f(u =1)=(m' /6)(1 —u) ' —
—,
' lim jnn+P,

(1+u')= g q(A)u
i=1 A=0

(A5)

APPENDIX: GENERATING FUNCTIONS
FOR PARTITIONS

The generating function for p( A ) [18] is

If different orderings are allowed, as in
5=4+1=1+4=, the number of partitions r(A) is
obtained from a generating function R (u) given by [16]

R(u)= = g r(A)u
1 2Q ~ 0

(A6)

g p(A)u
3=0

Since —ln(1 —x)=g„" &x "/n and g„r &rx"=x/(1 —x),
P(u) can be written as e '"' where

p ( A ), q ( A ), and r ( A ) all have polynomial generating
functions. In contrast, the cycle indicators have an ex-
ponential generating function as shown by Eq. (11) in Sec.
III. A more general generating function than the one
considered in Sec. III is given in Ref. [16].
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