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Reconstruction of standard and inverse vector fields equivalent to a Rossler system
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Ordinary diffential equations of continuous dynamical systems, or at least of equivalent systems, can
be reconstructed from numerical scalar time series. Methods are exemplified for a Rossler band.
Equivalent systems are standard and inverse systems, which are systematically investigated. Validations
rely (i) qualitatively on comparisons between phase portraits and (ii) quantitatively on comparisons be-
tween generalized dimension spectra. By-products of the work are an information-compression scheme
for time-series encoding and the introduction of squeezed systems that facilitate evaluations of general-
ized dimensions of small order q ( 1.
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I. INTRODUCTION

Current methods to evaluate attractor invariants from
numerical scalar time series, such as generalized dimen-
sions D and generalized entropies K, rely on Takens's
theorem and criteria [1,2], and require the reconstruction
of attractors in phase spaces of dimension n generically
much larger than a minimal dimension no. When the al-
gorithms are successful, there is little doubt that they
provide us with valuable information. For instance, we
may have definitely concluded that the system is deter-
ministic and evaluated the effective number of degrees of
freedom required to describe the dynamics telling us how
many ordinary differential equations we need to produce
a phenomenological model of the system. But the applied
scientist would feel disappointed by the limited interest of
such information and, after having determined a spec-
trum of generalized dimensions, he would ask: what is to
be done now? Actually, the applied scientist would be
most interested if, besides the evaluation of invariants,
the available numerical scalar time series would automat-
ically allow for the construction of phenomenological
models themselves, i.e., for the reconstruction of vector
fields equivalent to the original ones. The meaning of the
word equivalent is later discussed when appropriate.
This paper is devoted to this vector-field reconstruction
problem.

Since our methods are exemplified in a rather simple
case, we clearly expect that variants will be produced in
the future and that they will be in fact needed to investi-
gate more and more complicated situations. We expect,
however, that most of the essential ideas will be
preserved. We shall also distinguish between what is par-
ticular to the studied example and therefore should be
generalized to attack more difficult cases, making possible
suggestions for these generalizations, and what is expect-
ed to be robust. We also mention that, during the review-
ing process of this paper, a similar work has been success-
fully carried out for the Lorenz system [3]. Actually, we
believe that our methods possess a fair degree of generali-
ty, as discussed in Sec. II. A, in which we explain for

which kinds of problems we may expect the existence of
so-called standard systems.

Concerning precursors, Packard et al. mentioned that
Rossler equations "are suKciently simple that one can ex-
plicitly obtain a new set of three ordinary differential
equations describing the dynamics of the state space
comprised of a coordinate along with its first and second
derivatives" (Ref. [4], p. 714) and use this idea to evaluate
a characteristic exponent. From this lapidary statement,
we inferred, maybe incorrectly, that the authors had in
mind the vector-field reconstruction problem. In any
case, no systematic development of the idea was given.
Later on, Cremers and Hiibler [5] provide a more sys-
tematic discussion of the same idea and consider the case
of a Lorenz system with chaotic dynamics and of a van
der Pol oscillator with periodic motion. In both cases,
assessment of the quality of the model is based on a com-
parison between the parameters of the original
differential equations with the parameters recovered from
the time series. Such a criterion of quality is, however,
insufficient, as discussed in Ref. [6], because small errors
in parameter values may even destroy the attractor in re-
lation with the concept of structural stability, depending
also on the proximity of bifurcation loci. Therefore, the
only convincing validation of the presented methods in
our opinion relies on the successful determination of a
limit-cycle radius for a van der Pol periodic motion. We
developed our own ideas for the first time in Ref. [6], in-
vestigating a strange chaotic attractor generated by
Rossler equations. We introduced standard systems that
are used to numerically evaluate a set of constants associ-
ated with reconstructed vector fields. Standard systems
(SS's) are available even when the original vector field is
unknown. However, validations of the quality of our
reconstructions were examined by qualitatively and quan-
titatively studying so-called inverse standard systems.
When the original vector field is unknown, these inverse
standard systems are also unknown. Therefore, this pa-
per concentrates on the study of standard systems and in-
verse nonstandard systems, all of them being known even
when the original vector field is unknown. Reference [6]
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II. STANDARD SYSTEMS, TRANSFORMATIONS,
AND RECONSTRUCTION METHODS

A. The system under study

We consider the example of a Rossler band generated
by the following equations:

y =x+ay,
z =b+z(x —c),

(2)

(3)

with control parameter values a =0.398, b =2, and c =4,
for which the asymptotic motion settles down on a
strange chaotic attractor [7]. Rossler equations are par-
ticularly simple, displaying only one nonlinear vector-
field component, and therefore provide us with an easy
opportunity to illustrate basic methods. We also choose
the case of a chaotic attractor, which represents the most
interesting issue to investigate. The system described by
(1)—(3) is called the original system (OS). In many cases,
especially for experimental systems, the OS is unknown.

B. Standard systems

We assume that our knowledge of the OS is contained
in a recorded numerical scalar time series [x, I, i.e., we

give to variable x a special status without any loss of gen-
erality. Standard systems (SS's) are then defined by

x=Y, (4)

F=Z,

contains more introductory material and also some vari-
ous discussions that are not repeated here, where we
focus on new results.

The paper is organized as follows. Section II intro-
duces the standard systems, the standard transformations
linking them to original systems (when they are known),
and some of their properties, and also the methods of
reconstruction producing a set of reconstructed constants
defining the reconstructed vector fields. Section III is de-
voted to the numerical study of standard systems. Sec-
tion IV is devoted to the definition and numerical study
of several inverse systems. Validations of our reconstruc-
tions rely on comparisons between phase portraits and
computations of generalized dimensions. An extensive
discussion of the comparisons between generalized di-
mension spectra is provided in Sec. V. Section VI is a
conclusion in which we also mention the next steps to ac-
complish before vector-field reconstructions can be ap-
plied to noisy experimental systems.

problem and Takens's theorem. We consider a strange
attractor of typical fractal dimension D embedded in a
minimal phase space of dimension n0 (then D ~ n0).
Takens's theorem states that the attractor may be generi-
cally reconstructed in a phase space of dimension n ~ nz
in which nr =2D+ 1 (ideally, D would refer to the Haus-
dor5' dimension of the set). Loosely speaking, the word
generically here means that using n ~ n z. is always
sufficient to reconstruct the attractor. This theorem is
used for numerical calculations of invariants, with, for in-
stance, the time-delay method, by studying reconstructed
attractors diffeomorphically related to the OS. Of course,
reconstruction phase spaces of dimension n &nz- may
also work. In particular, vector-field reconstructions dis-
cussed in this paper use a minimal phase space of dimen-
sion n0. For a heuristic discussion, see Parker and Chua
(Ref. [8], Sec. 7.2).

We remark that standard coordinates (x, Y,Z) use

(n0 —1) derivatives of the recorded scalar variable x.
However, due to the left-hand side of Eq. (6), the n0th
derivative Z is also involved in the problem. Not all con-
tinuous systems defined by vector fields possess standard
forms. For instance, we may consider the rather unin-
teresting trivial case x =f (x), y =g (y) in R . Due to the
uncoupling between variables x and y, this system does
not own any standard form. Conversely, the set of
dynamical systems owning standard forms is not empty.
This set contains all the examples we have studied or are
currently studying, i.e., the Rassler system [6], the
Lorenz system [3] and also a three-dimensional (3D) vec-
tor field produced by a simple model of thermal lens os-
cillations described in Ref. [9]. Following a discussion by
Parker and Chua (Ref. [8].p. 193), to identify uniquely a
trajectory of an nth-order system, n independent pieces of
information are required. As above, they may be n suc-
cessive derivatives including the zeroth derivative, i.e., x
itself. This method works whenever the state equation
can be transformed into a single nth-order scalar
differential equation, i.e., it works generically but fails
when variables are not sufficiently coupled, as in the
aforementioned example. Parker and Chua also com-
ment that another classical way of specifying a trajectory
by giving n samples of the jth component of the state
(time-delay method) involves only one component of the
state, as does the use of derivatives, and therefore also
fails in the case of insufficient coupling between variables,
but works generically. Furthermore, it is known that the
time-delay method and the use of derivatives are topolog-
ically equivalent. Consequently, we believe that the class
of systems owning standard forms is very large, although
our heuristic discussion should later be given a more for-
mal basis. We readily establish that the standard exact
system (SES) corresponding to the OS reads

Z=F(x, Y,Z) . (6) Z = ab —cx+x —ax Y+xZ+(ac —1)Y+(a —c)Z
The number of equations of the SS's is equal to the

number of equations n0 of the OS. When the OS is un-

known, a preliminary step therefore requires a prior eval-
uation of the number of degrees of freedom of the system
from series [x,. ]. This issue is discussed in Ref. [6]. We
would, however, like to stress the relation between this

a+c —x
(x+b —a Y+Z),

in which only the third equation is given. Note the ex-
istence of a (seemingly) singular term at x, =(a +c), to be
discussed later.
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C. Standard transformations

The direct standard transformation (DST) expresses
the standard coordinates (x, Y,Z) versus the original
coordinates (x,y, z). For the Rossler system, the DST
reads

(8)

Y= —y —z,

D. DST properties

In this subsection, we examine how the original phase-
space structure is mapped to the standard phase space by
the DST. Many results have been obtained using symbol-
ic computations with the aid of the software MAFLE.

The Rossler system (OS) owns two fixed points Pos and
Pos defined by coordinates (x„y„z,) and (xz,yz, zz), re-
spectively, given as

Z= b ——x —ay+z(c —x) . (10) c+(c' 4a—b)'"
z 1,2 2a

(17)

Conversely, the inverse standard transformation (1ST)
expresses original coordinates versus standard ones. For
the Rossler system, we obtain

y12= z12 ~

X1 2 =az1 2

(18)

X =X

Y(c —x)+Z+b+x
a+c —x

(12)

Z+b+x —a Yz= a+c —x
(13)

Clearly, (11)—(13) are only valid when x is not equal to
a critical x, =(a +c) also appearing in the (seemingly)
singular term of (7). Specifying x =x, in the DST
(8)—(10), we establish the following facts.

(i) At x =x„standard coordinates are related by the
relation

a Y —Z =(a+b+c) . (14)

(ii) The transformation at x =x, is not invertible. The
best we can obtain is the trivial relation x =x and

—(a +b+c+Z)y+z = —Y=
a

(15)

that is to say there is no way to express y and z indepen-
dently.

We also establish that, when x ~x„relation (7} for Z
leads to

c+ (c 4ab)'—
X1 2— (20)

in which signs ( —) and (+) in (17) correspond to z, and
z2, respectively. P Qs is located near the coordinate
center (inner fixed point), while Pos is located far from it
and also far outside of the attractor (the outer fixed
point). Writing the Jacobian of the OS, then evaluating
eigenvalues, we determine the stability type of the fixed
points. PQs owns one negative real eigenvalue associated
with a one-dimensiona1 stable manifold, and two complex
conjugate eigenvalues with positive real parts, associated
with a two-dimensional unstable manifold in which tra-
jectories are spiralling outwards, i.e., PQ$ is a saddle
focus. Similarly, PQs is also a saddle focus. However,
the real eigenvalue is now positive, generating a one-
dimensional unstable manifold, and the two complex con-
jugate eigenvalues have negative real parts, generating a
two-dimensional stable manifold.

The two fixed points PQs and PQs of the OS are
mapped by the DST to the two fixed points PsEs and PsEs
of the SES, respectively. Applying the DST to PQs and
PQs coordinates, or also setting the vector field of the
SES to zero, locations of PsEs and PsEs are found to be

1,2 12 (21)

Z —+ —Y(1+z)+aZ . (16)

Since z, Y, and Z are bounded, Eq. (16) evidences that
Eq. (7} is actually not singular at x =x, . The (seemingly)
singular term in (7) is therefore called a pseudosingular
term. However, due to the lack of invertibility at the
critical x, locations, we cannot express z (x, Y,Z) and
therefore numerical integration of (7) at the critical loca-
tions is impossible. Numerical consequences and other
complementary discussions of this problem will be pro-
vided later when appropriate. For now, just note that the
set of points Ix =x, I in the phase space (x, Y,Z) has a
Lebesgue measure equal to 0. Because numerical integra-
tions rely on discrete schemes, the probability of landing
on a critical location during the integration process is
also equal to 0, i.e., integration is permitted almost every-
where. We also emphasize that, when the OS is un-
known, DST and IST are also unknown, which, however,
does not preclude the knowledge of SS's.

in which, again, signs ( —
) and (+) in (20) correspond to

x, and x2, respectively. Therefore, both fixed points now
lie on the x axis. Fixed points near and far away from the
coordinate center in the original phase space are mapped
to fixed points near and far away from the coordinate
center in the standard phase space. We also show that
the eigenvalue characteristic equations of the OS and SES
are strictly equivalent. Therefore, DST preserves (i) the
number of fixed points, and (ii) their eigenvalues and sta-
bility types.

We now consider the attractor AQs generated by the
OS. It is mapped by the DST to an object AsEs of the
SES. Since the DST does not contain any singularity,
AsEs is a well-defined object. This point heuristically
confirms that there is no singularity in Eq. (7) because in-
tegrating the SES must generate the object AsEs (as we
shall actually be able to do). We now comment that A sEs
must be an attractor in agreement with numerical checks
obtained by taking initial conditions far away from A sEs.
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DQs = 1+ (c 4ab)—2 2

Q
(22)

D =(c —4ab)i (23)

i.e., DST reduces Euclidean distances between fixed

Consider a point PQs in the basin of attraction of AQs,
far away from it. The trajectory LQs starting from PQs
asymptotically approaches AQs. PQs is mapped by the
DST to a point PsEs far away from the object AsEs.
Similarly, the trajectory LQs is mapped to a trajectory
LsEs starting from PsEs Since any point of the attractor
3Qs is mapped to a point in the object A sEs, we deduce
that the trajectory LsEs asymptotically approaches AsEs,
which is therefore an attractor. Then, the DST also
preserves the stability properties of 3Qs.

The DST also preserves pseudoperiod values. This has
been numerically checked and may be established as fol-
lows. The pseudoperiod To Qs of AQs is defined by
choosing special well-defined events E; Qs on the trajecto-
ry. In practice, for the Rossler system, E,. Qs is defined by
successive passing of the trajectory through a maximum
of the coordinate z (see Fig. 5 and Sec. IV A) occurring at
successive dates t, . The pseudoperiod is calculated as the
average of many successive return times (t, +, t;)—, wh. ich
are equal to lim(X, +, N;)5t, in —which 5t is the time

at ~0
step of the integration algorithm and N; is the number of
time steps to reach the ith event. The DST maps events
E,. Qs to events E; sEs to be used to evaluate the pseudo-
period To sEs of the attractor AsEs. Integrating OS and
SES with the same time step, each point at the X;th step
on AQs is mapped to an unique point at the same time
step on AsEs. We therefore conclude that successive re-
turn dates t; to meet E; Qs in OS and E; sEs in SES are
equal, hence TO, Qs = To, sEs More generally, we similarly
show that all attractors to be considered in this paper
own the same pseudoperiod noted To, numerically found
to be equal to 6.22.

We now come to properties that are not preserved by
the DST. The first one is the distance between fixed
points. From (17)—(21), we find that the Euclidean dis-
tances DQs and DsEs of the fixed Points of the OS and the
SES are equal to, respectively,

points by a factor ( 1+2/a ~
)
' ~z =3.7.

Also, DST does not preserve the relative orientations
of fixed point subspaces. With the aid of symbolic com-
putations, we compute unit eigenvectors spanning the 1D
eigenspaces associated with real eigenvalues of the fixed
points. The angle between eigenspaces is then found to
be 43.1' for the OS, modified by the DST to 84.9' for the
SES. Therefore, reduction of Euclidean distances is asso-
ciated with an increase of the eigenspace relative orienta-
tion angle.

We finally comment that DST preserves generalized di-
mensions D and generalized entropies K . More gen-
erally, D and IC must be equal for all systems discussed
in this paper. (See Sec. V for more extensive discussions. )

At this point, we may explain the meaning of equivalent
systems in the context of vector-field reconstructions.
Our systems are equivalent with respect to the properties
that they share. The fact that the D and I( are
preserved correspond to metric and dynamical
equivalences. The whole set of equivalent properties has
nevertheless not been up to now systematically identified.

E. Reconstruction methods and standard
reconstructed systems

Reconstruction methods and SRS's being discussed in
Ref. [6], we only here brieffy recall some essential infor-
mation for the sake of completeness. From scalar time
series [x;], we may determine vectorial time series
[x;,Y;,Z;, Z; ] by using sufficiently accurate finite-
difference scheme. We are then left with the problem of
determining the unknown function F.

This problem may be considered as a problem of mul-
tivariate modeling of data, which is rather extensively do-
cumented in the literature (see, for instance, Ref. [10]).
In Ref. [6], we started by expressing F as a ratio of poly-
nomial expansions that may be attempted in any case,
even when the OS in unknown, a popular choice for fore-
casting problems [11,12]. We have then to solve a set of
linear equations, in which series [x;,Y;,Z;, Z;] provide
known coefficients, to be solved against indeterminate ele-
ments (reconstructed constants) that are coefficients in
the ratio of expansions. Actually, for the sake of accura-
cy, many sets are solved and averaged results are ob-

TABLE I. Value of reconstructed constants.

Constant
Theoretical

value
Reconstructed

value

B
C
E
G
P
U
V
8'
S
T

0.796
—4

1

1
—3.602
—0.227 376 080. . .

0.137247 840. . .
—0.759 982 719. . .

0.090 495 680. . .
0.090 495 680. . .

—0.227 376 080. . .

0.795 996 958
—3.999 987 759

1.000 004 939
1.000 005 590

—3.601 987 328
—0.277 376 463

0.137243 848
—0.759 981 069

0.090 496 341
0.090 494 834

—0.227 374 487

0.000 38
0.000 31
0.000 49
0.000 56
0.000 35
0.000 17
0.002 9
0.000 22
0.000 73
0.000 93
0.000 70
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Z = 3 +Bx +Cx +ExZ +GZ

+ (U+ Vx+ Wx +SY+TZ),Y
1+I'x (24)

in which A, . . . , T are the nonzero reconstructed con-
stants. Equation (24) defines a standard reconstructed
system (SRS) to compare with the SES [Eq. (7)]. Recon-
structed constants are again reevaluated by solving new
sets of linear equations leading to the results in Table I, in
which e is the relative difference (in module) between
theoretical and reconstructed values. The average e per
constant is 7.10

tained. From the results, we may identify a subset of
reconstructed constants that must be equal to zero. This
identification relies on the following objective grounds: (i)
very small absolute values of the corresponding recon-
structed constants, (ii) very large standard mean devia-
tions evaluated for each constant on the set of indepen-
dent evaluations, each of these evaluations being obtained
by solving one set of linear equations, (iii) nonreproduci-
bility of the corresponding evaluations when different
time series are processed. These two last features indi-
cate that evaluations of the corresponding constants are
dominated by numerical noise. After dismissing these
constants and rearranging, we then show that F may be
rewritten as

III. NUMERICAL STUDY OF STANDARD SYSTEMS

Standard systems are available under the form of SRS's
even when the OS and therefore DST and IST are un-
known. They play a twofold role. First, they are at the
core of the vector-field reconstruction problem by provid-
ing an easy way to obtain basic vector fields equivalent to
the OS one. They are specified by a set of reconstructed
constants. It is of interest to remark that the introduc-
tion of these systems addresses the issue of information
compression, which might be a significant by-product of
our work. Indeed, for a perfect reconstruction, a large
amount of original data (the original scalar series) is en-
coded in a small set of reconstructed constants. Iterating
(i.e., integrating) the vector field reproduces a scalar
series ideally equivalent to the original one. This is fairly
similar in spirit to the case of image encoding, where at-
tracting images are produced by iterated functions sys-
tems [13]. Second, SRS's being equivalent to the underly-
ing OS (see the end of Sec. II D and Sec. V), some OS
properties may be recovered by studying the SRS's and
inverse systems derived from them (Sec. IV).

We now discuss state trajectories. Figure 1 shows a
part of a trajectory on the attractor AsEs of the SES.
The figure is obtained by integrating the OS and applying
the DST to each sampled point. All integrations in this
paper are carried out by a fourth-order Runge-Kutta
scheme, with a constant step 5t =10 (except when ex-
plicitly stated otherwise) and all figures contain more
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FIG. 1. Attractor of the standard exact system (SES) obtained by applying the direct standard transformation (DST) to the attrac-
tor of the original system (OS).
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than 5000 sampled points with about 100 sampled points
per To. The apparent spike in Fig. 1 is only an artifact
resulting from the chosen view angle, and actually corre-
sponds to an upward part of the band, similar to the one
going downward in the rightmost part of the figure. We
also note that x regularly becomes bigger than the critical
x, =(a+c) of the pseudosingular term of the SES equa-
tions. However, since there are no singularity problems
in integrating the OS or in applying the DST, there was
no difhculty in generating a display of AsEs with the
present procedure. We also remark that both fixed points
of the SES [Eqs. (20) and (21)] are located inside the band;
that is to say, although one fixed point is near the coordi-
nate center and the other is far away from it, both must
now be called inner fixed points. This is in contrast with
the OS, in which the fixed point near the origin is also an
inner point, while the other one is definitely an outer
point.

AsEs may also be generated by integrating the SES
[Eq. (7)]. However, this procedure is not immediately
successful because trajectories may be ejected from the
SES and also from its basin of attraction. An example is
provided in Fig. 2, in which both kinds of events appear
(i.e., ejection from AsEs followed by reinjection to it, and
ejection out of the basin of attraction toward infinity).
Nevertheless, the existence of AsEs is well evidenced by
the object looking like a small galaxy in the central part
of the figure. Close numerical examination of ejection
events shows that they are always associated with the tra-
jectory crossing x, although crossing x, is safe most of

the time. This is due to the fact that, although the set
Ix =x, J is of Lebesgue measure 0, there exists a small
numerical unsafe x domain surrounding the critical x, .
Preliminary runs demonstrated that the occurrence of
ejection events dramatically decreases when the integra-
tion time step decreases. This may result from a balance
between two contradictory features: (a) a time-step de-
crease enhances the probability of landing nearer to x,
but (ii) local truncation errors [8] in a fourth-order
Runge-Kutta scheme are proportional to (5t), leading to
a decrease of the extension of the unsafe x domain
around x, .

The numerical problems associated with x, are solved
by using a modified integration algorithm relying on the
aforementioned observations as follows. Most of the in-
tegration is carried out by using a basic time step
5t = 10 . When x lands in a domain (x ';„,x m,„) sur-
rounding x„ the time step is switched to 5t'«5t. We
then define an unsafe domain (x;„,x,„) surrounding x,
but included in (x';„,x',„). When x lands in the unsafe
domain, we compare at each time step the relative
diff'erence (in module) between Z computed from the
vector-field expression and Z,„, computed by extrapolat-
ing from the Z values at the two previous time steps.
When this difference is smaller than a preset value e„ the
algorithm runs without any intervention. When it is
larger than e„Z is replaced by the value of Z at the pre-
vious time step to evaluate the new Z value. At each
time step when Z and Z,„, are relatively different by
more than e„we say that we have an intervention, i.e.,

0
0

0
0—
N

0-

0
0

00-
I

O0-
I

0
0
pl

I

O

I

~ ~
4 ~ ~ ~

FIG. 2. Examples of ejection events resulting from integrating the SES without any intervention procedure.
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the computed value of Z is replaced by a presumed more
accurate one. It usually happens that interventions occur
for a number of successive time steps. A set of consecu-
tive interventions is called an accident. For all interven-
tions pertaining to the same accident, the replacement
value of Z is kept constant, i.e., it is equal to the replace-
ment value of Z at the first intervention of the accident.
The fact that the intervention procedure is implemented
for x E(x;„,x,„) pertaining to a bigger domain
(x';„,x',„) in which 5t is switched to 5t' is not strictly
necessary but dramatically simplifies the computer pro-
gram by avoiding the need to account for algorithm edge
effects at the frontiers of the unsafe domain. Finally, care
is taken to ensure equality of sampling times, although
there is no more equality of integration time steps. Fig-
ure 3 shows a graphical display of Asks obtained by this
procedure. The intervention time step 5t' was set to 10
with an unsafe domain (4.395,4.401) included in a 5t
switching domain (4.385,4.411) and a tolerance e, =2%%uo.

For this display corresponding to about 50To, the inter-
vention procedure was never activated. Comparison be-
tween Figs. 1 and 3 is very satisfactory.

The same modified integration algorithm is used for in-
tegrating the SRS [Eq. (24) with Table I reconstructed
values). It is run with 5t'=5X10, (x;„,x,„) and
(x';„,x',„) unchanged, and a tolerance e, =8%. For
5000 units of time, we observed 20 accidents with 55 in-
terventions, i.e., one accident for every 40To on average.
This is in contrast with the SES, for which no accident
was observed on the same running time. We attribute the
increase of the number of accidents to the fact that the
reconstruction is not perfect. Therefore, the singular
term of Eq. (24) is not pseudosingular any more. Howev-
er, we may state that the amount of parasitic singularity
is very small because reconstructed constants are ob-
tained with a high accuracy. Note that 5t' and e, were
modified with respect to the SES case. Although the
number of accidents tends to decrease when 5t' de-
creases, there is a need to compromise between accuracy
and CPU requirements. There is also a need to
compromise with e, because e, too small leads to too
many interventions, some of them being possibly undue.

Figure 4 shows a graphical display of As~s for again
about 50TO, which compared very favorably with the

Asks in Fig. 3. Discussions of quantitative validations
are postponed to Sec. V.

IV. INVERSE SYSTEMS

A. Inverse standard systems

When the OS and therefore the DST [Eqs. (8)—(10)] are
known, we may use an inverse standard transformation
(IST), taking standard coordinates (x, Y, Z) back to the
original ones (x,y, z), producing inverse standard systems
(ISS's). In this paper, ISS's are defined by using the DST
and demanding that the two last equations for y and i of
the OS [Eqs. (2)—(3)] be exactly satisfied. Therefore, all
numerical errors associated with reconstructions are re-
ported on the first equation for x. For a given recon-
struction, IST then produces an inverse standard recon-
structed system (ISRS) taking the form

x =F'(x,y, z),
y =x+ay,
z =b +z(x —c) .

(25)

(26)

(27)

For the SRS of Eq. (24), we then find that the ISRS is
given by

When OS's are unknown, SRS's form the basic vector
fields equivalent to the OS's. We may afterward generate
an infinite number of other equivalent systems, called in-
verse systems, obtained by using inverse transformations
taking standard coordinates (x, Y,Z) to new coordinates
(x',y', z'). For experimental systems, one interesting
question is to know whether inverse coordinates
(x',y', z') may be chosen such that they would have a
clear physical meaning. In this paper, we only consider a
subclass of inverse systems such as x =x'. Furthermore,
there exists special inverse systems of particular interest
when the OS's are known, as is discussed below.

—1
( A Gb bc)+x—(B +a +—b Eb —g)+ya(a——G)+zc (G +c)+x (C E) xyaE- —

1+z

+xz(Ec —G —2c)+x z(1 E)+ [(bT— U)+x(T —V)+y(S—+aT)+z(S cT) xW+xzT]— —
1+Px

(28)

Again a set of singularities of Lebesgue measure 0 ap-
pears in (28). However, giving the constants 3, . . . , T
their exact theoretical values, we define an inverse stan-
dard exact system (ISES), which simply identifies with the

OS with no singularity and even no pseudosingularity.
Therefore, for a high-quality reconstruction, the amount
of singularity is very small. As a consequence, it has been
possible to integrate the ISRS without any intervention
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procedure. OS and ISRS graphical displays are shown in
Figs. 5 and 6, respectively, comparing very favorably.
Quantitative validations are postponed to Sec. V.

B. Inverse nonstandard systems

x+6 —a Y+Z
k(a +c—x)

(29)

The interest of using ISS when the OS is known is to
provide the reader with immediate and direct convincing
validations of the reconstruction because comparisons are
achieved against the OS itself. However, when the OS is
unknown, we can only discuss inverse nonstandard sys-
tems (INSS) in which phase coordinates are
(x',y', z')A(x, y, z). Variable x being the one of the origi-
nal scalar series, we may, however, choose x =x'. The
number of INSS being infinite, choices must be motivat-
ed. Motivation may come from the fact that there are
some disadvantages in using standard systems due to the
existence of pseudosingular terms in SES and of parasitic
singular terms in SRS requiring the use of an intervention
procedure to integrate the systems. We then decide to
examine INSS in which such terms would disappear or at
least would be small enough to avoid the need for the in-
tervention procedure.

As a first example, we examine an exact case, starting
from the SES [Eq. (7)] to produce an inverse nonstandard
exact system (INSES). We set

Z = ab —cx +x —ax Y+xZ+ (ac —1)Y

+(a —c)Z —kYy . (30)

Expressing Z from (29) and deriving, we obtain a
second expression for Z (using also x = Y, Y=Z) which is
identified with (30). With the aid of (29) again, we find

by= —+y(x —c),
k

(31)

in which no pseudosingular term appears.
We shall produce an INSES with coordinates (x, /3, y).

For x, we are free to choose

x =k x+kp/3+key, (32)

defining a class of inverse systems in which the first equa-
tion is chosen to be linear for the sake of simplicity

The equation for P is afterward obtained by using (32)
derived with respect to time and manipulating the result-
ing expression to produce

in which k is a free constant in such a way that Eq. (7) for
Z may be rewritten

0
d

O

O

O
0

FICx. 5. Attractor of the original system (OS).
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1+ +x(ak —1 —k )
k X X

+Pk13(a —k, )+y[(a +c)(k +kz ) —k„kz ]

Z = A +Bx + Cx + x Y+ExZ +VY+ GZ
P

+ Y
( U —V) + V—VP — x +SY+ TZ

8'
1+Px P 7

—yx(k +kr ) (33) (37)

%'e have therefore obtained a class of inverse systems
with free constants (k, k, k&, kz ) without any singularity.
For the sake of simplicity, it is advantageous to choose
kz = —k, removing the nonlinear term in (33). If we also
take k„=k& =kz = 1, we obtain the INSES:

( U —V)+( V —VP —W/P)x+SY+ TZ
K (1+Px) (38)

in which a free constant V had to be introduced. Then
we set

x =x+p+y, (34)
x =K„x+K~f+K~P, (39)

P= (a —2)x + (a —1)P—y,

y= b+y—( x—c) .

and proceeds similarly as before to obtain
(35)

(36)
(4O)

(41)

Also, with k =0, k&=k = —1, we obtain another
INSES which identifies with the OS.

Similarly, we now start from the SRS [Eq. (24)] to pro-
duce a class of inverse nonstandard reconstructed sys-
tems (INSRS's). In a first step, we remove all nonlinear
terms in the singular term of Eq. (24) leading to

depending on free constants V, K,KxK&,K&. Relations
(40) and (41) are too lengthy to be given here and were ac-
tually obtained with the aid of symbolic computations.
We then afterward choose V=O, K=K„=K&=K&=1
and obtain the following INSRS:

0

J
I

~ J

I

0

0

X

FIG. 6. Attractor of the inverse standard reconstructed system (ISRS). Compare with Fig. 5.
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x=x+g+P, (42)

1+—(x+g)+ — —V x+ ——2——G p+ —E—xp
~ U S 1 8 1 S P

T T T P T T T

8' S WT
T

—AT+GU + + +GS—V+ ES— x (x+f+P)
P T P

+ EU+GV —BT+
T

x —P+ EV CT— —x —Txg+(P —T)P(P+g) -,
P PT P

G+ —+Ex P+ . A T GU ——S 1 SU
T 1+Px T

8' S TW
V—GS — — + ES —x+( T P)P-

P T P
(43)

X(x+P+P)+ BT EU —GV+— — + x+ CT EV+— xGW SV SR' ER'
P T TP P

(44)

Singular terms in (43) and (44) reduce to 0 as expected
when reconstructed constants 3, . . . , T are given their
exact theoretical values. In the actual INSRS, they are
again very small due to the quality of the reconstruction,
with the consequence that no intervention procedure is
required to integrate the system. Therefore our aim is
fulfilled.

The INSES obtained by injecting the theoretical values
of the reconstructed constants in the INSRS reads

x =x+g+P,

/=a (ac —I )+(a —2)x+(a —1)g—P,

b+(P —+I —ac)(x —c) .

(45)

(46)

(47)

Coordinates (x, g, P) of this INSES and (x,y, z) of the
OS are related by a nonsingular everywhere-invertible
transformation

0
0

0

0

0

C.
'' '. ' ' ' . ~, '

~ . '
~ .'. ' '

~ ~ ~

~ 'I, ' ~

I ''
~ ', ~ ~ t

~
''

.~ '.:. . .
" '

~ ',. ' ".

Y'"- '

0

X

FICx. 7. Attractor of the inverse nonstandard exact system (INSES).
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0

FIG. 8. Attractor of the inverse nonstandard reconstructed system (INSRS). Compare with Fig. 7.
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FICx. 9. Attractor of the squeezed inverse nonstandard exact system (SINSES). Compare with Fig. 7.
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FIG. 10. Attractor of the squeezed inverse nonstandard reconstructed system (SINSRS). Compare with Fig. 9.

g= 1 —ac —(x +y),
/=ac —1 —z;

y =1—ac —(x+g),
z =ac —1 —P,

(49)

squeezed INSES (SINSES) and a squeezed INSRS
(SINSRS), respectively, with coordinates (x, f, I ).
Graphical displays of SINSES and SINSRS are shown in
Figs. 9 and 10, respectively, looking very much like Figs.
7 and 8, as expected. Note, however, the modification of
the vertical scale induced by Eq. (50).

V. GENERALIZED DIMENSIONS

Quantitative validations rely on the comparison be-
tween generalized dimensions of the various systems dis-
cussed in the previous sections. For convenience, the
identification of these systems is summarized below.

(1) Original system (OS), with coordinates (x,y, z). See
Eqs. (1)—(3) and Fig. 5.

(2) Inverse standard reconstructed system (ISRS), with
coordinates (x,y, z). See Eqs. (25) —(28) and Fig. 6.

(3) Standard exact system (SES), with coordinates
(x, Y, Z). See Eqs. (4)—(7) and Figs. 1 and 3.

(4) Standard reconstructed system (SRS), with coordi-
nates (x, Y,Z). See Eqs. (4)—(6) and (24), and Fig. 4.

(5) Inverse nonstandard exact system (INSES), with
coordinates (x, g, P). See Eqs. (45) —(47) and Fig. 7.

(6) Inverse nonstandard reconstructed system (INSRS),
with coordinates (x, g, P). See Eqs. (42) —(44) and Fig. 8.

(7) Squeezed inverse nonstandard exact system
(SINSES), with coordinates (x, g, I ). See Eqs. (45)—(47)
and (50), and Fig. 9.

(8) Squeezed inverse nonstandard reconstructed system

in which we should note the perfect correspondence be-
tween direct and inverse transformations. The other
INSES introduced previously [Eqs. (34)—(36)] may be
similarly recovered from the class (39)—(41) by specifying
again K =K„=K&=K&=1but V=(ac —1).

Graphical displays of an INSES [Eqs. (45)—(47)] and of
the corresponding INSRS IEqs. (42) —(44)] are given in
Figs. 7 and 8, respectively, evidencing the quality of the
reconstruction. Again, quantitative validations concern-
ing generalized dimensions are postponed to Sec. V. We
shall, however, remark that evaluations of D 's for q
smaller than typically 1 are impossible for the INSRS.
We shall also comment that this difhculty might be
solved by considering new inverse systems in which the
third coordinate P would be squeezed by a large factor
according to

(50)

Introducing Eq. (50) in INSES and INSRS, we obtain a
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(SINSRS), with coordinates (x, g, I ). See Eqs. (42) —(44)
and (50) and Fig. 10.

In any case, generalized dimensions are computed by a
fixed-radius algorithm of the Grassberger-Procaccia kind
in the phase space of the considered system (R ), i.e.,
without any reconstruction of the attractor in R". For-
mulations and more precise definitions of the algorithms
we used are available from Refs. [6] and [9], in which an
extensive pioneering literature is also quoted. About 60
vectors are sampled per pseudoperiod To. The resolution
(N, m) is (10,2000) in which N is the total number of
sampled points and m is the number of central vectors
used to average local correlation moments. Local slopes
Dq(r; ) are evaluated at 45 r, locations separated by equal
logarithmic intervals on a range (r „r2 ). The D are
afterward obtained by averaging local slopes in a r-
scaling domain (r;„,r,„). We obtain an insight on the
accuracy of the results from the standard mean deviation
o.z of the local-slope values in the r-scaling domain. It is
well known that the choice of the r-scaling domain lacks
objectivity in this algorithm and that this feature is actu-
ally one of its shortcomings. Furthermore, the range
(r;„,r,„) depends on q. Therefore, we should ideally
present specific data to express r;„(q),r,„(q). Howev-
er, to avoid data proliferation, we shall only mention that
our results are rather insensitive to reasonable
modifications of the r-scaling domain. Also, instead of
being interested in exact values of D we are more con-
cerned with comparisons between D values. Good com-
parisons provide reconstruction validations, even if the
D values themselves are biased. Therefore, exact and
reconstructed systems of the same kind (for instance, SES
and SRS, or INSES and INSRS) are studied with the
same ranges (r;„,r,„) in such a way that comparisons
make sense, except for one case to be mentioned later.
Some of our results are summarized in Table II for a
significant choice of values of q's ranging from [—50 to

+50]. We note that Dq's become smaller than 2 when q
is big enough, a result that we do not believe to be correct
for hyperbolic strange attractors (see complementary dis-
cussions on this point in Refs. [6] and [9]). However,
again, comparisons make sense because computer pro-
grams for exact and corresponding reconstructed systems
have been run under the same specifications.

We now come to a detailed discussion of these results.
One question to be answered is, what are acceptable
di6'erences between D values. We might rely on crz and
state that it provides an error in the data. Comparisons
between D values of the various studied systems (q fixed)
would then be satisfactory if the dimensions did not
spread too much outside of the error. However, o.~ pro-
vides a very poor and actually unreliable estimation of
the inaccuracies produced by the computations. For in-
stance, using data for the OS, we would be amenable to
accepting D 50=2.28+0. 15 and D+50=1.63+0.23 ac-
cording to D values presented in Table II and corre-
sponding values we obtained for o.z's. If we except
columns (7) and (8) for the squeezed systems, which
deserve special discussion, it is clear than the obtained re-
sults are in better agreement than what o.

L, would tell us
to accept. Therefore, being satisfied with data interpreta-
tion relying on o.~ might lead to optimistic statements.
Another more severe and consequently better way to
proceed is to derive standard mean deviations o.~ ob-
tained by making statistics on exact system columns
(1,3,5,7). Although poorly evaluated, oui would provide
us with a more realistic criterion to examine D compar-
isons. However, this discussion only makes sense if we
previously answer a second question: are D values in-
variant under coordinate changes?

This question is discussed by Ott, Withers, and Yorke
[14]. The authors emphasize that, to be proper dimen-
sions, quantities should be invariant under a reasonable
change of coordinates. Then they show that the D,

TABLE II. Comparison between generalized dimensions D~. Columns (1)—(8) concern the original system (OS), the inverse stan-
dard reconstructed system (ISRS), the standard exact system (SES), the standard reconstructed system (SRS), the inverse nonstandard
exact system (INSES), the inverse nonstandard reconstructed system (INSRS), the squeezed inverse nonstandard exact system
(SINSES), and the squeezed inverse nonstandard reconstructed system (SINSRS), respectively.

—50
—40
—30
—20
—10
—5
—1

0
1

2
5

10
20
30
40
50

2.28
2.27
2.26
2.24
2.18
2.13
2.00
1.960
1.917
1.880
1.796
1.707
1.654
1.641
1.635
1.630

(2)

2.32
2.31
2.31
2.29
2.23
2.21
2.03
1.987
1.949
1.915
1.836
1.749
1.681
1.659
1.650
1.645

(3)

2.14
2.13
2.13
2.12
2.10
2.00
1.98
1.966
1.929
1.899
1.847
1.779
1.733
1.719
1.713
1.709

(4)

2.15
2.15
2.14
2.12
2.07
2.04
2.03
2.060
1.944
1.899
1.834
1.768
1.729
1.717
1.712
1.708

(5)

2.18
2.17
2.17
2.16
2.20
2.15
2.00
1.966
1.929
1.893
1.804
1.734
1.664
1.647
1.637
1.631

(6)

1.928
1.885
1.787
1.710
1.641
1.625
1.617
1.611

(7)

2.23
2.23
2.23
2.22
2.19
2.13
2.04
1.989
1.933
1.866
1.680
1.512
1.403
1.360
1.338
1.326

(8)

2.44
2.44
2.43
2.41
2.35
2.24
2.07
2.004
1.948
1.884
1.662
1.480
1.377
1.348
1.336
1.330
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q&1, fail this test. They therefore should not be called
dimensions. However, under a reasonable change of
coordinates, the information dimension D& (and also the
Hausdorff dimension, not discussed in this paper) is in-
variant. Consequently, we first concentrate on this quan-
tity. Considering all the exact systems (columns 1,3,5.7
in Table II), we admit that the spreading between data
reAects the uncertainty of our evaluations and then esti-
mate D&=1.93+0.01. If we also admit that o.

D for
reconstructed systems would have the same value 0.01,
we must be very satisfied when comparison between
Di =1.93 and D& for a reconstructed system is better
than a relative difference e, %, here found equal to be
1%. In Table III, we display the actual relative
diff'erences e;% observed for the reconstructed systems in
columns i =2, 4, 6, and 8. We conclude that our quanti-
tative validation of the quality of our vector-field recon-
struction, relying on D„ is therefore very satisfactory.

Although the D, q&1, are not invariant according to
Ott, Withers, and Yorke, we now heuristically show that
all the changes of coordinates considered in this paper
are special enough to ensure invariance. We first consid-
er exact systems. They use coordinates (x,y, z), (x, Y, Z),
(x,g, g), and (x,g, l ). In each case, dimensions D have
been evaluated by running the algorithms in the corre-
sponding R phase space. However, according to
Takens's theorem, the same information might have been
obtained by working in IR" and reconstructing attractors
from a single variable such as x. Since variable x is
shared by all exact system, we conclude that Dq should
be invariant. The argument extends to reconstructed sys-
tems for perfect reconstructions. Consequently, compar-
isons between D do provide a test for the quality of the
reconstruction. Generalized dimensions K 's would be
similarly shown to be invariant.

The fixed-radius algorithm is more efficient for q) 1

than for q & 1. This is due to the fact that the D, q large,

probe the parts of the attractor where the measure is the
most concentrated (and conversely for small q's). There-
fore, statistics become poor in balls of fixed radius when q
becomes small leading to inaccurate D evaluations. The
pivot value is shown to be q =1. For q & 1, a fixed mass
algorithm might be recommended. Accordingly, we sep-
arately discuss the two cases.

For q) 1, squeezed systems are not considered. For
these systems, Table II (columns 7 and 8) clearly shows
that the D are strongly underestimated, a fact to be ex-
plained later. Similarly as for D &, we evaluate D +O.D on
the other exact systems (columns 1, 3, and 5) and report
values of e, and e, in Table III, except again for the
squeezed system. Our quality criterion being satisfied in
all cases, we conclude that our results are very satisfacto-
ry. The dimension D2 (the correlation dimension)
deserves a special mention because it is of widespread use
and its evaluation is reputed to be the easiest and most
accurate, as confirmed by the e, value.

We proceed similarly for q &1, including now the
squeezed systems. We remark (column 6) that evalua-
tions of the Dq q & 1, have been impossible for the
INSRS, indicating enhanced numerical difficulties for
these D, as expected. Also, modifications of the r-
scaling domain of the SRS (column 4) were required with
respect to the SES for these q's. Besides enhanced
difFiculties when evaluating these D with a fixed-radius
algorithm, this fact might also indicate some
modifications of the parts of the attractor where the mea-
sure is most rarefied because of the increase in the num-
ber of interventions required to integrate the SRS when
compared to the SES (Sec. III). Proceeding again similar-
ly as for D „we obtain the results displayed in Table III,
which are again very satisfactory for columns 2 and 4.
For q ~ —10 and column 8, the quality criterion is not
strictly satisfied, but, owing to difficulties in evaluating
these D, we may conclude that results are satisfactory

TABLE III. D~ comparisons to validate the quality of reconstructions. Columns (2), (4), (6), and (8)
concern reconstructed systems with the same column labels as in Table II.

—50
—40
—30
—20
—10
—5
—1

0

Dq+o. D

2.21+0.06
2.20+0.06
2.20+0.06
2.18+0.06
2.17+0.05
2.07+0.09
2.00+0.03
1.97+0.01

&, (%) (2)

5

5

5

5

3
7
1

0.9

(4) (6) (8)

11
11
11
10

8

8

3
2

1.93+0.01 0.9 0.05

2
5

10
20
30
40
50

1.89+0.01
1.82+0.03
1.74+0.04
1.69+0.06
1.67+0.05
1.66+0.05
1.66+0.05

1

3
5
7
6
6
6

1

1

0.5
0.7
0.6
0.7
1

0.5
1

2
2
3
3
3

0.2
2
2
3

3
3
3
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enough. Again, we should give special mention to Do,
which has special meaning, i.e., it is the capacity of the
support of the measure on the attractor.

We now specifically comment on squeezed systems and
the reason why we introduced them. We note in Tables
II and III that we have been able to evaluate the D,
q ( I, for the INSES (column 5) but have been unable to
do so for the INSRS. In view of the favorable compar-
ison between Figs. 7 and 8, this might be at first surpris-
ing. However, we remember that the discussed D probe
parts of the attractor where the measure is the most
rarefied, leading to poor statistics. Therefore, even small
modifications of the attractor in the reconstruction pro-
cess might have dramatic consequences for these parts by
enhancing the poor statistics problem. It does not neces-
sarily mean that the reconstruction is poor, but that, for
these evaluations, we could be on the statistical frontier
between what is feasible and what is unfeasible. As a
matter of fact, it probably could have been possible that
D computations were feasible for the INSRS and not for
the INSES, this being essentially an insignificant matter
of chance. Examining Figs. 7 and 8, it looks like the
relevant rarefied parts are located in the downward lump
below the horizontal part of the band. Whether or not
this discussion is correct in all respects, it suggests that
one might squeeze the vertical coordinate by using Eq.
(50) to increase the density of the rarefied parts and pro-
duce improved statistics. Indeed, we then find that the
D, q & 1, are satisfactorily evaluated for both exact and
reconstructed squeezed systems (columns 7 and 8).

There is, however, a penalty for that, namely severe
underestimations of the D, q ) 1, well evidenced in Table
II. The reason may be explained as follows. These D
probe parts of the attractor where the measure is the
most concentrated. These parts are seemingly located in
the horizontal part of the band, which must also, howev-
er, have a certain typical thickness. By squeezing the sys-
tem, this thickness is also squeezed, without, however,
squeezing the horizontal extensions of the attractor.
Therefore, an adequate spatial resolution of the fractal
would require an examination at smaller distances r, re-
quiring an increase of the number of sampled points,
which might be impossible due to computational
resources. A complementary and fairly similar discus-
sion of the problem of D underestimations in band struc-
tures may be found in Ref. [9] in the case of a strange at-
tractor produced by a model of thermal lens oscillations.
We were consequently motivated on objective grounds in
rejecting D~ data (q ) l) for the squeezed systems.

Usually, for measuring the D, q & 1, a fixed-mass, in-
stead of a fixed-radius, approach is recommended. This
could have been carried out in the case of the INSRS, for
which evaluation of these D was not feasible, but was
not necessary for the other systems. For the INSRS,

evaluations became feasible when introducing a coordi-
nate squeezing. More generally, we may forecast that
coordinate changes could help in evaluating attractor in-
variants, in mathematical models as well as in experimen-
tal systems, providing us with a new alternative to gain
accuracy. Although this line of research is outside of our
present motivations, it might be worthwhile to devote
more time to it. However, we stress that our discussion
of squeezed systems has essentially been heuristic and
somewhat intuitive. Our last suggestions are therefore
only a by-product, which might later turn out not to be
productive.

VI. CONCLUSION

We emphasized that the knowledge of numerical scalar
time series permits the reconstruction of vector fields
equivalent to the underlying vector field. Reconstruction
methods and extensive discussions of several kinds of
equivalent systems have been provided. Although we ex-
amined the special case of the Rossler band, we indicated
how generalizations could be possible to investigate more
complicated cases, and therefore established a general
framework that should be rather robust with respect to
future developments. Here, the word robust means that,
although we may later need to generalize the way to
determine the standard function F for more complicated
vector fields, or to solve a noise smoothing and/or noise
removal problem for studying noisy data, most of the
structure of our work is expected to be preserved. See
Ref. [3] for the Lorenz system, showing that nothing
essential had to be modified to investigate this case. We
are currently working on a still more complicated vector
field produced by a model of thermal lens oscillations [9]
which will require more sophisticated approaches to ap-
proximate the standard function F. Simultaneously, we
are investigating the issue of noise smoothing and noise
removal. Also, quantitative validations may rely not only
on generalized dimensions (or generalized entropies) but
also on all the quantities that are preserved by the intro-
duced transformations. A complete list of such quanti-
ties, still to be established, would fully define the concept
of equivalence used in this paper. Although many lines
of research are opened by the present work and many
questions still remain to be answered, the most interest-
ing prospect in our opinion might be the possibility of au-
tomatic reconstruction of phenomenological models of
experimental systems. It would then provide the applied
scientist with a new tool of utmost interest.
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