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Two-dimensional model of a fault
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We present the results of simulations of a two-dimensional mechanical model of a fault, which is a
generalization of the one-dimensional model studied previously [Carlson and Langer, Phys. Rev. A 40,
6470 (1989)]. We incorporate both the lateral fault axis and the fault depth, and consider both cases of
spatially homogeneous and depth-dependent velocity-weakening friction. Our main result is that in both
cases for small- to moderate-sized events, the Gutenberg-Richter scaling exponent b is unity for a wide

range of parameters, as observed in the one-dimensional model, and consistent with measurements for
real earthquakes. In addition, in the depth-dependent friction model, we study the activity patterns as a
function of depth. We observe that smaller events tend to be triggered near the surface, while on rela-

tively shallow faults larger events tend to achieve their first appreciable velocities at depth, in agreement
with certain trends observed in seismological studies of the hypocenter distributions of small and large
earthquakes.

PACS number(s): 05.40.+j, 91.30.Px, 05.45.+b

Recently, we have investigated the dynamic behavior
of a simple, homogeneous, one-dimensional model of a
fault, in which the key nonlinearity is the velocity-
weakening friction at the interface between tetonic plates
[1—7]. One interesting result obtained in Refs. [1] and [2]
was a demonstration that this spatially homogeneous
model can generate a noisy spectrum of earthquakelike
events: The smaller slipping events are consistent with
the fundamental law governing the frequency distribution
R (p) of earthquakes of magnitude p, namely, the
Gutenberg-Richter statistical law [8]:

R (p)= Re

where 3 is a constant and b =1, while the large events
have a separate distribution. As observed in nature, for a
wide range of parameters the large events occur more fre-
quently than would be expected from an extrapolation of
the statistics of smaller events on a single fault [9], al-
though for real faults the detailed form of the distribution
of large events is difficult to determine because of the
sparsity of single-fault data.

In this paper we present results for generalizations of
the earthquake model to higher dimensions. Previously,
our studies were limited to a strictly one-dimensional ver-
sion of the model. Of course, the Earth is three dimen-
sional, and as we proceed in comparing our results to
seismological data, it is particularly important to deter-
mine the eAect of dimensionality on this system. In most
physical systems dimensionality plays an important role
in scaling properties; thus this question is of both funda-
mental and practical interest. Furthermore, in the Earth
the material properties of the crust vary with depth [10],
leading to depth-dependent features in seismicity patterns
[11],which will also be discussed here.

Ultimately, it will be useful to study a fully three-
dimensional version of the model. However, in large
simulations an increase in dimensionality must be accom-
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The finite-difference approximation to (2) consists of a
uniform lattice of blocks and springs (see Fig. 1), each
displaced a dimensionless distance U(x, y, t) from equilib-
rium with respect to the fixed upper surface, which
represents the right side of a lateral fault. Here
U(x, y, t)—:U, J (t) is the displacement of the i, jth block on
the lattice; the equilibrium block spacing is a, so that
x =ia (the horizontal axis for a lateral fault) and y =ja
(the depth) have the dimensions of length. Each block is
attached to the upper surface with a harmonic pulling
spring and to its nearest neighbors with harmonic cou-
pling springs —the strength of the coupling springs rela-
tive to the pulling springs is (g/a), where g is the
stiffness length. The parameter g is also the sound speed

panied by a decrease in system length. Thus we first con-
sider a two-dimensional version of the model, explicitly
taking into account both the lateral fault axis and fault
depth. Interestingly, we here report that in the two-
dimensional model, with and without depth-dependent
friction, the b= 1 Gutenberg-Richter scaling [Eq. (1)]
that was observed in one dimension also persists in two
dimensions. In addition, as in one dimension, we observe
an excess of large events above the extrapolated rate of
smaller events. However, in two dimensions this excess is
somewhat less pronounced.

The model we study is described in detail in Ref. [2]
and is the simplest example of a class of models which
was introduced over 20 years ago in the seismological
literature by Burridge and Knopoff [12]. In our version
of the model, we retain inertial terms, and we do not in-
clude any externally imposed randomness or spatial inho-
mogeneity. The system satisfies a nonlinear massive wave
equation, given by
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FIG. 1. Two-dimensional Burridge-KnopoA' model consists
of a lattice of blocks and springs in which displacements
represent deformations of the fault surface. In the figure the x
axis represents the horizontal axis of a lateral fault (the relative
motion is parallel to the x axis) and the y axis represents the
direction of increasing depth. The equilibrium block spacing is
a in both directions. For our simulations we set a= 1. X is the
number of blocks in the x direction, and Xy is the number of
blocks in the y direction. We use periodic boundary conditions
in the x direction and free boundary conditions in the y direc-
tion. Our results are not sensitive to whether the boundary con-
ditions are free or periodic, except for the depth-dependent
models in the y direction, where periodic boundary conditions
are unphysical.

FI(s. 2. Velocity-weakening slip-stick friction law P(z) is
represented by the solid line [the argument z can be obtained
from Eq. (2)]. Sticking friction b(0) satisfies P(0} 1, while slip-

ping friction decays monotonically to zero from the initial value
P(0+) =1—o. with initial slope equal to —1. The heavy dashed
line represents the depth-dependent friction D(y)P(z} at the top
(y=1) of the depth-dependent model, while the solid line is the
value of D(y)P(z} at the bottom (y =N»). For our simulations
we take

(
—~, 1], z =0

( 1 —cr ) /[ 1+ [z /( 1 —o. ) ]], z )0,
and D (y) =1/4[1+3(y —1)/(N» —1)].

since time is dimensionless. For numerical expedience we
only allow lateral displacements; that is, blocks slip only
in the x direction so that U is a scalar. We expect that
this approximation to the actual elastic properties of the
system will not greatly alter the statistical features that
we study. Each block is in contact with a lower surface
(corresponding to the left side of a lateral fault), which is
moving slowly at a relative velocity of —v with respect to
the fixed surface. This loosely represents the effects of
plate motion, which results in a slow shear deformation
on opposite sides of the fault. The friction P between the
blocks and moving surface is a function only of the slip
velocity and satisfies a velocity-weakening slip-stick fric-
tion law illustrated in Fig. 2. Each block remains stuck
until its static friction exceeds the dimensionless thresh-
old of unity, at which time the block becomes unstable
and begins to slip with initial velocity proportional to o.
The rate of velocity weakening is given by a, so that
larger values of a correspond to a steeper slope in the
friction law and, hence, less dissipation. A straightfor-
ward linear stability analysis of spatially homogeneous
solutions of Eq. (2) shows that small irregularities will be
amplified exponentially at a rate proportional to e during
slipping events [2].

In the depth-dependent model, we multiply the friction
P by a depth-dependent constant D (y), which increases
linearly with depth, corresponding the y axis in Fig. 1.
Note that, because it multiplies the entire friction law,

the factor D(y) effectively alters the friction threshold,
the initial impulse acting on slipping blocks, and the
velocity-weakening parameter, which are now given by
D(y), D(y)o, and D(y)a, respectively. For our numeri-
cal simulations, we will take D(y) to increase linearly
from some minimum value at the top (y= I) of the model
fault to some maximum value at the bottom (y =N ); the
extreme values are illustrated in Fig. 2. Here we account
only for the increasing pressure as a function of depth,
represented in the simplest possible way [10]. We ignore
features such as pore pressure and temperature, which
are also expected to vary with depth. We restrict our at-
tention to the brittle zone, ignoring the brittle-to-ductile
transition. We plan to incorporate these additional
features in future versions of the model.

For our simulations we begin with some small spatial
irregularities in the configuration and let the system
evolve through several loading cycles (i.e., cycles of large
events) until it reaches a statistically steady state. We
study the limit of infinitesimally slow driving speeds v in
which slipping events occur one at a time. When the en-
tire system is stuck, we determine which block is closest
to threshold and then integrate (2) forward, updating the
system so that this block comes to threshold in one step.
At that point this least stable block begins to slip, with an
initial impulse force of o [or D (y)o in the depth-
dependent friction model]. The event proceeds as we in-
tegrate Eq. (2) with v=O until all blocks have come to
rest. While the exact sequence of events will depend on
the initial configuration, the statistical properties are in-
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dependent of it.
The quantity used to gauge the size of each slipping

event is called the moment and is given by the sum of the
displacements of the blocks that move:

M = Jb, U(x, y)dx dy . (3)

The magnitude p is the natural logarithm of the moment:
p=lnM. In Fig. 3 we plot our numerical results for the
rate of events R (Itt) as a function of p. Here R (Itt) is the
number of events per unit displacement per unit area (or
length in one dimension) of the fault. Figures 3(a) illus-
trates our previous results for the one-dimensional model.
Figure 3(b) illustrates our results for the homogeneous
two-dimensional model. Figures 3(c) and 3(d) illustrate

our results for the two-dimensional model with depth-
dependent friction —in Fig. 3(c) the fault is relatively
deep, while in Fig. 3(d) the fault is relatively shallow.
Most strikingly, for a wide range of parameters in all four
cases, the scaling region, consisting of events of magni-
tude less than a crossover p, , satisfies the Gutenberg-
Richter law (1) with b =1. In addition, in each case the
large events with p, ~ p ~ p* occur at a rate in excess of
the extrapolated rate for small events. For all of our
measurements, we find that the upper cutoff p* is quite
sharp. In one dimension we found that for large enough
systems p* is independent of system size; we expect this
will also be the case in two dimensions (in our simulations
even the largest events do not span the entire system), al-
though the two-dimensional systems we study are not yet
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FIG. 3. Magnitude-vs-frequency distributions for (a) the one-dimensional model (N= 1500, (=6, a =2.5, and o. =0.01), (b) the spa-

tially homogeneous two-dimensional model (N„=200,N = 100, /= 3, a =2.5, and o =0.01), (c) the deep two-dimensional model with

depth-dependent friction (N„=200,N~ =100, (=3, a=2.5, and 0o.01), and (d) the shallow two-dimensional model with depth-
dependent friction (N„=500,N~ =20, (=2, a=2.5, and o =0.01). The smaller localized events range in magnitude from p, , (a one
block event) to the crossover value p, , and the delocalized events range in magnitude from p, to some upper cutoff p*. Most striking-

ly, in all four cases the distribution of localized events is characterized by a b value of unity.
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large enough for us to systematically test this prediction.
The most pronounced difFerences between the statisti-

cal distributions presented in Fig. 3 are associated with
the distributions of large events. In the one-dimensional
model [Fig. 3(a)] and shallow fault [Fig. 3(d)], the distri-
butions of large events are peaked near the upper cutofF
p*, while for the homogeneous model [Fig. 3(b)] and deep
fault [Fig. 3(c)], the distributions of large events are rela-
tively flat. We expect that the peak seen in Fig. 3(d)
rejects the fact that it is su%ciently shallow that it re-
tains certain one-dimensional qualities.

Figure 4 (top) illustrates the slip distribution [13] in a
typical delocalized large event for the shallow fault with
depth-dependent friction. Note that the slipping region
extends from the top to bottom, consistent with our inter-
pretation of this case as quasi-one-dimensional. This
event is triggered near the upper left corner, spreads from
top to bottom of the fault, and then propagates unila-
terally to the right, as shown in Fig. 4 (bottom), which il-
lustrates the slipping blocks at equal intervals in time.
Note that at any given time, only a small portion of the
fault is slipping.

Similarly, for the deep fault, with and without depth-
dependent friction, large events consist of narrow propa-
gating front [6,7]. In these cases the fronts tend to propa-
gate both horizontally and vertically; however, slipping
zones are typically not at all spherically symmetric. Fig-
ure 5 illustrates a typical large event in the deep fault
with depth-dependent friction. The event is triggered

near the bottom of the fault, propagates initially upward
and to the right, and then turns back down again toward
the bottom.

In both Figs. 4 and 5 the events consist primarily of a
single dominant front which propagates through the sys-
tem. This is not always the case. Frequently, large
events consist of two or more propagating fronts. Initial-
ly, events develop in a triggering zone in which a collec-
tion of blocks is near threshold. One or more large fronts
emerge from this initial zone. For the shallow fault large
events always consist of unilateral or bilateral propaga-
ting fronts. However, for the deep fault a front may en-
counter a firmly stuck region which is significantly small-
er than the length of the front. This can lead to splitting
of the front and, consequently, to more complex events.

Our measurements indicate that the value of the cross-
over moment M in the magnitude-versus-frequency dis-
tribution is different in one and two dimensions. Howev-
er, this is expected from dimensional analysis, which
leads to an estimate of how M scales with the parameter

From Eq. (3) in one dimension (1D) the dimensions of
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FIG. 4. Typical delocalized event in the shallow two-
dimensional model with depth-dependent friction. The event
has p =6, which is near the peak of the corresponding
magnitude-vs-frequency distribution [the parameters are given

in Fig. 3{d)]. In this event 2225 of the 10000 blocks are in-

volved. The top figure illustrates the slip distribution in the
event. Only the region near the slip is shown, corresponding to
about 150 blocks along the x axis (the actual length of the fault
is N„=500). The shading illustrates the amount of slip during
the event with black corresponding to no slip and the grey-to-
white scale (shown under the figure) ranging linearly in displace-
ment up to the maximum value of 0.6 during the event. The
bottom figure illustrates the slipping blocks at equal intervals of
time (Et=5, in our dimensionless units, where the total dura-
tion is t=75), where grey corresponds to the earliest times, and
white to the latest times during the event. Only a narrow band
of blocks is slipping at any given time, and the event propagates
primarily from left to right in the figure.

FIG. 5. Typical delocalized event in the deep depth-
dependent model [parameter values as in Fig. 3(c)]. This event
has p =6, which on the corresponding magnitude-vs frequency
distribution lies a little more than halfway between p, and p*.
In this event 3522 of the 20000 blocks are involved. The top
figure illustrates the slip distribution during the event. The en-
tire fault is shown. Black corresponds to no slip, while the
grey-to-white scale ranges linearly up to the maximum displace-
ment of 0.5 during the event. The bottom figure illustrates the
slipping blocks at equal intervals of time (At=5, and the total
duration is t=44), grey corresponding to early times and white
corresponding to the latest times during the event.
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moment are given by

[M,D ]= [displacement] [length ], (4)
ratio v T= 1/2a

deloc

I I I I I

NF loc

while in two dimensions,

[M2D ]= [displacement] [area ]

= [displacement] [length]

In Eq. (2), U is the displacement, which is dimensionless,
while g is the only parameter with the dimensions of
length. Of course, the lattice spacing a and system length
along the x or y axis, e.g. , L =X„a,where X is the
number of blocks along the x axis, also have the dimen-
sions of length; however, it seems reasonable to assume
that the crossover M will not depend strongly on a or L
for systems that are sufficiently large. Thus it follows
that

M, D ~g, M~D ~g

with dimensionless corrections. For the one-dimensional
model this scaling was verified in Ref. [5], and our two-
dimensional simulations indicate that (6) gives a reason-
ably good fit to the data as g is varied [14].

Additional comparisons between the behavior of the
two-dimensional depth-dependent model and seismicity
patterns observed for real faults are obtained by examin-
ing the distribution of hypocenters and the magnitude-
versus-frequency distribution as a function of depth. For
a given earthquake the hypocenter is the position of the
first motion detected by a seismograph (the epicenter
refers to the position projected onto the Earth's surface).
Study of the patterns of events may ultimately be useful
for earthquake prediction. In the one-dimensional model
we found that prior to a large event the maximum activi-
ty (largest rate of smaller events) was typically near the
epicenter of the large event [4]. In the two-dimensional
model our numerical simulations again show increased
activity in the neighborhood of a coming large event.
However, here we address the depth-dependent features
of the hypocenter distribution to determine what types of
potentially observable features might arise naturally as a
consequence of increasing pressure as a function of depth.

In measurements of earthquake hypocenters and epi-
centers, there is an intrinsic uncertainty which arises
from the fact that the threshold for detectable radiation
from a given source depends somewhat on the distance of
the measuring apparatus from the source. For that
reason measurements are best obtained using near-field
equipment, which is only available in certain locations
[15]. The most reliable data on microearthquakes is ob-
tained from near-field measurements. For large events
one typically relies on far-field measurements, simply be-
cause few, if any, large events have occurred in locations
where local seismographs are in place.

For the model we have calculated the magnitude-
versus-frequency distribution as function of hypocenter
depth, simulating near-field measurements by identifying
the event hypocenter as the first block that moves and
far-field measurements by identifying the hypocenter as
the first block that moves faster than a specified threshold
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FIG. 6. Integrated magnitude-vs-frequency distributions as a
function of depth for the depth-dependent models. In (a) we
plot our results for the shallow fault [parameter values as in Fig.
3(d)], and in (b) we plot our results for the deep fault [parameter
values as in Fig. 3(c)]. In each case the solid line represents
near-field (NF) measurements of the localized events and corre-
sponds to the total rate of events as a function of the depth of
the first block that slips. The dot-dashed line represents the
near-field measurements of the delocalized events. Here we
on'y count events with magnitude greater than p, , as estimated
from the corresponding magnitude-vs-frequency distribution
(Fig. 3). In each case these measurements indicate that the lo-
calized events are increasingly suppressed with depth, while the
rate of delocalized events is not very sensitive to depth. The ra-
tio of near-field measurement of delocalized to localized events
(long-dashed line) shows an enhanced relative rate of delocal-
ized events with depth, especially in the case of the shallow
fault. The dotted line represents the far-field measurements of
delocalized events, which is the rate of delocalized events as a
function of the depth at which the velocity first exceeds
vT= I/(2a). The shallow fault [(a)] shows an enhanced rate of
delocalized events using this far-field measurement, while on
such enhancement is seen for the deep fault [(b)]. In order to
obtain a similar enhancement for the deep fault, a much larger
velocity threshold much be used. The medium-length dashed
line in (b) shows the result of far-field measurements for delocal-
ized events in which the velocity threshold is taken to be vT =

—,'.
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velocity, taken here to be 1/(2a). The near-field mea-
surements thus correspond to a much smaller detection
threshold. We expect that measurements based on an ac-
celeration threshold would give qualitatively similar re-
sults.

The results of our simulations are illustrated in Fig. 6,
where we plot integrated magnitude-versus-frequency dis-
tributions as a function of depth for several different
cases. Our "near-field" measurements for the total rate
of events (including events of all sizes) indicate that for
both the deep and shallow faults, overall, more events are
triggered near the surface, as should be expected since
the friction threshold is least at the top. Because the
smaller localized events dominate the overall number of
events, this measurement indicates an enhanced rate of
smaller events near the surface. In contrast, a separate
near-field plot which includes only the delocalized events
(p ~ P ) indicates that the hypocenters of delocalized
events occur at a more nearly uniform, depth-
independent rate, with a small enhancement near the sur-
face. For comparison, the ratio of the near-field rate of
delocalized to localized events is also plotted. The ratio
shows a strong enhancement with depth in the case of the
shallow fault, indicating that, relative to the rate of small-
er events, the large events are much more likely to be
triggered at depth. For the deep fault the relative rate
still appears to be rather uniform with depth.

In contrast, even before any ratios are taken, under
certain circumstances the "far-field" measurements show
an enhanced rate of hypocenters of large events with in-
creasing depth. For the shallow fault the enhancement is
seen when the threshold velocity is taken to be
Ur = 1/(2a). For the deep fault the threshold
Uz =1/(2a) does not lead to an enhanced rate of large
events with increasing depth. Instead, a much larger
threshold (which is probably unphysically large as a
detection threshold) must be specified in order for the
enhancement to be observed. This is due to least in part
to the fact that, for the deep fault, even a large event
(p) p) need not contact the bottom at all. See Fig. 7 for
an example of this behavior. Generally, our results indi-
cate that while the actual first motions are equally likely
at any depth, the first fastest slipping speeds are some-
what more likely to be obtained at depth in the model.

These results can be compared with the data of Sibson
[11]for the hypocenter distributions of microearthquakes
and focal depths of large earthquakes in various different
regions of California. Sibson's main conclusion is that
the rate of microearthquakes begins to decrease below a
certain depth in the crust and that large events tend to be
triggered at depths where the rate of microearthquakes
has decreased substantially. In general, the observed be-
havior and relevant depths vary regionally, as does the
focal depth of the large earthquake relative to the tail of
the distribution of smaller events. Here we will comment
on only the most general patterns. Our near-field mea-
surements of localized events in the model, in which we
saw a decreasing rate of these events as a function of
depth, are qualitatively consistent with Sibson's measure-
ments of the decreasing rate of microearthquakes with
depth. Sibson's data also show that typically there is rel-

FIG. 7. Slip distribution in a delocalized event in the deep
depth-dependent model [parameters as in Fig. 3(c)]. Shading
from grey to white indicates increased displacement, while
black regions did not slip at all. This event has p=7 and spans
the system from left to right, but not from top to bottom. In
fact, in this event the bottom of the fault does not slip at all.

atively little seismic activity at very shallow depths (up to
5 or so kilometers), a behavior that is absent in the mod-
el. We expect that this discrepancy arises from material
properties near the surface of the crust which have been
left out of the model and associate the "top" of our model
fault with the depth at which seismic activity peaks. The
relationship between the data and our results for the
model is less clear in the case of large events. Our results
compare most favorably in the case of the shallow fault,
where the far-field measurements showed that large
events tend to be triggered at depth. It is difficult at this
point to tell whether the discrepancies between the data
and our results for the deep fault arise because the crust
depth in California is more comparable to the dimensions
of the shallow fault or whether the discrepancy is due to
features such as the brittle-to-ductile transition in the
crust, which have been left out of the model.

In summary, we have shown that the two-dimensional
version of a Burridge-Knopoff model gives rise to a
magnitude-versus-frequency distribution which is charac-
terized by a b value of unity describing the smaller local-
ized events and an excess of large events, consistent with
results obtained for real faults [16,17]. We have also
made some preliminary studies of a generalization of the
original spatially homogeneous model to one in which the
friction depends on depth. Comparisons can be made be-
tween our displacement patterns and Archuletta's kine-
matic reconstructions of real events [13] and our results
for the hypocenter distribution and Sibson's data for hy-
pocenter distributions on real faults [11].

In the one-dimensional version of the model, we ob-
served [2] a crossover in the magnitude-versus-frequency
distribution corresponding to the transition between lo-
calized and delocalized events. In the Earth this cross-
over is associated with the depth of the crust and a cross-
over which occurs when an event just breaks the current
from top to bottom [10]. Based on estimates of the pa-
rameters in the model [5] (obtained from data for mi-
croearthquakes [15] and typical sound speeds and slip
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times in the crust), we obtained an estimate of the cross-
over magnitude predicted by the model which is con-
sistent with the corresponding estimate based on crust
depth. It is not at all clear why such different mecha-
nisms lead to such similar predictions. Interestingly,
comparisons between the numbers used in these estimates
indicate that the depth of faults in California (approxi-
mately 15 km) and the length scale in the model,
/=2'/a in(4$ /oa), at which the crossover between lo-
calized and delocalized events takes place, are roughly
equal.

Our two-dimensional simulations again showed a
crossover in the magnitude-versus-frequency distribution
which distinguished between localized and delocalized
events. Our results for the deep fault, in which most of
the large events did not span the fault from top to bot-
tom, indicate that in the model this crossover is not
depth dependent. Interestingly, however, in our simula-
tions of the shallow fault, the depth (N =20) is roughly
equal to the crossover length [18] (/=15), and it was this
case that had the best agreement with the California hy-
pocenter distribution data. In contrast, for the deep fault
the depth (N =100) was substantially greater than the
crossover length (/=20). The correspondence between
the observed depth-dependent crossover in the Earth and
the transition in the model remains an interesting and im-
portant question.

Of course, the sense in which our results agree with
data at this point is purely qualitative. For example, for
a more quantitative comparison of the hypocenter distri-
butions, it would be necessary to carefully choose the di-
mensions of the model system, the depth dependence of
the friction law, and other model parameters to corre-

spond to realistic values. However, so many potentially
important features have been left out of the model that
such a detailed investigation would at this point be
premature. First, we plan to determine the qualitative
changes in behavior which occur when various different
realistic features are added to the model. Another impor-
tant feature that may enhance the depth-dependent pat-
terns is the variation of temperature with depth, which
results in the brittle-to-ductile transition in the crust.
This transition, which marks the interface between the
mantle and crust, might be incorporated in the model by
adding a viscous region, corresponding to a velocity-
strengthening friction law, below a certain depth [10,19].
It is conceivable that this feature may also lead to an
enhanced rate to large events at depth. Ultimately, the
most useful models may be based on insights gained by
contrasting the changes in behavior produced by adding
different complexities both individually and collectively.
This work represents the first step in a program aimed at
constructing more realistic models.

The fact that in all of the generalizations of the model
that we have considered so far the 6 value of unity first
seen in one-dimension persists of two-dimensions is a
very promising feature of this model, because it is con-
sistent with available data. The robustness of this result
suggests that it should follow from rather general con-
siderations and remains an outstanding and provocative
question for the model.

In the course of this work I have benefited from many
useful discussions with James Langer, Chris Myers, Craig
Nicholson, Bruce Shaw, and Chao Tang.
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