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Scale-invariant regimes in one-dimensional models of growing and coalescing droplets
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We consider several simplified models of breath figures in one dimension. For all these models, the
combined effects of growth and of coalescence of droplets lead to a scale-invariant regime with a stable
distribution of the distances between droplets. We show that at the mean-field level there exist one-
parameter families of such stable distributions, each distribution being characterized by its decay at
infinity. We explain how the mean-field theory can be improved by taking into account the effect of pair
or higher correlations. For some models one can check that the pair and higher correlations are factor-
ized, meaning that correlations are absent and that therefore the mean-field theory is exact. Finally, we
show that a very simple model of domain growth related to spinodal decomposition, the one-dimensional
Potts model in the limit of an infinite number of states, also possesses a one-parameter family of stable
distributions analogous to what we obtained for breath figures.

PACS number(s): 64.70.Fx, 68.45.Da, 02.50.+s, 05.20.Dd

I. INTRODUCTION

Breath figures are the patterns formed by growing and
coalescing droplets when vapor condenses on a nonwet-
ting surface. For example, one sees breath figures on a
window pane on a cold day.

Laboratory experiments of breath figures may be per-
formed by letting a gas saturated with water vapor pass
over a cold surface [1-4]. The water condenses on the
surface in the form of droplets, and the evolution of these
droplets in time is recorded and analyzed.

One can distinguish three time regimes in an experi-
ment.

In the beginning, droplets nucleate and start growing;
they are widely spaced from one another compared to
their sizes. The diameter of a droplet is found to be
growing as a power law in time.

In the second regime, the droplets have grown to the
extent that the distances between them are of the same
order of magnitude as their sizes so that now there are
many coalescence events. In such an event, two droplets
merge very rapidly into a single droplet whose diameter
is given by conservation of mass. The center of the new
droplet is located between the centers of the two original
merging droplets. In this regime the system appears to
be statistically self-similar in time: the distributions of
droplet sizes at different times are found to superpose
after appropriate rescaling. One can also look at the cov-
erage of the surface, that is, the fraction of the surface
covered by water droplets, as a function of time. It is seen
that after an initial rise of the coverage during the first re-
gime, it attains a plateau in the second regime. This
signifies that the spaces between the droplets are scaling
in time with the same scaling law as the droplet diame-
ters. Quantitatively, the constant coverages found in ex-
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periments are approximately 0.55 for a two-dimensional
substrate, and 0.8 for a quasi-one-dimensional substrate
[1,2]. These figures are very close to the jamming limit
found in random-sequential-adsorption (RSA) processes.
One-dimensional RSA (otherwise known as the “parking
problem”) consists in placing equally sized line segments
sequentially at random places along a line without over-
laps. When there is no more room left, one is at the jam-
ming limit and the coverage of the line is calculated to be
0.748 [5,6]. A two-dimensional version would be placing
equally sized disks on a plane, simulations showing a jam-
ming limit of 0.547 [7]. Inspection of a breath figure in
the scaling regime shows that it is almost jammed, that is,
one could hardly fit any more droplets, even of the small-
est found in the figure, in the spaces left between the
droplets.

In a third regime the intervals of time between coales-
cences and the spaces between the droplets are large
enough to allow new droplets to nucleate.

In this article we consider several simplified models of
breath figures in one dimension. For all these models, the
combined effects of growth and of coalescence of droplets
lead to a scale-invariant regime with a stable distribution
of the distances between droplets. In Sec. II we present
the results of numerical simulations for the system of
three-dimensional droplets growing on a one-dimensional
substrate. We observe that after a transient regime, a
scaling regime emerges as the coverage becomes constant
and the distributions of the diameters, gaps, and dis-
tances between the droplets become invariant (up to a re-
scaling). In Sec. IIT we consider a simplified model
(called the “cut-in-two” model) of growing droplets such
that a configuration of the system is characterized by the
distances between droplets only (all droplets are assumed
to be of the same size). We propose a mean-field theory
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for this simplified model which gives a result for the
scale-invariant distribution of the interdroplet distances
qualitatively similar to the one observed in the simulation
of the model. We discuss how the result of this mean-
field theory can be improved by taking into account the
effect of correlations between pairs of neighboring inter-
droplet distances. One interesting outcome of the mean-
field theory is the existence of a one-parameter family of
scale-invariant distributions of interdroplet distances in-
dexed by their power-law decay at infinity. In Sec. IV we
consider another simplified one-dimensional model
(called the “paste-all” model). For this model too, we de-
velop a mean-field theory which, again, gives a one-
parameter family of scale-invariant distributions. How-
ever, in this second model, one can show that the dynam-
ics does not produce any correlation between successive
interdroplet distances along the line, implying that the
mean-field theory is exact, as observed in numerical simu-
lations. The existence of a one-parameter family of
scale-invariant distributions can also be observed in other
problems. In the Appendix, we discuss the simple exam-
ple of the growth of domains which occurs when a one-
dimensional chain of Potts spins is quenched to zero tem-
perature. Finally we conclude by adding some comments
on the two-dimensional versions of the models studied in
Secs. IIT and IV and on the possible connection of RSA
with this problem.

II. SIMULATIONS OF BREATH FIGURES

In order to illustrate the existence of a scale-invariant
regime in breath figures we first describe simulations of a
model giving a simple description of the experiments for
breath figures on a one-dimensional substrate. Such
simulations have already been performed [2,3,8-10].
Here we will concentrate on the distribution of distances
between the droplets. The two ingredients necessary to
define a model are the growth law of the droplet sizes,
and the coalescence rule, i.e., how the size and the posi-
tion of the new droplet depend on those of the two
coalescing droplets. The model described below will
serve as a basis to yet simpler ones studied in the follow-
ing sections.

(i) The law we use for the growth of a droplet diameter
is [2,3,8]

d(t)=A;t" , (1)

where the exponent u relates to the condensation mecha-
nism. Note that this law fixes a common time origin for
all the droplets, the time of the beginning of the experi-
ment. The same time origin remains after coalescences.
As a consequences two droplets of the same size at
different times will grow at different rates. This law is
supported by experimental observations [2,3]. Another
form has been proposed [9,10] for the evolution in time of
the diameters, namely,

d
dt d;

which leads to a different time origin for each droplet,
but to a time-invariant growth rate. In both cases, the

()=B[d,(1)]° 2)
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only important ingredient is that the diameters increase
with time, and therefore one expects that replacing Eq.
(1) by Eq. (2) would not change any qualitative feature.

(ii) In a coalescence of two droplets of diameters d; and
d ;5 mass conservation imposes that the diameter of the
new droplet be given by [10,11]

d=(dP+dP)'"" . &)

D is the dimensionality of the droplets, equal to 3 for real
droplets. We will also consider D different from 3.
Whenever D > 1, Eq. (3) implies that

d<d;+d; . )

Here we will locate the center of the new droplet at the
center of mass of the two merging ones. One could also
have located it at the center of the largest one (“majority
rule””). The physical processes which occur when two
droplets coalesce, in particular the movements of droplets
on the substrate, are complicated. The resulting position
is observed in experiments to be somewhere between the
position of the largest droplet and the center of mass of
the two coalescing droplets [11]. This has been analyzed
in Refs. [10], and [11].

We use periodic boundary conditions to simulate this
model. The quantities of interest in the system are drop-
let diameters d;, distances between centers of neighboring
droplets h; (which we call intervals), and gaps between
the droplets g;. The coverage of the line is given by

c=2d,./2_h,. . (5)

For convenience we denote the prefactor 4 of Eq. (1) as

A i B wil /D (6)
where w; is a weight factor. The coalescence of droplets i
and i +1 will result in a droplet of weight w =w; +w; .
Two droplets coalesce when the gap between them is

filled. The gaps are given by

I
gi=h;—3ld;+d;  )=h 1_% ™
with
T =10 1/b (8)

wl Pt}

an effective coalescence time. If 7, =min;{r;} then at
time ¢ =7L’* the gap g, will vanish, while all other gaps
will still be nonzero. In this manner one does not need to
take small time increments in the simulation, but can ad-
vance from one coalescence event to the next one, while
keeping count of real time.

The simulations presented here concern systems of
100000 initial droplets of equal weight with a random
distribution of intervals uniformly distributed between 0
and 1. Figure 1 shows the coverage as a function of the
average diameter d for droplets with D =3. The coverage
initially rises from zero and eventually reaches a constant
value of 0.79. When the plateau is attained there are
about 20000 droplets left. The average diameter at that
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FIG. 1. Coverage as a function of the average diameter in the
one-dimensional D =3 droplet model.

time is about the size of the largest interval at the begin-
ning of the simulation. Its dependence in time follows a
power law, as predicted by the scaling theory [10,11]. In
Fig. 2 we plot distributions p( ) of lengths of intervals A,
diameters d, and gaps g at five different times in the con-
stant coverage regime, corresponding to 10000, 9000,
8000, 7000, and 6000 droplets left. These plots have been
scaled by the average diameter at each time. The plots
look superposed, indicating a self-similar regime with a
single length scale. Note that there is very little overlap
between the distributions of gaps and diameters, i.e., al-
most all gaps are smaller than the smallest droplet. In
other words, these are almost-jammed states. Figure 3
shows the system of droplets along the line obtained by
simulation of the model, starting with 1000 droplets, for
final states of 50, ..., 10 droplets left. These results are
reproduced qualitatively for different dimensionalities of

FIG. 2. Distributions of lengths of intervals, diameters, and
gaps, in the one-dimensional D =3 droplet model, at five
different times in the constant coverage regime corresponding to
10000, 9000, 8000, 6000 droplets left.
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FIG. 3. Simulation of the one-dimensional D =3 droplet

model: patterns obtained starting with 1000 droplets, for final
states of 50, . . ., 10 droplets left.

droplets. The value of constant coverage in the scaling
regime depends on the dimensionality of the droplets. In
Fig. 4 we plot the constant coverage as a function of D.
In the limit D —1 the coverage is 1 since in this case
there is no contraction of the droplets in the coalescence
[cf. Eq. (3)]. In the limit D —  one finds a coverage of
0.72. For comparison we have marked in Fig. 4 the value
of the coverage in the jamming limit. One also finds that
the distribution of diameters becomes narrower as D is
increased which is a simple consequence of the rule for
coalescence of droplets Eq. (3). In the limit D — o, Eq.
(3) becomes

d=max{d;,d;} . 9)

Therefore if initially one takes all droplets with the same
size, this property remains true all along the evolution of
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FIG. 4. Limit coverage as a function of the dimensionality D.
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the system; in other terms the distribution of diameters is
a § function.

This remark leads us naturally to introduce the geome-
trical models of the following sections which, though
much simpler, capture the essence of the model described
in this section.

III. A GEOMETRICAL MODEL:
THE “CUT-IN-TWO” MODEL

Consider a line with points scattered on it. At each
step, one searches for the two closest points, and replaces
these two points by a single point midway between them.

If we denote by A; the interval separating the points i
and i +1, the process can be described as searching for
the shortest interval, which we denote by A, cutting it in
two and pasting each half to its neighboring interval.

The connection of this simplified model with the drop-
let model for breath figures described in the preceding
section is seen if we place equally sized droplets, each
centered on one of the points on the line, and allow the
droplets to grow all at the same rate. When two droplets
touch, at which time all the droplets are of diameter h,
they coalesce into a droplet of the same diameter cen-
tered in the middle of the coalescing droplets. This mod-
el resembles the infinite D-dimensional droplet model
very much, though they differ with respect to the loca-
tions of the centers of the droplets after coalescence.

Let us give the results of a simulation of this model.
The coverage as a function of # may be computed numer-
ically, using Eq. (5),with d;,=% for all i. Starting from
zero, it rises up to a plateau at a value of C=0.72. In
Fig. 5 we show the distribution of interval lengths at five
different times in the constant coverage regime (same as
those taken for Fig. 2), scaled by h. This simple
geometric model exhibits a long time behavior similar to
the droplet model of the preceding section.

A. Mean-field theory

To study this geometrical model analytically, we start
with a mean-field approximation, assuming no correla-

2.0 - l”*r 'T"'T*r""l* T r AL S |

0401111|1\11

1.0 1.5 2.0 2.5 3.0

FIG. 5. Distribution of interval lengths at five different times
(same as for Fig. 2) in the constant coverage regime, scaled by 4,
for the cut-in-two model.
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tions between lengths of neighboring intervals. This ap-
proach has already been presented elsewhere [12], but we
describe it here for completeness.

To visualize this approximation, consider the following
process: one has a sack with sticks of different lengths
(representing the intervals). At each step one looks for
the shortest stick in the sack, cuts it into two halves, and
pastes them to two other sticks chosen at random from
the sack.

We define n,(h)8h as the number of sticks of length be-
tween h and h +6h at time ¢t. The total number of sticks,
the total length of the sticks, and the coverage are given,
respectively, by

N,:f;n,(h)dh , (10)
L= [ "hn(hdh , (1)
C,=hN,/L . (12)

We can describe the evolution of n,(4) by a Smolu-
chovski equation [13]. During a time increment 8¢ we
coalesce all sticks of length between 4 and i +8k. Using
the fact that the probability of finding a stick of length A

is n,(h)6h /N, we can write
n,(h)8h
n, s (h)= n(h)+ N [—n,(h)
+n,(h—10)Oh—3h)]
(13)

the factor 2 arising since there are two sticks involved in
each coalescence (apart from 4). The first term inside the
square brackets corresponds to sticks of length 4 becom-
ing sticks of length A-+4/2 under coalescence, the
second to sticks of length & —Hh /2 becoming sticks of

length A. The total number of sticks remaining is
N,ys:=N,—n,(h)dh . (14)

We next define f,(h)8h as the fraction of sticks of
lengths between h and h +8h,

Si(h)=n,(h)/N, (15)
which obeys, to first order in 8%, the equation
Ferse(W)=F(h)+[—f (W) +2f,(h—1h)O(h—3h)]

X fi(h)8h . (16)

As h is the natural length scale in the problem it is con-
venient to define a scaled distribution F(x,t) with support

(1,0) b
filh)=

for which we find in the limits 8z —0, 8% —0 a nonlinear
partial differential equation

AF (x,1) _ dF (x,1)
o Flettx—r

+F(1,0)[2F(x —1,1)0(x —3)—F(x,t)]
(18)

kR ~'F(h/h,t) a7

y(t)———
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where y(t)=h(dh /dt)”! relates the minimal length A
with the physical time ¢. Since this relation is arbitrary in
this model, we set y(¢#)=1. To solve Eq. (18) we intro-
duce the Laplace transform of F(x,)

d(p,t)= flwdx exp(—px )F(x,t) (19)
which obeys the equations
dd(p,t) _ _ 3é(p,t)
ot ap
+F(1,t)[2exp(—p/2)—1]é(p,t)
—F(1,t)exp(—p) . (20)

While we could not solve the complete time evolution of
this equation, its stationary solutions [i.e., with the left-
hand side of Eq. (20) equal to 0 and F(1,t)=F(1)] are
easily calculated. There exists a continuum of such solu-
tions, each characterized by a parameter F(1),

—2exp(—u/2)
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FIG. 6. Scaled distribution of interval lengths F(x,?) in the
mean-field theory, for the cut-in-two model.

(21)

- o, 1 _ t, 1
¢(p)—F(1)fp di—exp t+F(1)fpdu >

The unsolved question is to know which stationary solu-
tion (if any) is selected by a given initial condition. Let us
note that Eq. (21) is obtained from Eq. (20) by consider-
ing that ¢(p) and F (1) are independent quantities. In
fact, from the definition of ¢(p), Eq. (19), they are related
by a consistency relation:

lim pefé(p)=F(1) . (22)
p—>®

It is easy to check that ¢(p) in Eq. (21) does satisfy this
relation. The coverage in this asymptotic regime is given
by C,=1/Xx=—1/¢'(0). Expanding Eq. (21) for small
b

1—¢(p)~pFV, 23)

we see that the only solution producing a finite nonzero
value of the coverage is given by the choice F(1)=1.
This is in fact the asymptotic value for the scaled distri-
bution found either by simulations of the model, or by
iterating Eq. (16), for most initial distributions. In our
previous work [12] we gave an argument based on the
motion of the singularities in the complex plane of ¢(p)

to explain why the system converges to the solution with
J

S s h 1= fFIRVSR 1= R ) — [F PR, by )+ £

+ [fi”

[ FRL IC) PR
1 2 t 1 2

[

F(1)=1: if ¢(p,0) is analytic in the neighborhood of
p =0, the singularities go to infinity. Other stationary
solutions with F(1) <1 are nevertheless possible for some
more special initial conditions. Finally the case F(1)>1
is ruled out since it would correspond to distributions
such that X =0. For F(1)=1 we calculated a coverage of
0.646. In Fig. 6 we plot the scaled distribution of lengths
F(x,t) in the long time limit of the recurrence relation
(16). Comparing Figs. 5 and 6, it is clear that the mean-
field approach is not accurate enough for a quantitative
understanding of this model.

B. Role of correlations

An exact treatment of the model needs to take into ac-
count the correlations between interval lengths, which
may be done as follows. If we denote by
FO(h,hy, . .., hy) the probability of finding a k-tuple of
successive intervals of lengths A, ..., A; at time ¢, we
can write a hierarchy of recursion relations for the evolu-
tion in time of these probabilities, assuming that the
coalescences occur one at a time. In a small time step 8¢,
during which 7 is changed by 8%, the first two equations
read

hy,h)18h

©(h,—3h)8h , (24)

S5 h 1, ) [ 1= FOR)SH )= f PR b)) — [ f R By hy) + £ 3Ry by ) 18R

+fO {E,hl—%,hz ’e(hl—%ﬁ)8ﬁ+f,(3’ (hl,hz—%,ﬁ O(hy—3F )8k
+£0 |y =P fohy— T lo(h, — 2RO 0h, — )6k 25
ft 1 5 2 2 ( 173 ( 275 . 25)
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Unfortunately this infinite hierarchy of equations is in-
tractable. Nevertheless it is possible to consider succes-
sive approximations to them. For instance, the mean-
field theory approximation Eq. (16) described above con-
sists in considering the intervals as independent, which
implies that the probability f?(h,h,) factorizes into the
product f{P(h,)f{"(h,) in the first equation. The next
step consists in taking into account correlations between
nearest neighbors only. This is done by means of a
decomposition of sequence of intervals into overlapping
independent pairs:

B. DERRIDA, C. GODRECHE, AND I. YEKUTIELI 44

A coalescence event where the threejntervals ‘fll,ﬁ hy
transform into the two intervals h+h /2, h,+h /2 will
be described by the transformation of four pairs into
three

(h3,h1)’(h],ﬁ);(g’h2)$(h2’h4)
i
(hy,hy+1R),(hy+ LR, hy+LR),(hy+ 1R, hy) . 27)

The probability of finding a sequence of three intervals
hi,h,,hy is given, in this approximation of independent
pairs, by

Sshyhyhshy, O,y )= FOh ) PRy, k) 08)
! Lo fiV(hy)
k), (hy, k) (R hy), . (26)  Equation (25) becomes
]
Phhy) Py R) |
FBs(hy k)1 = fFIRSR 1= FP(hy, hy) = £ PRy hy) | =
t+8:7 01 t 1>72 t 172 ft“)(hl) f;m(hz)
SRy — L) f Py~ 1R, hy) I
+ 7O, — 1) O(h,—3h)6h
f Nhy,hy— 1) fP(h,— Lk, k) _
L 1 T 1h)2 L O(h,—1k)sh
t 2
Py = LR, PR hy— L) B o
+ D) O(h,—3h)O(h,—3h)8h (29)
t
We also define scaled probability densities G(x,y,t) and =R "2k —h2) . (32)

F(x,t) by

FPh,hy)=h “*G(h /R,hy /R 1), (30)

Dh)=h "'F(h/k,t) . 31)

The recurrence relation (29)—for which we did not find
any analytical treatment—has been iterated in time.
Again, after a sharp rise, the coverage settles off at a con-
stant value of 0.69. In Fig. 7 we plot F(x,?) obtained by
iterating Eq. (29). Comparing this to Fig. 6 we see that
this is a better approximation than the mean-field approx-
imation, particularly in the fact that most of the weight
of the distribution is between 1 and 2, signifying an
almost-jammed state.

Nevertheless, this approximation, restricted to consid-
ering correlations between nearest neighbors, has only
limited accuracy since it does not reproduce the full
shape of F(x,t) found in Fig. 5, which implies that the
model exhibits more complex correlations. When one
cuts the interval A into two halves and pastes each of
them to its neighbor, one creates a correlation between
the lengths of the two resulting intervals. This may be
checked by plotting (Fig. 8) the scaled correlation func-
tion y, for lengths of neighboring intervals, defined by

Since correlations decay rapidly with k one expects that
higher-order approximations would lead to an improved
F(x,t), with a rapid convergence rate.

F
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FIG. 7. Scaled distribution of interval lengths F(x,?) in the
pair correlation approximation, for the cut-in-two model.
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IV. A SIMPLER GEOMETRICAL MODEL:
THE “PASTE-ALL” MODEL

Let us introduce a variant of the previous model.
Again we start with randomly distributed intervals on the
line. At each step one searches for the shortest interval
which is now pasted as a whole to either one of its neigh-
bors, with equal probability. Here too we look at the
long time behavior of the system. A simulation of the
model shows that the coverage of the line as a function of
h attains a constant value of C~0.56 after a transient
period. In Fig. 9 we show the scaled distribution of inter-
J
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FIG. 9. Scaled distribution of interval lengths F(x,t) for the
paste-all model at five different times (same as for Fig. 2) in the
scaling regime.

val lengths F(x,t) at five different times in the scaling re-
gime. The interest in this model becomes apparent when
one looks at the scaled correlation function for lengths of
neighboring intervals ¢, defined in Eq. (32). In Fig. 10
we plot 7, at different times in the scaling regime. It is
seen that there are no correlations between lengths of
neighboring intervals, which indicates that a mean-field
description should be exact.

This is in fact the case as will be shown now. Consider
the first two equations of the hierarchy of recursion rela-
tions for the probabilities f{¥(hy,h,, ..., h;) defined as
above:

FO RO —fFOR)SR =R ) — L PR, b))+ f2(h )18
+ L f PR,k —R)+ fP(hy—R,k)])O(h, —2R)8R (33)
£, (hy, ) [1— fFOENSR) =Py hy) = LR by )+ f3 Ry by, B 18R
+ LR, hy =R, hy) + 3R — R,k hy)1O(h —2R)8R

It can now be seen that these probabilities factorize, that
is, taking the form

SR, )= (R f(hy) - fi(hy) (35)

is consistexlt with each of the recurrence relations, to first
order in 8h. Therefore it is sufficient to regard the rela-
tion

flsm)=f R+ fUR) f(h—R)8hO(h—2k)  (36)
which is found by the factorization of Eq. (33). Figure 11

shows the scaled distribution of intervals in the long time
limit of iteration of Eq. (36), matching very well the dis-

F LRy B hy—F)+ f 3k hy— R, B)©(h, —2R)8E (34)
0.5,.H[H,Imwj,ﬁ.hqﬁ,mfj
o.zé; -

0.3 i -
SRR é
010 E
] S P |
o e 1
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tributions in Fig. 9.
The scaled probability distribution F(x,t) obeys the
partial differential equation

k
FIG. 10. Scaled correlation function y, for the paste-all
model.
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paste-all model in the mean-field approximation.

oF(x,t) = F(x,1)+x OF(x,t)
ot ox
+F(1,0)F(x —1,1)0(x —2) (37)
[having set y(¢)=1] which reads, in Laplace space,
dp(p,t) dd(p,t) _
- + P —1].
31 p p F(1,t)e "P[¢(p,1)—1] (38)
The stationary solutions of Eq. (38) are
d(p)=1—exp »e
=1—exp[ —F(1)Ei(p)] (39)

where Ei(p) is the exponential integral function. Arguing
as before, only the solution with F(1)=1 corresponds to
a distribution with a finite average, and therefore a finite
coverage. The coverage C, may be computed by ex-
panding Ei(p) around p =0:

Ei(p)=~—y—Inp (40)
where y=0.577 is the Euler constant. Hence
X =e"=1.78, implying that C =~0.56.

As mentioned in the precedmg section, solutions with
F(1)>1 are unacceptable since they give X =0 which
would correspond to stationary solutions with negative
parts.

There remains the question of solutions with F(1)<1.
For this class of solutions, X = —¢’(0)— o which means
these are slowly decaying distributions. In Fig. 12 we
plot stationary solutions of Eq. (37) obtained by integrat-
ing the equation with F(1)=0.5,0.9,0.99,1. One sees
that indeed for F(1)<1 the distributions display power-
law decay, F(x)=~x "I TFD] while for F(1)=1 the de-
cay is much faster. Let us consider the space of the dis-
tributions on the support (1, o ) with the dynamics given
by Eq. (37). In this space, fixed points correspond to sta-
tionary solutions of Eq. (37) [given, alternatively, by the
inverse Laplace transform of Eq. (38)]. It would be in-
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teresting to know the size of the basins of attraction of
these fixed points and whether there could be trajectories
other than those which converge to these attractors.

One can study the stability of these fixed points to per-
turbations by looking at the eigenvectors of the linear
operator obtained by linearizing Eq. (38) around a given
fixed point. Consider an eigenvector of the linear opera-
tor obtained by linearizing Eq. (38) around a given fixed

point. Consider an eigenvector of eigenvalue A of this
linearized operator. Inserting
d(p,t)=¢(p)+eh(ple ™, (41)
F(1,1)=F(1)+ege ™™, (42)
where ¢(p) is a solution of the form (39), into Eq. (38) and

retaining terms of the first order in €, we find a
differential equation for 4 (p),

ph'(p)=[A+F(l)e ?lh(p)+ge P[$(p)—1]. (43)
The solution of Eq. (43), under the constraint
lim pefh(p)=g (44)
p—»oo

coming from the definition of the Laplace transform, is

o e PS5

hy(p)=g exp F(l)f du | [ fmds. 45)
Due to the normalization of F (x) we have

h(0)=0 (46)
implying that A> —F(1). For p <<1 we find that &, (p)
behaves as

pF A >0 (stable) )
h(p)= A+F1) | _p(1) <A <0 (unstable) .

Since the behavior of A (p) for p <<1 is related to the de-
cay of the distribution for large x, this linear analysis
around the fixed points shows that a given solution is un-
stable when adding to it perturbations which decrease

0.1k -

E _F(=05 3

0.01 ;A F(1)=0.9 _;

g 3

— b =
X 0.001 P(1)=0.99 |
g ~]
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8 \ 1

107° - \

i | 1
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FIG. 12. Stationary solutions obtained by integrating Eq. (37)
with F(1)=0.5,0.9,0.99,1.
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more slowly at infinity. We have not been able to solve
the more general problem of the determination of the sta-
tionary solution towards which the evolution Eq. (38)
converges for a given initial condition. Even generating
numerically initial conditions that converge towards oth-
er stationary solutions than that given by F(1)=1 is not
easy (when one starts with slowly decaying initial condi-
tions, the evolution is so slow that we could never reach a
stationary solution). Nevertheless we think that there
should exist such initial conditions (other than starting
with the stationary solution itself). In order to illustrate
this possibility we treat in the Appendix a simple model
for domain growth which also possesses a one-parameter
family of stationary solutions. In this example one may
explicitly show that the limiting stationary solution is
determined by the tail of the initial distribution.

V. CONCLUSION

In this paper we have considered several simplified
models for the problem of breath figures on a one-
dimensional substrate. We have written and solved
mean-field equations for these simplified models, which
are analogous to Smoluchovski equations. These mean-
field equations possess one-parameter families of scale-
invariant solutions, each distribution being characterized
by its decay at infinity. The solutions of these equations
are exact for some cases (Sec. IV) whereas they are only
approximate for the case discussed in Sec. III. We ex-
plained how to systematically improve the mean-field ap-
proximation.

The situation found in this problem is reminiscent of
that encountered in the central limit theorem: the nor-
mal law is stable in the sense that the sum of many in-
dependent random variables with a common distribution
gives—for most initial distributions—a normal (Gauss-
ian) law after an appropriate rescaling. If the initial dis-
tribution is slowly decaying (as a power law) the addition
of independent random variables leads to Lévy laws
[14,15], i.e., to a one-parameter family of distributions de-
scribed by a characteristic exponent. Here the distribu-
tions are stable in an analogous sense, which generalizes
the previous one. The addition of random variables is re-
placed by the dynamics described in the preceding sec-
tions. The one-parameter family of scaled distributions is
very similar to Lévy distributions, F (1) playing here the
role of the characteristic exponent of Lévy laws. In par-
ticular the case where F(1)=1, yielding the largest basin
of attraction in the present problem, corresponds to the
Gaussian, which has the largest basin of attraction for
the problem of the addition of random variables.

The existence of such families of distributions is prob-
ably a much more general phenomenon, since it occurs
also in several growth problems (cf. the Appendix and
Refs. [16] and [17]). Moreover, the evolution of the dis-
tribution of distances is governed by nonlinear equations
[Egs. (18), and (37)] very similar to those which appear in
problems of spinoidal decomposition [18].

The case of two-dimensional breath figures may be
treated in the same way. We have computed the scaling
distributions of interdroplet distances numerically, for
the cut-in-two model or for the paste-all one. In both
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cases one finds a scale-invariant curve with a shape simi-
lar to that found in the one-dimensional case or for the
problem studied in the Appendix.

Finally some comments concerning the link between
the RSA problem and breath figures are in order. The
patterns found in breath figures look almost jammed and
therefore resemble those of the RSA problem. Also the
values of the coverages are very close in both problems.
However, the distributions of interdroplet distances (in
the case of breath figures) or of interbond distances (in
the case of the RSA problem) are different [12]. More-
over, in the case of breath figures the system is driven to a
scale-invariant regime with no counterpart in the RSA
problem.
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APPENDIX

In this appendix we give the solution of an extremely
simple model of domain growth: a Potts model in one di-
mension at zero temperature. The problem of domain
growth following a ‘“quench” of a system of spins below
its transition temperature has incited numerous theoreti-
cal works in the last few years. Quite a good understand-
ing has been achieved for continuous theories in arbitrary
dimension [19-23], but there still exist very few exactly
soluble cases [18,24]. In one dimension Bray [25] has
been able to calculate the pair correlation function for an
Ising chain at zero temperature. He found an exact
asymptotic form valid in the limits of long time and large
distance.

Another exactly soluble case, even more simple, is the
Potts model in one dimension in the limit of an infinite
number of states. The infinite state Potts model has been
used for studying the formation of polycrystalline aggre-
gates [26] and the dynamics of soap froth [27,28].

In one dimension, for a large system and in the limit of
long time, the dynamics of the Potts model at zero tem-
perature can be treated as the diffusion of domain walls
(as the walls are points) [29]. These walls diffuse and
when two walls meet (signifying the elimination of a
domain) one of two possibilities occurs: (i) if the two
domains neighboring the disappearing domain are of the
same state, the two walls are annihilated and the two
domains merge into one; or (ii) if the two domains neigh-
boring the disappearing domain are of different states, the
two walls are replaced by a single diffusing wall between
the two domains.

In the case of the Ising model (two states), only the first
possibility occurs. In the infinite Potts model case, which
we consider, it suffices to look at the evolution of a single
domain bounded by two walls performing independent
random walks [30]. If the two walls meet, the domain is
eliminated, so we are interested only in the case that they
do not meet. It is well known that the probability
p(z,y,t) of finding the two random walkers (which never
meet between time O and ¢) at a distance z at time ¢, start-
ing at a distance y is
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exp[ —(z —y)*/4t] —exp[ —(z +y)* /41 ]
V4t

p(z,p,t)=

(A1)

when the diffusion constant of each walker is 1.

Following a quench of the spin system from a high
temperature to zero temperature there is a density of
sizes of domains, which we shall denote by p(y,0). This
means that at time ¢ =0 there are Lp(y,0) domains of
size y in a sample of length L. Given this density at time
t =0, the density of domains of length z at a later time ¢ is
given by

plz,t)= fo‘”dy p(3,0)p(z,,1) (A2a)
_ exp(—z?/4t) 2
Yo fo dy p(y,0)exp(—y*“/4t)

X2 sinh(zy /2t) (A2b)

with z positive. The total number of domains decreases
with time. For the asymptotic form of p(z,¢) in the long
time limit, as its evolution is governed by a diffusion pro-
cess, we are interested in z of the order of V't. We first
consider the case of an initial density with a finite first
moment at time ¢ =0. In this case we can develop the in-
tegrand of Eq. (A2b) to first order in y /V'¢t to find

_zexp(—z%/4t) =
plan===r="7 S ay pty.0p . (A3)
Integrating Eq. (A3) over z we have
) 1 )
[ dzptzi=—= [ “dy ply,0)y (A4)

from which we conclude that the number of domains di-
minishes as 71”2, Let us define a scaled distribution
function F(x,t), normalized to 1, by

o -1

Flxndx= | [ dz'plz',) | plz,0)dz (A5)
with x =z / \/57, thus obtaining

F(x,t)=x exp(—x2/2), (A6)

which is time independent [30].

Let us compare this result with a simulation of this
model. Starting with 10000 domains on a line with cy-
clic boundary conditions, with sizes chosen at random
from a uniform distribution between 1 and 50, we let the
boundary walls perform random walks in parallel.
Shown in Fig. 13 are the distributions of domain sizes at
four different times (when there are 5000, 4500, 4000, and
3000 domains left) scaled by the average domain size (in
diamonds) and Eq. (A6) (solid line, scaled by X), showing
good agreement.

We next consider the case of a slowly decaying initial
density such that its first moment is divergent. We as-
sume that for y >>1

A
y1+a

p(»,0)= (A7)

with 0 <a <1. Performing a change of variables in the
integral in Eq. (A2b), u =y /V'2t, we see that only the
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FIG. 13. Stationary distribution for the one-dimensional
Potts model with a bounded initial distribution of domains (see
text).

asymptotic form (A7) of p(y,0) is important and one ob-
tains

A exp(—z2/4t)
‘/ZT( 2,)(1+a)/2

exp( —u?/2)2sinh(zu /V'2t)

Xfowdu uH—a

plx,t)=

(A8B)

Integrating over z one finds that the number of domains
decreases as t ~%/2, As 0<a<1, the decrease is slower
than in the first case. Using Eq. (AS5) we calculate the
scaled normalized distribution for this case

exp(—u2/2)2sinh(xu)

u 1+a

F(x,t)=C exp( —x2/2)f0mdu

(A9)

where C is a normalization constant. Again we find that
F(x,t) is time independent. For x >>1, 2sinh(xu)

0.4

||r\|Tvv||11vvw
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FIG. 14. Stationary distribution for the one-dimensional
Potts model with a slowly decaying initial distribution of
domains (see text).
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=exp(xu) and one can see that F(x,) decays as x ~! 7%,

In Fig. 14 we show the domain size distributions found
from a simulation, this time with a slowly decreasing ini-
tial distribution of sizes with an exponent ¢=0.5. The
distributions (in diamonds) are scaled by V'2¢ and com-
pared with Eq. (A9) (solid line), again in good agreement.
This example is thus an exactly soluble model which is
driven in the long time limit to stationary scaling distri-
butions. There is a whole family of such stationary solu-
tions, indexed by the exponent a. The solution towards
which the system is driven is selected by the initial condi-
tions, specifically by the tail of the distribution. If the ini-
tial distribution decays quickly enough, such that its first

moment is finite, it converges to the solution (A6), which
exhibits Gaussian decay. This solution is the analog of
the solutions with F(1)=1 in the preceding sections. If,
on the other hand, the initial distribution decays slowly,
namely, as a power law, we have seen that it converges to
a different stationary solution, (A9), which decays at the
same rate as the initial distribution. This is the analog of
solutions with 0 < F(1) <1 of the preceding sections.

Lastly, let us remark that since the limiting distribu-
tion can be found by considering only a single domain,
one expects that here, as in Sec. IV, a mean-field theory
would give the exact scale-invariant distribution of
domains.
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