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An angular momentum J in a resonant-cavity electromagnetic field exhibits chaos in the time depen-
dence of the expectation value of J,. This fact is transparently demonstrated using the SU(2) generalized
coherent-state picture. Using Hale s averaging theorem, the mechanism of chaos is elucidated and found
to be equivalent to a periodically modulated, near-separatrix, pendulum motion. The rotating-wave ap-
proximation is also elucidated, and its nonchaos is explained. The modulations that cause chaos result
from virtual transitions, and the variance of J, initially grows exponentially.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

That consensus on a definition of quantum chaos has
not yet been reached is often attributed to the putative
fact that the natural definition of chaos in classical sys-
tems cannot be carried over into quantum mechanics [1].
In the classical setting, one looks at phase-space trajec-
tories and characterizes chaos in terms of the positivity of
the largest Lyapunov exponent [2]. Since we are taught
that quantum mechanics does not allow us to maintain
the idea of a phase-space trajectory, we no longer can use
the Lyapunov criterion for a definition of quantum chaos.
Many researchers have concluded that the only remain-
ing tactic is to study the quantum-mechanical properties
of known, classically chaotic Hamiltonian systems; this
approach has been dubbed "quantum chaology" [3].

In earlier work [4], we have argued that the Lyapunov
criterion can be applied in quantum mechanics by look-
ing at expectation value trajectories in a "quantum phase
space. " Heisenberg's uncertainty principle tells us that
these trajectories have associated, nonvanishing variances
for all of the variables. This fact does not a priori prevent
us from using the expectation value trajectories as ana-
logues to the classical trajectories. However, this tactic
only remains sensible as long as the root-mean-square de-
viations from the expectations remain small compared to
the expectations. It has been shown rather generally [5]
that for a Hamiltonian with a semisimple Lie algebra
symmetry, such that the Hamiltonian may be expressed
linearly in the Lie algebra, that the required circumstance
is maintained indefinitely in time. Generalized coherent
states are the key.

Nevertheless, there is a significant limitation to the ap-
plication of the generalized coherent-state approach that
stems from the linearity of the Hamiltonian in the Lie
algebra. In essence, the linearity amounts to the treat-
ment of some part of the total system in a semiclassical
manner. For example, in this paper, we will study an an-
gular momentum J quantum object in a resonant cavity

containing electromagnetic radiation that is treated semi-
classically, not quantally. All of our results, which are
rigorous for this treatment, become questionable if the ra-
diation is treated quantally [4]. This is really not such a
serious criticism given that the paradigm of the hydrogen
atom in a microwave radiation field has become one of
the central foci for quantum chaos research [1,6], and the
microwave field in that case is also treated semiclassical-
ly.

Sometimes it is asserted that you cannot have chaos in
quantum mechanics because the Schrodinger equation is
a linear partial differential equation and you need non-
linearity for chaos. That this is wrong can be seen in two
distinct ways. First, every classical Hamiltonian system
can be recast by the linear Liouville equation for a proba-
bility distribution in phase space. This distribution can
be taken iriitially to be a Dirac 5 function (localized on
the initial coordinates and momenta), and as a conse-
quence of the first-order derivative nature of Liouville's
equation, the solution will evolve as a Dirac 6 function
for all time. Thus, for a chaotic system, the Liouville dis-
tribution follows the chaotic trajectories precisely.
Second, the semiclassical quantal problems, such as those
treated here, also produce chaos in the Schrodinger
description. As we will see, the linear Schrodinger equa-
tion implies autonomous, nonlinear equations for the ex-
pectation values, and the time evolution of the wave func-
tion is exactly determined by a system of coupled, non-
linear, ordinary differential equations.

If one does not treat part of the system semiclassically,
e.g. , if one quantizes the radiation field, then the symme-
try group for the fully quantal problem changes. This
leads to Hamiltonians not linear in the Lie algebra gen-
erators, and this in turn destroys the limitless propaga-
tion of the generalized coherent states, thereby removing
the linkage with classical trajectories. Earlier, we studied
the behavior of a fully quantal system, the periodically
kicked pendulum [7,8]. We found that when its classical
analogue was chaotic, the quantum description in terms

6193 1991 The American Physical Society



6194 RONALD F. FOX

of an expectation-value phase space became very remark-
able. The variances grew exponentially fast to large size
compared to the expectations, and the quantum expecta-
tion trajectories soon bore no resemblance to the classical
trajectories. For example, classically, the sequence of
pendulum angles from kick to kick was a chaotic se-
quence that jumped all over the interval [0,2'], but
quantally the expected angle quickly converged on m (the
"down" position). This was a result of the variance of the
angle growing so large that the quantum probability dis-
tribution for the angle became broadly spread out over all
fo [0,2m. ]. We expect that this will generally be the case
for fully quantal treatments of classically chaotic systems
[9]. The semiclassical treatments are suspect for this
reason.

One reason for returning to the problem of an angular
momentum J in a resonant cavity is to illustrate the great
simplification in the analysis achieved by using general-
ized coherent states. In doing so, we present a time-
ordered generalization of the fundamental Lie algebra
factorization identity [5] that is the key to the whole pro-
cedure. With it we are able to generalize our earlier J=

—,
'

results [4] to arbitrary J. Moreover, elucidation of the
mechanism of chaos in this system turns out to be very
natural for the generalized coherent-state representation.
We again emphasize the fact that the mechanism for
chaos is directly tied to virtual transitions in this quan-
tum system [10]. Such transitions do not have a classical
counterpart. Thus, we are not engaged in "quantum
chaology"; rather, we demonstrate real chaos in a semi-
classically treated quantum system. The correct classical
analogue here is the rotating-wave approximation
(RWA), and the RWA is rigorously not chaotic

In Sec. II, the dynamical system is presented. The
time-ordered generalization of the fundamental Lie alge-
bra factorization identity is proved. In Sec. III the sys-
tematic procedure for treating fast processes (virtual
transitions) is reviewed and used to show how a periodi-
cally modulated pendulum dynamics is embedded in this
problem. This result explains the mechanism of chaos, as
well as elucidating the nature of the RWA. The variance
of J, is shown to'initially grow exponentially.

state of the angular momentum, but the state of the angu-
lar momentum feeds back into the state of the radiation.
This may be modeled by the semiclassical Hamiltonian
[4]

H=Qp, +I A(r)J, ,

in which J„and J, are Cartesian components of angular
momentum J, Qo is the size of the energy for the angular
momentum, I is related to the electric dipole coupling
strength, and A(t) is the time-dependent, semiclassical
cavity radiation field that we take as satisfying the
Maxwell equations

A = —QB, (2a)

B=QA+2—Ex(J ),

J+=J +iJ

These satisfy the SU(2) algebra

[J+,J ]=2fiJ, , [J„J+]=AJ+, [J„J ]= fiJ—
(4)

The Harniltonian becomes

in which Q is the radiation frequency and Ex(J ) denotes
the expectation value of J„. In earlier studies [4,11] of
this model, the electromagnetic field A has been treated
quantally, and then this model became known as the
Belobrov-Zaslavskii-Tartakovskii (BZT) model. All such
earlier treatments require some sort of expectation-value
factorization approximation that appears most securely
based [4] for the case of N noninteracting angular mo-
menta with N sufficiently large. Here, only one is in-
volved, but the radiation is treated semiclassically from
the outset.

Introduce the raising-lowering operators J+ by

II. AN ANGULAR MOMENTUM J
IN A RESONANT CAVITY H =Q0J, + —,

' I A ( t )(J+ +J ) . (5)

Consider an angular momentum J in a resonant cavity
such that not only does the cavity radiation affect the

The corresponding Schrodinger equation is solved by the
time-ordered exponential

%(t)=T exp ——f ds[QOJ, + —,'I A(s)(J++J )] %(0)
0

r

=exp — QOJ, t T exp ———f ds —,'I A(s)exp —Qp, s (J++J )exp ——Qp, s @(0)
0

=exp ——QOJ, t Texp ——f ds —,'I A(s)[J+exp(iQ~)+J exp( iQy)] g(0—),0
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in which we have used the identity

l l
exp —QOJ, s J+exp ——QOJ, s =J+exp(+i Qos ) . (7)

The time-ordered exponential in the last equality of (6)
is similar to the non-time-ordered structure that recurs in
the literature on generalized coherent states [5] and that
is factorized according to Helgason's identity [12]:

exp(gJ+ —g'J )=exp( —r*J )exp ——ln(1+i' ~'v)J, exp(&J+ ),

where

g sin(A'~ g ~
)

R/ g/ cos(iri f// )

Normally, the approach to the connection [5] between quantum mechanics and classical mechanics involves using the
generalized coherent states to connect the commutator algebra in the Heisenberg picture to the classical Poisson brack-
ets. This is achieved with Helgason s identity above. Here, we will prove instead the time-ordered generalization of the
factorization in (8) and use the Schrodinger picture.

Let g(s) be defined by

g'(s)= — I A(s)exp(iQos) .
2A

The time-ordered Helgason identity is as follows:

T exp f ds[g(s)J+ —g*(s)J ] =exp[G(t)J ]exp 2A'f ds G(s)g(s)J,
0 0

Xexp f ds g(s)exp 2A —f ds'G(s')g(s') J+
0 0

where G(t) solves

6= —iii 6 g —g' with G(0)=0 .

The proof is given below. Begin with
r

Texp f ds[g(s)J+ —g'(s)J ]
0

(10)

(12)

=exp f dsR(s)J Texp f ds exp —f ds'R(s')J [g(s)J+ —[g'( )s+R( )s]J ]exp f ds'R(s')J
0 0 . 0 0

=exp f ds R(s)J Texp
' f ds g( )Js++2Af 1's R( 's)g( )sJ—A' f ds'R(s') g(s)J —[g*( )+sR( )]sJ

0 0 0 0
r

=exp f ds R(s)J T exp f ds g( )Js++2A f dsR( s)g( )s,J
0 0 0

provided
s 2f ds'R(s') g(s) —P(s) —R(s)=0 .

0

Introduce G(t) by

G(t)= f dsR(s),
0

so that (14) becomes

6= —A' G g —g' with 6(0)=0 .

Equation (13) may be written as

T exp f ds[g(s)J+ —g*(s)J ] =exp[6(t)J ]Texp f ds[g(s)J++2iiiG(s)g(s)J, ]
0 0

=exp[G(t)J ]exp 2A'f ds G(s)g(s)J,
0

Xexp f ds g(s)exp —2A' f ds'6(s')g(s') J+
0 0

(13)

(14)

(15)

(16)

(17)
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which concludes the proof.
This proof in no way depends upon the specific form of

(10), which was introduced to make the connection with
(6}. We may easily check that for the special case where
g(s) is a constant, (ll) reduces to (8) and (9) when t =1.
In this case, (16) is readily integrated, yielding

G(t)= if*[exp(i2A/ g/ t )
—1]

&lg I
[exp«2&If'It)+ I] '

which for t = 1 gives

Finally, we also get

1f ds g(s)exp 2f—i f ds'G(s')g(s')
0 0

=f ds (exp[ —2 incos(A~g'~s)]
0

g*tan(a~ g~ ) (19)
= f ds icos (A~g~s)

This implies that

i
~ g~ Id [exp(i2fz~ g~s )

—1]
"0 R 0 [exp(i2A~g'~s )+ 1]

f ds tan(Rig'is )
0

ln cos(fiigi )
1

1 ln(1+Pi r*r) .
2A

(20)

(21)

These results reduce (11) to (8) as claimed.
We have expressed the time evolution of the system by

the unitary operator on the right-hand side of (6). To-
gether with (11) we obtain a fully factorized time evolu-
tion given by

%(t)=exp ——QOJ, t exp[G(t)J ]exp 2A f ds G(s)g(s)J, exp f ds g(s)exp 2' f—ds' G(s')g(s') J+ +(0),
0 0 0

(22)

in which

g(s) = — A (s)exp(iQos ),iI

G = —R G'g —g* with G(0)=0,
2 = —QB,

B=QA+ —Ex(J +J ) .

(23a)

(23b)

(23c}

(23d)

(25)

in addition to (24a}. We choose for %'(0) this state
Ij j &

and obtain the generalized coherent state

0

~4(t)) =exp — QOJ, t —exp[G(t)J ]~j,j)

J, lj, m)=melj m&

J jIm&=&j(j+1)lj m&

(24a)

(24b)

Since Ex(J+) can be computed from %(t), the dynamics
has been reduced to a closed system of coupled, ordinary
differential equations [in five real variables: A, B, g,
(which is complex, but its real and imaginary parts are
not independent), and the real and imaginary parts of G].
While an arbitrary initial state %(0) may be used in (22),
a special choice [5] leads to generalized coherent states in
this case, and it is precisely this choice that yields chaos
in this example.

Let the eigenstates for angular momentum J be denot-
ed by ~j,m ) such that

&&exp 24 j dsG s s
0

Now, define z(t) and S+(t) by

z(t)=&+(t)lJ, l+(t) &,

S (t)=&~(t)iJ+l~(t)) .

Each of these expectations contains the factor

exp 2A' jf ds [6(s)g(s)+ G*(s)g'(s) ]
0

= [1+a'~G(s) ~']-'~

(26)

(27a)

(27b)

The state with "highest weight" is denoted [5] by ~j,j ),
i.e., m =j. This state has the property

which follows from (12) and its complex conjugate, which
yield
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G(s)g(s)+G (s)g'(s)= —(1+i' iGi )
' iG(s)i2 —1 d

ds
+++g:$J (35)

ln[1+iri
I G(s) I'] .

$2 ds

is satisfied. This should not be confused with the identity

Ex(J )=Ex(J, )+ —,'Ex(J+J )+—,'Ex(J J+ )

(29) =A' j(j+1), (36)
Using the commutation rules (4), we obtain

z(t)=[1+Pi ~G(t)~ ] j(j,j~exp[6 (t)J+ ]

XJ,exp[6(t)J ]~j,j),
S+(t)= [1+6'

~
G(t)

~ ] j(j,j ~exp[G(t)*J+ ]

(30a)

XJ+exp[G(t)J ] ~j,j )exp(+i Qot ) . (30b)

In particular, Ex(J ), needed in (23d), is just
—,'[S (t)+S (t)].

Explicit reduction of these expressions, eliminating all
remaining operators, requires the identity

1/2
2j !k!

2j —k!

z= A(S —S+ ), (37a)

S+ =+iQOS++iGAz . (37b)

It is readily verified that these are consistent with (35).
They are solved together with

which holds for expectations with respect to any state
whatsoever, whereas (35) refers to the particular initial
state, %'(0)) = ~j,j), and is quadratic in the expecta-
tions.

In order to justify the claim that this system exhibits
chaos, it is useful to determine the rate equations for z
and S+. Repeated application of (16) and its complex
conjugate, definition (10), and Eqs. (34a) —(34c) yield

for k=0, 1,2, . . . , 2j (31)

and its adjoint. Expanding the exponentials in (30a) and
(30b) yields

3 = —QB,

B =QA+ —(S++S )
r

(38a)

(38b)

z(t) = [1+iii'~ G(t) ~']

2J f

X g i''(j —k) A "~G(t)~ "
(2j—k )!k!

S (t) = [1+%' ~G(t)
~ )

2j —1 i
X y r(2J —k) X'"~G(t)~2k

(2j —k)!k!

XA'G(t)exp(iQot ),
S (t)=[1+iri'~G(t)~']

2j —1 i
X y iil(2' —k) irt "~G(t)~ "

(2j —k)!k!

XirtG'(t)exp( —iQiit ) .

Using the identities

2j —i

(2J k ) J x zk=2j( 1 +x2)2j
(2j —k )!k!

J zk —j(1 2)(1+ 2)2j —i(2 )!
(2j —k )!k!

gives

1 —R iG(t)i
1+X'~G(t)~' '

G(t)exp(iQot )
S+(t)=2jiri

1+X'~G(t) ~'

G *(t )exp( i Qot)—S .(t)=2jA
1+irt' G(t) '

It is immediately clear that the conservation law

(32a)

(32b)

(32c)

(33a)

(33b)

(34a)

(34b)

(34c)

In addition to the conservation law (35), we also find the
second conservation law:

Qoz+4A'Q(A +B )+—,'I A(S++S )=const . (39)

Thus, we have coupled, ordinary di6'erential equations in
five real variables (z, A, B, and the real and imaginary
parts of S+) and two conservation laws. This leaves
three independent variables, the minimum required for
chaos (cf. the Poincare-Bendixson theorem [2]).

For J=
—,', the preceding description reduces to the case

previously treated as the BZT model [4]. Thus, we al-
ready know that Eqs. (37a), (37b), (38a), and (38b) pro-
duce chaos. However, the use of the generalized
coherent states has also produced the explicit expressions
in (34a) —(34c) in terms of G(t) Moreov. er, the form of
S+ in (34b) and (34c) is automatically the so-called
rotating-frame representation, on account of the explicit
exp(+iQot) dependence. The rotating-frame transforma-
tion may also be used for the field variables A and B as
follows:

E~ = A+iB,
F+=E e +p(x+iQot) .

(40a)

(40b)

If we simply set F=F+, then F =F*, and (34b) and
(34c) combined with (38a) and (38b) yields

G exp( i Qot ) +G *exp( i Qot)—
F= i2jAI exp( —iQt ) 1+@' G

(41)
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This must be solved together with (10) and (12) which
may be rendered

6= fi—6 g g*—with G(0)=0 . (42b)

iI [Fexp(i Qt )+F*exp( i—Qt ) ]exp(iQot ), (42a)

Equations (41) and (42) provide a closed description in
terms of four real quantities (real and imaginary parts of
F and G) with one conservation law, Eq. (39), rendered as

g2IG(t)I2 [Fexp(iQt)+F*exp( —iQt)][6 exp(iQot)+6 exp( —iQot)]+ ,' fiQI—FI + ,2J'fp—r
2 2

=const .1+4' G(t) ' 1+Pi G
(43)

III. THE CHAOS MECHANISM

Equations (41)—(43) are an exact consequence of the
generalized coherent-state treatment of the semiclassical
quantum problem posed by Hamiltonian (1) and Maxwell
equations (2a) and (2b). All properties of the state of the
angular momentum J are determined by the function G,
which is automatically in the Qo —rotating-frame repre-
sentation. All properties of the field are determined by F,
which is in the 0—rotating-frame representation by con-
struction. These rotating-frame representations greatly
simplify the elucidation of dynamical chaos in this sys-
tem. Equations (41) and (42a) make it manifest that there
are two widely separated time scales in this problem
whenever Qo and 0 are near or in resonance, i.e., a long-
time scale IQ —Qol

' and a short-time scale (Q+Qo)
The rotating-wave approximation (RWA) is justified by

arguing that if we average over a time that is long com-
pared to ( Q+ Qo) ' but still short compared to
IQ —Qol, then the fast oscillations in the factors
exp[+i(Qo+Q)t] will average to zero. This is a heuristic
argument, but it can be made rigorous using Hale's
averaging theorem [13,14]. In any case, it amounts to re-
placing Eqs. (41},(42a), and (42b) by

z =jiiicosp .

Now,

z = —jfi(p sing+/ cosp),

and from (44a) —(44c)

GF*—G Fi = ——'jAA'I
I+a'I 6 I'

= —jiiip sing .

Equations (44a) —(44c) and (48) also give

(46)

(47)

(48)

o ~z—

ing, but also rigorously obtain the next-order averaging
corrections caused by the fast oscillations. These correc-
tions will break conservation law (45b), and once again al-
low the possibility [2] of chaos. Below, we show that the
RWA is equivalent to a near-separatrix pendulum, and
that the first-order corrections amount to a periodically
modulated, near-separatrix pendulum, known to be a
paradigm generic for chaos. The periodic modulations
are caused by the virtual transitions.

The key to seeing the preceding connections is the
transformation [15]

iI
4A'

6= —i' G g
—g* with 6(0)=0,

(44a}

(44b)

(1+a'I 6 I')'

z —z —— (jh' —z )
C,
0 2 A'

F= i2jA'I G
1+iri 6 (44c)

2Cij A+ — z —3z
2A Q

(49)

Furthermore, we will assume precise resonance ( Qo =Q )

for simplicity. In this approximation (RWA), the conser-
vation law (43) becomes two conservation laws:

'fiQ + —,'iriQ Fl =c
1+a'I 6(r) I'

FG Q +F )fc G
I+X'lgl' =C2,

(45a)

(45b)

which are readily verified using (44a) —(44c). Thjs, of
course, means that the problem has been reduced to two
independent real variables and the chaos is no longer a
possibility [2] in the RWA. The rapid oscillations we
have ignored correspond to virtual transitions [4,10] in
the fully quantal treatment wherein the field is also quan-
tized. By using Hale's averaging theorem, we not only
rigorously justify the RWA as the lowest order of averag-

Solving (48) for P gives

g F* +6 *2F2—2
I
g &IF I2

sin = — I
(1+&'I 6 I')'

41 6 I'IFI'
4 ' (I+a'Igl'}'

Putting (50) into (47) and using (49) yields

2 2
~ ~ cosrh

(t
=r sing+ r

4 sin P

(50)

(51)



GENERALIZED COHERENT-STATE ANALYSIS OF. . . 6199

This is the equation for a spherical pendulum with the
upward vertical position corresponding to /=0. Cz mea-
sures the azimuthal angular momentum. Our choice of
initial conditions for the generalized coherent state re-
quired that G(0) =0, so that Cz =0. Thus, we have a pla-
nar pendulum in the RWA. Moreover, 6(0)=0 implies
P(0) =0 as well. However, P(0)WO, as follows from (50),
which implies P(0)=+I [(C, /A'0) —j]'~, which is a
measure of the initial energy in the Geld. These particu-
lars correspond to a near-separatrix motion of a planar
pendulum. Equation (49), with initial conditions
z(0) =jh and z(0) =0, describes the very same thing (in
this form the solutions are given naturally in terms of
Jacobian elliptic functions).

Hale's averaging theorem may be applied to (41), (42a),
and (42b) directly. Since this procedure was implemented
in an earlier paper [4] on the BZT model, and since the
equations there are closely related to those here, we will
relegate the details to the Appendix and only quote the
outcome of the lengthy computations in the text. The re-
striction to the resonant case is maintained.

Introduce the dimensionless time t'=Qt, and the pa-
rameter @=I /0, which is also dimensionless. From now
on, all time derivatives refer to t' and we immediately
drop explicit use of the prime in t' Equations (41), (42a),
and (42b) become

F=i2jAe[G+6 "exp( 2ii)—](1+& ~6~ ) (52b)

Every term on the right-hand sides is of order e, but some
terms are rapidly oscillating with the frequency 2 (2Q
scaled by 0 '). Hale's theorem produces equations that
incorporate the rapid oscillations systematically to vari-
ous orders in e.

Denote by G and F the time averages of G and F over
one period of the rapid oscillations. After a lengthy cal-
culation [see (A7) of the Appendix], Hale's averaging
theorem yields

G =i 6 [Fexp(2it )+F*]— [F exp( —2ir )+F],
~ .Ae z

4'
(52a)

.& —z-~G=e i—G F*—
4

l

4A

+e i G[F—exp(2it )+F*] —6 F[exp(2it ) —1]+ F*[exp( —2ir ) —1]2 8 8g

sA —g . g

4
6 [exp(2it )+ 1]— [exp( 2it )+ 1—] jjgg" [exp( —2ir ) —1](1+&~g ~~)

4A

—6 F[exp(2it ) —1]4
i—G F'—

4
F — —6 [exp(2it) —1] [i2jh'G(1+& ~6~~) ']

(
1+ [exp( —2it) —1] [i2jA'G'(1+fp~g~z) '] (53a)

F=e[i2jRG(1+ @'
~
6

~
) ']

+e i2jA'[1+exp( 2it)](1—+A G )
' i2jA [G+—G exp( 2it)]-

(1+Pi G~ )

X ——G F[exp(2it ) —1]+ F*[exp( 2it ) —1]+—c.c.
2 8 8A

2jh'[1 —exp( —2it)](1+6 ~G~ ) '+2jh' [G+G'exp( 2it)]-
(1+Pi G~ )

1 A —
p
— . 1X ——G F[exp(2it) —1]+ F*[exp( 2it) —1]—c.c. —

2i 8 8'

44
F+c.c.—jfi[exp( —2it) —1](1+4 ~6

~ ) '+ jfi G*[exp( —2it) —1] —i GF"——
(1+g ~g~ ) 2 4

l F—c.c.

(53b)

ij A'[exp( —2it) —1](1+6 ~6~ )
' ijfi G*[exp( —2it) —1] — —. i GF-

(1+g'~g~~P 2i 4
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The order e terms correspond precisely to the RWA
given by (44a)—(44c). The order e terms contain G, F,
and exp(+2it) rapid oscillations. The averaging theorem
implies [see (A9) of the Appendix]

G=G+e —G F[exp(2it) —1]
8

+ F*[exp( 2it —) —1] +O(e ),
8A

(54a)

F=F+e [
—jAG *[exp( 2it—)

—1]

X(1+4' Gi ) ']+O(e ) .

Thus, we may write

(54b)

g2z=z+e IF G[1—exp(2it)]+c. c. ]](1+6'~G ')
4

+O(e ) . (55)

Taking two time derivatives and keeping only the
lowest-order terms for the z part [O(e ) ] and for the rap-
id oscillations [O(e)] yields

z= 2C

2A
jA+ z —3z

+eh' (I+Pi ~G~ ) '[F G exp(2it)+c. c.], (56)

in which F and G satisfy the order e equation (RWA) im-
plicit in (53a) and (53b). This is the modulated, near-
separatrix, planar pendulum that is generically chaotic.
Our earlier work [4] showed that numerical integrations
of (56) for e=0.05 are in very good quantitative agree-
ment with numerical integrations of the complete set of
quantum equations (41), (42a), and (42b).

It is straightforward to obtain the variance of J, in
closed form:

grows as an almost pure exponential over more than
three orders of magnitude (the variance grows by seuen
orders of magnitude) until it reaches 0.3 rad. After this,
of course, the nonlinear terms in sing become important
and the growth saturates. This is in keeping with our
earlier observations [7,8] for the chaotic, periodically
kicked pendulum treated quantum mechanically.

In summary, we have shown the following.
(1) Equations (37a) and (37b) and (38a) and (38b) pro-

vide an exact description of this semiclassical quantum
problem and produce chaotic time dependence with a
positive Liapunov exponent. An equivalent set of equa-
tions is given by Eqs. (41), (42a), (42b), and (43) in terms
of the natural, rotating-frame quantities F and G.

(2) The chaotic physical quantities z(t), S+(t), and
S (t) may be expressed in closed form in terms of the
function G(t) as a result of the time-ordered generaliza-
tion of Helgason's factorization identity.

(3) The mechanism of the chaos is that of a periodically
perturbed, near-separatrix planar pendulum as is exhibit-
ed by Eq. (56). The periodic perturbations have their ori-
gin in virtual quantum transitions that have no classical
analogue.

(4) The variance of J, shows an initial exponential
growth over seven orders of magnitude. Such exponen-
tial growth of the variance appears to be characteristic of
chaos in quantum systems and is very different from the
usual quadratic-in-time growth of the variance of a quan-
tum operator during nonchaotic dynamics.
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APPENDIX

GEx([J,—Ex(J, )] )=2jA
(1+%' G )

[(jh') —z ]
1

2j
=

—,
'A' j sin p, (57)

Application of Hale's theorem [4,13,14] requires put-
ting Eqs. (41), (42a), and (42b) into real form. We do this
by taking the real and imaginary parts of (52a) and (52b):

G„=—,
' i G [Fexp(2it)+F*]~, .Ae

where the second equality follows from (34a) and the
third from (46). Initially, /=0, and for Cz=0, Eq. (51)
implies an initially exponential growth of P [P(0)%0].
Thus, as long as P is in the regime where sing-P to at
least 1%, say, i.e., P (0.3 (in radians), then the variance
of J, grows exponentially. This can be seen explicitly for
the parameter values used in our earlier work [4,10].
During the initial stages, the solution for P(t) is

4A
[F*exp( 2it )+F]+—c.c.

G, =—i G [Fexp(2it)+F*]1 . Ae 2

2i 4

4A
[F*exp( —2it )+F]—c.c.

(Ala)

(h(t) = [exp(et ) —exp( et )] . —P(0)
2c

(58) F„=—,'[i2jA'e[G+G*exp( 2it)](1+6' —~G~ ) '+c.c.],
The parameter values are e =D. 05 and p(0) = —10
There is an induction stage lasting until t =46 during
which P grows from zero to —9 X 10 and at the end of
which the exponential exp( —et ) is only 1% of the size of
the exponential exp(et ). For the next 162 units of time, P

(A 1c)

F=—[i 2j lie [G +G *exp( —2it ) ]( 1+R
~
G

~
)

' —c.c. ]
2l

(Aid)
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(A2a)

Following Hale's procedure and using the notation from
our 1987 paper [4], we obtain

1 A —2 —,f = —i G—F — F+c c
2 4 4A

~3=-,' I
—J&6*[exp(—2tt) —1](1+A'~6(') '+c.c.],

(A4c)

co4= —.[ —jA'6'[exp( 2i—t) —1](1+Pi ~G~ )
' —c.c. ] .

2l

. A —2 —~f2= —i G—F
2i 4

F—c.c.
4A

(A2b)

Now we let y; be de6ned by

(A4d)

f3 —
—,'[i2jAG(1+Pi ~G~ ) '+c.c.],

f~
= —.[i2jh'6 ( 1+A

/
6

/
)

' —c.c.],
l

f, =—i GF—exp(2it ) — F*exp( 2i t ) +—c.c.2 4 4A

(A2c)

(A2d)

y&=G, ,

y2=G;,

y

y4=F; .

(A5a)

(A5b)

(A5c)

(A5d)

(A3a)

1 If2
= —. i G—F exp(2it ) — F*exp( 2i t ) c —c- .

2i 4 4A

We also write

f;=f;+f; .

Hale's theorem implies

(A6)

f3 =
—,'[i2jtrtG "exp( 2it)(1+—A' ~6~ ) '+c.c.],

(A3b)

(A3c)

tlf;
y =Ff +e col l g J

J
(A7)

f4
= —.[i2jAG *exp( —2it )(1+R'I 6 I') ' —c.c.], (A3d)

l

The original variables that appear in (Ala) —(A 1d) may be
denoted by x,. and are given by

1
co =——G F[exp(2it) —1]2 8

x, =G

xz=G;,
x3 =F„,

(A8b)

(A8c)

+ F*[exp( 2it) —1]+c—.c.
8A

A' —2—
co2= —. —6 F[exp(2it ) —1]2i 8

(A4a) x4=F; . (Agd)

After computing all of the derivatives in (A7) we finally
get Eqs. (53a) and (53b) of the text. Hale's theorem also
implies that

+ F' [exp( 2it ) —1]—c.—c.
8A

x, =y;+@co;+O(e ),
(A4b)

which is used to write Eqs. (54a) and (54b) of the text.

(A9)
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