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Kink-antikink collisions in sine-Gordon and P models: Problems in the variational approach
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In this paper, a collective-coordinate description of a breatherlike solution of the perturbed sine-

Gordon equation is considered. It is shown both numerically and analytically that the equations describ-

ing the evolution of the breather parameters are ill defined. This feature is shown to arise because the
equations are obtained through a projection on a null vector. It is shown to be present also in

collective-coordinate descriptions of the kink-antikink collision in the P model. Alternative Ansatze

that do not cause singularities are presented.

PACS number(s): 03.40.Kf, 11.10.Lm, 11.10.Ef, 02.50.+s

I. INTRODUCTION

There are many mathematical techniques that can be
used to obtain the analytic solution in an integrable sys-
tem. The solutions are characterized by a number of con-
stant parameters that come naturally as action variables
from the inverse scattering method [1]. This is not possi-
ble when the system is perturbed. One idea is to assume
that the solution depends only on a small number of
time-dependent parameters (collective coordinates) which
have a physical meaning. The choice of the collective
coordinates is arbitrary even though one is led to them by
introducing time dependence into the constant parame-
ters of the unperturbed system. By this method one
hopes to reproduce the important features in the time
evolution of nonlinear waves. A significant reduction in
the number of degrees of freedom is achieved by going
from the nonlinear partial difFerential equation (PDE) to
a set of ordinary differential equations (ODE's). However
introducing many modes can lead to a competition be-
tween the chosen collective coordinates. In particular
some coordinates can be redundant. It may also happen
that the particular form of the Ansatz can lead to ill-
defined equations as will be shown in the present work.

For the sine-Gordon and P equations many efforts
have been applied to get a simplified description of the
dynamics. The use of a single collective coordinate
describing the kink position in the sine-Gordon equation
is very restrictive. The addition of a time-dependent kink
width by Rice and Mele [2] in the study of lightly doped
polyacetylene better describes the deformable particle
character of the kink motion. Such an object called a
"wobbling kink" was shown to exist by Segur both for
sine-Gordon and P [3] models even in the absence of per-
turbations. To demonstrate this he used asymptotic ex-
pansions. Its stability, however, could not be proved for
the P model while some qualitative arguments by Camp-
bell [3] make it questionable for the sine-Gordon model.
The collective-coordinate description has also been suc-
cessful in describing the evolution of a sine-Gordon kink

submitted to a spatial perturbation in order to model a
nonuniform Josephson junction with a variable maximum
Josephson current [4]. This inhomogeneity creates a lo-
cal potential for the Auxon which can compete with the
driving frequency and lead to chaos via period-doubling
bifurcations. The remarkable agreement between the dy-
namics of the perturbed PDE and the ODE's for the set
of two collective coordinates [4] showed that this particu-
lar choice of collective coordinates was a good one.

Many different sets of collective coordinates have been
used by difFerent authors for the P model in studying
kink-antikink collisions where interesting resonance phe-
nomena appear due to the interchange of energy through
internal oscillations [5]. In fact, these were specifically
taken into account as extra degrees of freedom by Sugiya-
ma [6]. Even though he did not take into account the
width coordinate a deformation of the kink-antikink was
possible through the internal modes. Jeyadev and
Schrieffer [7] extended this by using a relativistic covari-
ant Ansatz but in order to make the calculations tractable
they did not take the phonon contribution to be covari-
ant. The phonon coordinate blew up during the collision.
It will be shown that it would not have blown up if the
phonon contribution was taken to be fully covariant.
Campbell, Schonfeld, and Wingate [8) introduced a sim-
ple Ansatz with a translational and a shape degree of free-
dom to calculate the interaction between two kinks. A
detailed numerical analysis of the equations by Flesch [9]
showed that the shape mode blew up during the collision.
For the sine-Gordon equation, Legrand guided by an
algebraic identity gave a two-collective-coordinate Ansatz
which he used for the study of a perturbed breather [10].
There is a sign error in the Lagrangian of [10] which
when corrected introduces a mathematical singularity
that cannot be removed. The shape mode coordinate
blows up when the breather is "Aat." In this paper all
these "singular behaviors" will be explained. The reason
is that the Lagrange equations are obtained through a
projection on a vector that becomes zero at one point in
the evolution.
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The paper is organized as follows. In Sec. II, the varia-
tional procedure and the equations of motion are present-
ed. Section III shows evidence for the singular character
of the equations by means of two accurate numerical
schemes. Section IV explains this feature for the sine-
Gordon collective-coordinate problem and for a
collective-coordinate study. In Sec. V a possible way of
eliminating this ill definition is presented and some
Ansatze are introduced. Concluding remarks are given in
Sec. VI.
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II. UARIATIONAL APPROACH

Consider the perturbed sine-Gordon equation:

P„—P„,+sin Q=F(g, b„t) .

When F =0, Eq. (1) can be integrated exactly and two
well-known solutions are [1] the breather
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Pxx(x, t) =4 arctan
slIlh(1 r ur)

u cosh(yr x)
(3)

where yr = I/+ I —u is the Lorenz factor. Formulas (2)
and (3) can be seen as special cases of

P(x,y (t), k (t) ) =4 arctan sinh[y (t}]
cosh k t x

where y(t) and k(t) have different expressions depending
on whether the solution is a kink-antikink or a breather.
This Ansatz relies on an algebraic identity between the
sum of a soliton and antisoliton profiles and the expres-
sion on the right-hand side (rhs) of (4) minus 2'. It was
put forth by Legrand [10]. The collective-coordinate ap-
proach is to assume that the solution can be written as in
Eq. (4) when the perturbation is present. It order to
derive the evolution equations for y and k, one could in-
sert (4) into (1) but there would still by an x dependence.
Instead, a variational approach is used. Equation (1) with
F =0 can be derived from the following Lagrangian den-
sity:

l =
—,'P, —

—,'P„—(1 —cosP)

by writing that the variation of f f l dx dt is zero. As-

suming that the solution can be written as in Eq. (4), the
evolution of y and k is then obtained from the usual
Lagrange equations derived from the Lagrangian
L (y,y, kk, t) =f l dx where expression (4) for P is used
to compute (5). The terms in the perturbation that can-
not be incorporated in the Lagrangian density such as the
damping are treated separately [10]. If

F=esincot —5P,

the equations of motion are

is the Lagrangian and P(Q) is the momentum associated
to y (k}, respectively. In the original paper of Legrand, a
sign error was made in the coefficient of the k term in L.
It was written to be (m +4y )[1+(2y/sinh2y)]+8y .
We will see that this mistake completely hid the real be-
havior of the solution around y =0. All the terms in J
except for the coefficient of y become zero when y =0 so
that the k oscillator becomes uncoupled from the y oscil-
lator and its mass goes to zero. The frequency of the k
mode is then expected to go to infinity leading to numeri-
cal problems when y is small.

III. NUMERICAL EVIDENCE
FOR A SINGULAR SOLUTION

The standard way to integrate the two second-order
ODE's (7) is to transform them into a system of first-
order differential equations using as variables (y, k, P, Q).
The evolution of P and Q is given by (7c) and (7d) while
the evolution of y and k is obtained by inverting the sys-
tem obtained from (7a) and (7b):

—16 y
k2

16—
k

T

y

—16
2 [y(2 —a)+8y ]

2y+=1+ . , y=m +4y
sinh2y

(8)

The value y =0 makes the right-hand side matrix of (8)
noninvertible indicating again numerical problems, even
in the absence of perturbations. The numerical study has
been done setting the perturbation terms to zero to see if
the Ansatz captures the unperturbed dynamics where the
exact solution is known. A11 the numerical methods that
were used failed to integrate (7) and match the pure
breather analytic solution of (1) when F =0. Even
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y+y =0, (9a)

though the results are negative they yield some insight
into the problem. Three main methods have been used:
ODE integrators, matching techniques, and an energy
conserving integration scheme.

A standard fixed step fourth-order lunge-Kutta
method gives a jump in relative error in the pure breather
case as y crosses zero and fails to conserve energy. A
variable step method [11]allows us to approach y =0 up
to 10 with k being of the order of 10 ' for the unper-
turbed problem where the exact solution is k=O. The
singularity could be avoided by an expansion for small y
that eliminates the terms in the kinetic energy of the k os-
cillator whose mass vanishes. This leads to a first-order
equation for k which makes k discontinuous. The lack of
symmetry of the solution around y =0 does not allow any
matching to be done that would permit the y variable to
cross 0. The ill definition of the equation for the k collec-
tive coordinate also appears when looking at small per-
turbations y and k around a breather near the instant
when y=0, i.e., when the breather is almost Oat. The
linearized equations are

ergy conserving integration scheme suggested by Vazquez
[12] was implemented. It is a finite difference discretiza-
tion of the Lagrange equations. The exact expressions
can be found in [12]. A discrete equivalent of the energy

E=Py+Qk L— (10)

can be defined and the work equation obtained from (7),

E . . dL
5(yP—+kg)—

dt dt

can be written in a discrete form so that the scheme is
conservative in the absence of damping. At each step a
second-degree equation has to be solved for y and k mak-
ing the scheme implicit. There is still a problem when y
approaches zero because the roots of the second-degree
equation for k become complex. For y =0 the numerical
scheme has no solution. In fact energy considerations for
the continuous equations (7) indicate a blowup of k when
y =0.

Consider the Hamiltonian associated to Eqs. (7) in the
absence of damping or forcing:

k=0 (9b) 'a yk kH= 8 —16y +2 [y(2 —a)+8y ]
so that y is oscillatory but k has to remain constant. On
the contrary for a kink both the modulations of the posi-
tion y and width k can have an oscillatory behavior. For
the breather problem, assuming that the strict conserva-
tion of energy could prevent the singularity, a discrete en-

+8k(2 —a)+ —(tanhy) a .
k

Solving (12) for k and taking y small, we have

(12)
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This shows that k is infinite for y =0 unless
(16y /k) H=O. In th—at case one of the values is
infinite while the other is zero; the latter being associated
to the pure breather or the pure kink-antikink solution.
From these numerical results one expects that the singu-
larity in the solutions for y =0 is due to the form of the
collective-coordinate equations themselves and not to any
numerical scheme used for the integration. It turns out
that one can predict it from the solution Ansatz (4).

ar.
Ba;

d BL
dt Qa.

imply

the a; are the collective coordinates. The Lagrange equa-
tions from (14),

IV. ANALYTICAL ARGUMENTS
EXPLAINING THE SINGULARITY

~+- at ay ai a4.
dx' +

ap aa, ay„aa,
The Lagrange equations derived from

L(y, y, k, k, t)= f l(g„g„,g, t)dx (14)

al a4'i

ap, aa;
at ada

at aug aa;
(16)

have a solution that is undetermined when y =0.
Legrand [10] examined in detail the procedure in which
(4) is substituted into (14). The spatiotemporal depen-
dence of P in (4) can be written as P=P(x, a;(t)) where

Using the fact that ap, /ad, . =a//aa;, integrating by
parts with respect to x, and assuming that ap/aa; van-
ishes at + ~, the Lagrange equations (15) imply [10]
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I+"dx
Bl

at ay,
a al ay

Bx BQ„Ba;
(17)

can be obtained from (1) by expanding the sine term in
Taylor series and keeping only the two first terms of the
expansion. Even though the equation is not integrable an
exact solution is known —the kink (or antikink):

The expression in brackets is the left-hand side of the
sine-Gordon equation as obtained from the condition that
the spatiotemporal variation of I is stationary. Therefore
(17) can be seen as a projection of the sine-Gordon opera-
tor onto the mode BP/Ba, . This situation does not
change when the sine-Gordon equation is perturbed; the
evolution equations are still given by (17). For our prob-
lem the coordinates a,.(t) are the pair (y(t},k (t) }so that

BP cosh (y)cosh( kx )

&y (coshkx) +(sinhy)

BP sinh(y)sinh(kx)x
(coshkx) + (sinhy)

(18)

(19)

The first mode is nonzero for all values of y but the
second mode is zero when y =0 (for all x) so that the
Lagrange equation for the evolution of k is automatically
satisfied no matter what the dependence is of k and x on
time. For y =0, the projection is done on a zero mode,
therefore giving no information. Note that this problem
only occurs for a breather or kink-antikink Ansatz and
not for a pure kink.

If one chooses an Ansatz for the solution like the one of
Scott and McLaughlin [13] instead of the (y, k) coordi-
nates the problem remains unchanged. Take for example
the breather Ansatz of [13]:

P(x, t) =+tanh +g
1 (x —vt)

(2) 1 —v'

where g is an arbitrary phase. To describe collisions be-
tween kinks for this model collective coordinates have
been used. It particular Flesch [9] used an Ansatz:

yo(x —xv)
P(x xo(t) yo(t))= 1 tanh

2

yp(x +xo)+ tanh
2

yo(x —xo)
sech

3'p

2
(x —xp)

V2

where xo is the center-of-mass variable and yo is the in-
verse of the width of the kinks. The Lagrangian he ob-
tains is very similar to (7e) in the sense that when xp goes
through 0 the coefBcients of the terms in yo and xoyo go
to zero. In fact

tan(v)sin( T)
~ =4 arctan

cosh[x sin(v)]
(20)

When T=0, Ops/Bv=O so that again the projection is
done on a null vector. This leads one to believe that it is
the form of the Ansatz that causes the problem. In fact
any Ansatz of the type

yo(x +xp)+ sech
2

2
(x+xp )

v'2 (27)

P(x,y ( t), k ( t) )=4 arctan f(y(t), k(t))
(21)

Bp 4 fk f
1+(f /g)' g g' (22)

BP 4 fy f
1+(f/g)' g g' '2V (23)

are proportional when f =0 because the terms f and fk

carry no x dependence, therefore leading as above to ill-
defined evolution equations.

The P problem. The P model [1]

P„—P„„—(P —P )=0 (24)

where f can be zero, is doomed because the partial
derivatives

is zero for xo =0 so that again the projection is done on a
null vector. The problem cannot be fixed by introducing
xo in the Ansatz or by adding a radiation term because
the projection on the yo mode is the problem. Exactly as
for the (y, k) variables, the numerical simulations show
that yo blows up when x0=0. From the Hamiltonian
Flesch shows [9] that yo necessarily goes to pp when

xo =0 unless xo is such that —,'m, x0+ V—Ho =0 where V
is the potential energy and Ho the total energy. His
numerics use the algebraic differential equation solver
DASSL developed by Petzold [14]. Such an integrator
uses the functional form for the differential equation
F(C&, 4&, t) =0 and minimizes F by computing the correct
values of N and @.Even though it does a better job than
all the routines mentioned above, because the "jump" in
the value of the Hamiltonian is small at the crossing [9],
it still cannot be used for a study of the long-time behav-
ior of the perturbed sine-Gordon equation because the
amplitude of the "jump" is likely to increase at every
crossing.

Prior to the study of Flesch, Jeyadev and Schrieffer [7]
had done a collective-coordinate study of the P model
using an Ansatz derived from the Lorenz covariant solu-
tion of the linearized P equation around a static kink.
The complete Ansatz was
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/{a(t),a(t) A (t),B&(t),xt }=1+tanhy —tanhy+

F, (t —ax) F, (t +six )+ A (r) P, ( —)cos —P,(+ )cos
1 —a 1 —a
F&(t —ax ) F&(t +ax)

+ g 8&(t) P&(
—)cos —P&(+ )cos

1 —a 1 —a
(28a)

where

(28b)

the Lagrangian. In the following section simpler Ansatze
are presented that do not cause ill-defined evolution equa-
tions.

2a is the separation between the kink and antikink, P& is
the "shape" mode associated with its frequency Fj,

P,(+ )=tan(y + )sech(y + ), (28c)

and P& are the phonon modes associated with their fre-
quency I&. The calculations of the Lagrangian were in-
tractable with expression (28} so the authors of [7] used a
reduced Ansatz neglecting the a term in y+ ..

P(a(t), A (t),x, t ) = 1+tanhy tan—by+

+ A (t)[P, (
—

)
—P,(+ )] . (29)

V. ALTERNATIVE ANSA TZE FOR SINE-GORDON
AND P MODELS

Because the ill definition of the equations is due to the
fact that the Lagrange equations are obtained by a pro-
jection on a null vector, a way to fix things is not to do a
simple projection anymore. Introducing an a, dependen-

cy in the Ansatz leads to a Lagrangian l. (a;,a, ,i, ) The.
Lagrange equation for a,. is now

The A coordinate blew up during the collision as could
be expected from the fact that Pz =0 when a=0. The
full Ansatz is such that Pz is nonzero when a =0 because
the a dependence is different in the two terms. Keeping
the full Ansatz (28) cannot be done in practice because of
the complication of the integrals involved in evaluating

Ba;

It implies

BI d Bl
B~ dt Bii

=0 (30)

(31)

It can be noticed that BP, /Ba; =BPIBd;. By integrating by parts with respect to x and assuming that (Bl /BP )(BPIBa; )

and 8/Bt [(Bl/BP„)(BQ/Ba; ) ] tend to zero at + ~, Eq. (31) is equivalent to

ai ay
Bx BQ„Ba;

a aI ay
Bx Bg„gg,

BI ~4'i

dr Bf( Qg,

8 8 Bl BP
at ar ay, aa,

=0. (32)

Ba;
a ay
Bt Ba;

Now use the fact that so that the whole expression becomes

y+ d Bp 8 Bp
Ba; Bt

and write

a aI ay
ar ay, aa,

(33a)
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where

al
ay

Bl
at ay,

a al
ax ap

(33b)

The last term is identically zero so that the Lagrange
equation is [7]

+
d ay a ay

Ba,- Bt
=0, (34)

which is no longer a simple projection. Following this
idea, a simple Ansatz that can be introduced for the
breather problem is

P(x,y (t), k (t)) =4arctan sinh y(1+k)
coshkx

(35)

While this Ansatz is arbitrary, it is very appropriate to
make our point for the removal of the divergence in the
equation for k. It is not also unreasonable since any
shape oscillation can cause a small extension or contrac-
tion of the breather. When y is large the k term leads to
a wobbling kink-antikink pair. The reason for setting y
as a factor is to avoid a forced time dependence of k. In
the absence of perturbations k =0 so that the pure
breather or kink-antikink solutions still exist. For all
these reasons it is hoped that this Ansatz will lead io a
successful quantitative comparison with the solution of
the perturbed PDE. The evolution equations are current-
ly being derived.

For the P problem, an Ansatz of the form

gp[x xp(1+Pp)]
P(x,xp(t), yp(t))= 1 —tanh

2

P« —P„„+(tanhRo) sing+2(sechRp) sin+=0 . (37)

The equation is nonintegrable but a solution is known-
the 4m kink:

—X+Ro x+Ro
P(x, Ro)= —4arctan(e ')+4arctan(e ')

that vanishes at one instant in the evolution of the sys-
tern. This was established by writing the Lagrange equa-
tions. At this point it should be remarked that the prob-
lem is attached to only one of the two coordinates. Intro-
ducing a relativistic effect on the problem-free coordinate
will not remedy the situation. For example, in the (y, k)
problem considered introducing y in the Ansatz is not
useful because it is the effective mass connected with k
in the Lagrangian that vanishes. Section V showed the
essential mathematical ingredient that a new Ansatz must
have. For the breather an arbitrary k dependence was in-
troduced in the Ansatz leading to a Lagrangian contain-
ing a k dependence and a fourth-order nonsingular evolu-
tion equation through a second-order variational equa-
tion. In the case of P, a dependence of the kink-antikink
separation was introduced. It is then clear that the evo-
lution equation of the shape mode is not singular. The
same goal could have been achieved by keeping the com-
plete relativistic Ansatz introduced in [7]. This would
have introduced very complicated integrals over x, the
value of which could not have been calculated analytical-
ly.

The ill-defined character of the evolution equations for
one of the collective coordinates can be found in other
nonlinear problems like the double sine-Gordon equation
written as [15]

yo [x +xo( I+yo ) ]+ tanh
2

(36)
=4 arctan

sinh x
cosh Ro

(38)

eliminates the singularity for xo =0. Again, it is not un-
reasonable to assume that the separation of the kink-
antikink pair depends on the shape variable yo. It is
hoped using this Ansatz to obtain a quantitative agree-
rnent with the solution of the partial differential equation.

UI. DISCUSSION AND SUMMARY

The breather dynamics and its transition to a kink-
antikink pair is an important source of chaos in the per-
turbed sine-Gordon equation. This has been shown by
solving directly the partial difFerential equation that de-
scribes the time evolution of a field or many coupled os-
cillators in the discrete case that requires extensive corn-
putations. Such a direct approach does not elucidate the
simplified low-dimensional mechanisms for the transition
to chaos for the sine-Gordon equation or the complicated
resonance structure for the unperturbed but noninte-
grable P system. Several authors therefore used the
collective-coordinate approach [6,7,9,10]. In all these
cases the choice of the Ansatz introduced mathematical
singularities. It has been shown in Sec. IV that the
source of the singularity lies on the projection on a mode

so that collective-coordinate methods can be used. In
[15],the following Ansatz was used

P(x, R ( t) ) =4 arctan sinh x
cosh[R (t)]

(39)

in order to study the fluctuations of the separation R be-
tween the two kink components. It is clear that Pz =0
when R =0 leading to a vanishing mass in the Lagrang-
ian. Fortunately, the parameter R never goes to zero be-
cause the interaction potential between the two kink
components is minimum for R &0 as long as Ro&0.
Therefore the ill-defined character of the equations is not
apparent in the numerics.

Collective-coordinate methods do not have a range of
validity like standard perturbation methods based on the
theory of inverse scattering [13]. Therefore they remain
empirical and should not be used to predict results of the
numerical integration of the PDE. For example, Legrand
[10] compares the results of a PDE simulation on a per-
turbed breather with the collective-coordinate evolution
obtained from the solution Ansatz (4). Despite a sign er-
ror he finds good agreement. The reason for that is that
there is very little interplay between the y and k variables
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except when y is close to zero. Elsewhere the k terms are
very small. Computing (y(t), k(t)) with the wrong sign
in (73) and a pure breather initial condition with k =0. 1

leads to a value of k about 10, clearly nonzero but still
small. The only variable that plays a significant role is y.
A detailed study of the behavior of the collective-
coordinate ODE's would have pointed that out. In the
same perspective but for the P model, Fei and Vazquez
[16] took the Lagrangian obtained from the Ansatz (26)
and eliminated the terms causing singularities when

xo =0. They justified this by the fact that these terms de-
cay exponentially fast with xo and the claim that the An-
satz (26) is completely unrealistic when xo =0. The equa-
tions they obtain do not mimic the dynamics of the PDE
so the authors of [16] proceed to set to zero the interac-
tion term between the shape mode and the position mode
when xo & 0 and to rescale it by an arbitrary parameter I,
for xo)0. Despite these rather severe approximations
Fei and Vazquez find a value of A, for which they observe
a remarkable qualitative agreement with the extensive
PDE simulations of [8]. It seems natural then to think
that this resonance phenomena could be found in very
simple approximations. The reason for our advocating a
more complicated Ansatz is because of the hope of a
quantitative agreement with the PDE so that one would
be able to model completely the kink-antikink collisions
without an adjustable parameter. With that idea in mind,
the evolution equations are currently being derived and
coded.

Recently it came to our attention that Boesch, Stan-
cioff, and Willis [17] treated the problem of multiple col-
lective variables of nonlinear Klein-Gordon equations.
They use the Dirac treatment of constrained Hamiltonian
systems. Their calculations are simplified by using a pro-
jection procedure that bears some similarities to the pro-

jection described in Eq. (17). They applied the procedure
to the double sine-Gordon equation using an Ansatz for a
4m kink in the form

p=o (y +R ) —o (R —y)+X,
where

o(x)=4arctan(e ), y=y(x —X) .

y is a parameter, X(t) is the center of mass, R(t) the sep-
aration of the two subkinks, and y is the radiation field.
They even considered a relativistically correct Ansatz
with y= I/'i/I —X so that the equation of motion in-
cludes d X/dt . This however does not eliminate the po-
tential singularity we discussed earlier because BP/c)R =0
when X=0.
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