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In a series of experiments performed by Mandel and co-workers, nonclassical effects have been demon-
strated in the interference of two photons generated in a process of parametric down-conversion. The
nonclassical effects in the two-photon interference effects can be discussed in the framework of two
different descriptions. In the first description, a stochastic theory of electromagnetic field fluctuations
can be used in order to calculate the interference pattern. In the second description, a theory of hidden-
variable fluctuations can be applied in order to calculate correlations of the interference pattern. A sto-
chastic theory leads to statistical inequalities for the light intensities, while a local hidden-variable
theory leads to Bell’s inequalities. Using the Schwinger-boson representation of the angular momentum,
we show that the two-photon interference effects can be described in terms of spin-correlated states. In
particular, we show that the action of a beam splitter on the photons in a parametric down-conversion is
equivalent to the production of an entangled state that is very similar to the well-known Einstein, Podol-
sky, and Rosen spin-singlet state. We show that the stochastic theory of two-photon fluctuations is not
equivalent to a hidden-variable theory of photon correlations. We establish a range for which the sto-
chastic theory fails but the hidden-variable theory is still possible. We compare our theoretical predic-
tions with the experimental results and conclude that a violation of the stochastic theory has been clearly
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observed, while the violation of the hidden-variable theory is less pronounced.

PACS number(s): 42.50.Wm, 42.50.Dv

I. INTRODUCTION

In a series of experiments, Mandel and co-workers
have studied nonclassical effects in two-photon interfer-
ence [1-5]. These nonclassical effects have been demon-
strated in the interference of signal and idler photons
generated in a process of parametric down-conversion.
In the experiment described in Ref. [3], correlation mea-
surements of mixed idler and signal photons have been
performed as a function of two linear polarizer settings,
in order to observe the violation of Bell’s inequality.

Nonclassical effects in these kind of experiments can be
divided into two different categories. The first category
of nonclassical effects follows from the assumption that in
the interference effects the signal and the idler electric
fields are described by classical stochastic random vari-
ables [6-8]. This stochastic description of the elec-
tromagnetic fields involved in two beam experiments lead
to well-known classical inequalities for the stochastic ex-
pectation values of the fluctuating idler I; and signal I
intensities. Typical inequalities for this categories of
effects have the following form [9]:

(I2)=(1,)* and (I?)=(I,)?, (1.1
(I2)+(1?) =2(1,1,) , (1.2)
(I2Y(IR) = (1,0,)? . (1.3)

An experimental observation of the violation of any of
these classical inequalities is an indication of the failure
of the stochastic description of electromagnetic field fluc-
tuations in the two beam experiments. Because of this
property any theory of two beams interference con-
strained by these inequalities will be called a stochastic
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theory (ST) of light interference.

The second category of nonclassical effects is much
more subtle and involves tests of the locality of quantum
correlations. The local versus nonlocal description of
correlations is very well understood for measurements of
spin polarizations for a singlet Einstein, Podolsky, and
Rosen (EPR) spin state [10]. Local and objective descrip-
tion of the spin components based on the theory of hid-
den variables leads to fundamental constraints on the
joint probability p(a,b) involved in two spin-orientation
measurements given by directions a and b. These con-
straints take the form of inequalities, first derived and
discussed by Bell. The most widely used Bell’s inequality
has the following form [10,11]:

—p(ew,)=<p(a,b)—p(a,b’)+p(a’,b)+p(a’,b’) (1.4)
—pla’,o0)—p(w,b)=0, .

where a, b, a’, and b’ are arbitrary polarizer orientations
and the symbol o in any of these joint probabilities indi-
cates that the polarizer is removed.

In contrast to the EPR spin state, correlation measure-
ments of two beams interference offer a wide variety of
physical phenomena. Classical interference effects are
mixed with purely quantum-mechanical effects associated
with the polarization measurements or the single-photon
detection. Theories of two beams interference con-
strained by the inequality (1.4) are called local-hidden-
variable (LHV) theories. These LHV theories form the
second category of nonclassical effects [8,12,13] observed
or tested in two-photon parametric down-conversion.

At this point it is fair to raise the issue of complemen-
tarity between these two categories of theories. Are the
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violations of inequalities (1.1)—(1.3) a consequence of the
violations of Bell’s inequality (1.4)? Is the violation of the
Bell’s inequality (1.4) inevitably followed by a violation of
the stochastic inequalities? It is possible to have a LHV
description and violate the stochastic picture? It is possi-
ble to violate Bell’s inequality and still have an adequate
stochastic description? Which aspects of the ST or the
LHYV description of two-photon correlations have been
tested experimentally and which have not?

It is the purpose of this paper to study these problems
and to provide answers to these questions. This paper is
organized in the following way. In Sec. II we give a
theoretical description of the interference of two photons
using the Schwinger representation for angular momen-
tum. We show that in this representation the interfer-
ence of the signal and idler photons can be described as
correlations of spin components. Because of this descrip-
tion we can establish a connection between the two-
photon interference effects and the EPR spin correla-
tions. We offer in this section a ST of the interference
and a LHYV theory of photon correlations based on local
realism. We compare the ST and the LHV theory predic-
tions with quantum mechanics. The nonlocal and the
jumplike character of two-photon correlations is estab-
lished.

In Sec. III we study the interference if the signal and
the idler photons are mixed by a beam splitter. Using the
angular momentum description of these photons we show
that the action of the beam splitter is equivalent to a pro-
duction of the EPR entangled state from two uncorrelat-
ed spin states. In this framework we provide a nonlocal
description of photon correlations with a beam splitter.
The ST and the LHV theory of such correlations are
compared with quantum-mechanical predictions and the
experimental results. In Sec. IV some final conclusions
and remarks are presented.

II. INTERFERENCE OF TWO PHOTONS

A. Angular momentum description of the interference

It is the purpose of this section to give a complete dis-
cussion of the interference of two correlated photons
from the point of view of a LHV description and from
the point of view of a ST of two beams fluctuations. We
start our discussion by reformulating the two-photon in-
terference in terms of spin-variable correlations.

We consider a degenerate parametric down-conversion
process in which a signal and idler photons are produced.
Measuring the joint probability for the detection of these
two photons at two positions of the photodetectors, an
interference pattern has been observed. Following the
theoretical description of this effect, presented in Ref. [8],
we assume that the down-conversion process is generat-
ing a two-photon state |1 4,15 ), where 4 and B corre-
spond to smgle -mode s 1gnal and idler photons described
by boson @,2 ' and 5,5 " annihilation and creation opera-
tors, respectively.

At the detector the positive-frequency part of the elec-
tric field can be expressed by the following formula:
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£0g1=— (@ +Be it

(¢) ‘/2( e %), 2.1
where the phase ¢ corresponds to the geometrical spacing
of the detector and the numerical prefactor has been
selected for later convenience. The field intensity opera-

tor at the screen is given by the following formula:
1($)=E T($)E T g)

=L@'a+5'6+5b Tae't+a The 4). 2.2)

The two independent boson excitations of the signal
and idler field can be used as a Schwinger’s representa-
tion [14] of a fictitious angular momentum 3. In this rep-
resentation we have the following formulas for the angu-
lar momentum operators:

J.,=2%%, 7_=b'a, (2.3a)
J,=la'a-5'), N=a'a+5"5, (2.3b)
JE% %’—+1 =iG+1), (2.3c)

where j =N /2 is the total angular momentum (spin) of
the system.

Using the relations (2.3), we can rewrite Eq. (2.2) in the
following form:

T=—LN+T_e*+T e ™). (2.4)
It is easily shown that for the initial number state
[1,,15), the only possible states generated by I are
[1,4,15),12 4,05, and |04,25).

Using the definitions (2.3) it is easy to check that these
three states correspond to an angular momentum (spin)
equal to 1 (N =2) and three different spin projections
m =0,1,—1. From the point of view of the spin vari-
ables, the two-photon interference is equivalent to a sin-1
system. The three-photon states quoted above shall be
described using the angular notation |0), |+ ), and | —),
with m =0,%1 and where we have dropped the index
j=1

In spin variables the photon intensity (2.2) has the fol-
lowing form:

Ig)=1+7(¢), (2.52)
where

J(¢)=3n, (2.5b)
with

n=/(cos¢,sing,0) . (2.6)

From the definition of £ (¢) and J(¢), we obtain the
following two commutation relations:

(B FAp), B TN gp =114 "7, 2.7

[T($),T($)1=iT sin(¢; — ;) (2.8)

The joint probability of photodetection at the ¢, and ¢,
locations of the interference experiment is given by
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P12(¢1,¢2)=<E (‘)((ﬁl)E (—)(¢2)E (+)(¢2)E (+)(¢1)>
=(:T(¢1(9,):) ,

where :: denotes the normal order of the electric-field
operators, and the average is over state |0). We shall as-
sume in the following perfect detectors so all the quan-
tum efficiency factors can be set to unity. It is readily
verified that the normally ordered intensities are

(:T(¢)1(4,):)
=(T(¢)1($,))—(E T Up)E H4,))
X[E TN p)),E T (¢y)] .

(2.9a)

(2.9b)

The first term of this expression can be easily calculated.
We note first that due to the commutation relation (2.8)
the angular momentum J(¢) commutes for different
values of ¢ if applied to the state |0). As a result of this
we obtain the following expression:

(T(¢)T(9,))=1+cos(¢;— ) .

The second contribution to the expression (2.9) in-
volves a commutator of the electric-field operators. For
the two-photon state of the idler and signal we obtain
that

(2.10)

(BA$E gy =11+ %), (2.11a)
(B NpE FAp))=[E T, E TN)]*, (2.11b)
and .

(T¢I () =2|[E T¢),E TAp)I?.  (.11¢)

Because of these relations we obtain a remarkable
simplification of the formula (2.9):

(T(p)T(8,):) =1(T()1(9,))
=1[1+cos(¢;—¢,)] .

From this formula it follows that for this particular
state of the field the intensity operators I(¢,) and T(4,)
commute and that the normal ordering of these operators
reduces to a trivial factor of 1.

The angular momentum average with a state of given
m is of course equal to zero. As a result of this we obtain
that the individual intensity averages are

(T(¢))=(T(¢,))=1.

From Egs. (2.12) and (2.13) we can calculate the nor-
malized second-order coherence function:

(:T(p)T(dy):)
(T(¢))(T(d,))

(2.12)

(2.13)

gy, b))= =3[1+cos(¢1—¢,)],

(2.14)

which due to our normalization is identical to the joint
probability given by Eq. (2.14).

We conclude this part noting that the use of
Schwinger’s angular momentum representation has
helped us to rewrite and to reinterpret the quantum-
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mechanical intensity correlations in terms of spin-1 angu-
lar momentum variables. We shall dwell on this descrip-
tion in the following part in which the nonlocal character
of quantum correlations will be discussed.

B. Nonlocal description of the interference

In Sec. IIA we have derived the normally ordered
correlation functions of the electric-field operators using
Schwinger’s angular momentum representation. In this
part we shall explore the spin-1 picture of two-photon
correlations in order to formulate and to discuss the non-
local character of these correlations. From Egs. (2.9) and
(2.14) we concluded that

g2(¢1,0,)=p12($1,¢,)=1[1+cos(¢;—¢,)] .

In the following we shall give a spin-correlation interpre-
tation of this formula.
Let us consider the operator ﬁ(qﬁ) which is defined as

(2.15)

ﬁ(¢)=%[1+f(¢)]=ﬁﬂ,

2 (2.16a)

where T(4) is the intensity operator (2.2). If P(¢)
operates on the state |0) it is easy to show that

(P(¢))=(P%¢)),

i.e., P(¢) acts like a projection operator on |0). In addi-
tion, we obtain from the definition (2.16a) the following
decomposition of unity:

[ 48 pig)=1,

0 k

(2.16b)

(2.17)

According to these formulas the operator P(¢) can be in-
terpreted as a projection of the spin on a direction given
by the unit vector (2.6). A joint measurement involving
two different orientations ¢, and ¢, is described in this
case by the following probability:

P(d1,02)=(P($)P($,)) =1(T($)T(4,)) .  (2.18)
Using the result (2.10), Eq. (2.18) becomes
p(¢1,¢2)=7[1+cos(¢;—¢,)], (2.19)

i.e., an expression identical to a joint measurement of
spin orientations in EPR correlation. Because of the rela-
tion (2.12) we obtain that a spin joint probability p (¢,,é,)
is just 1 of the normally ordered electric fields joint prob-
ability p,,(¢,¢,). Performing the marginal average of
this distribution, with the help of Eq. (2.17) we obtain the
onefold distribution function which in this case is equal
to the probability with one of the polarizers removed:

- d
p(dy,0)=p(d))= f: —%p(¢l,¢2)=%. (2.20a)
Similarly
p(o,¢))=p(d))=17 . (2.20b)

Because of the factor 1 involved in the expressions

(2.15) and (2.19), it is important to note that the margin-
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als of p;,(¢;,¢4,) do not lead to marginal distributions
(2.20). This is because the joint distribution p,, involves
normally ordered operators which are not projection
operators. Only averages of projection operators have
the right marginal distributions. In the present physical
situation the difference is in a trivial factor of %, but it
reflects again the fact that the definitions (2.9) do not in-
volve projection operators.

It is well known in the context of a LHV theory of spin
correlations, that the joint probability (2.19) will violate
Bell’s inequality (1.4) for some values of ¢, and ¢,. It
means that an interference measurement involving a
two-photon state can violate Bell’s inequality if different
positions of the interference pattern are investigated.
This violation follows of course from the wrong assump-
tion that spin orientations are objective local realities
subjected only to local hidden parameters denoted here
by A, and A,.
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In the following we shall present arguments showing
that quantum-mechanical correlations violate this locali-
ty assumption [15]. In fact, we shall derive an explicit
formula underlying the nonlocal character in two beams
interference.

Using a trivial identity

T(¢)= [ drrs(A—P(4)) 2.21)

we can rewrite the formula (2.18) in the following form:

P(b1,6)= [dA, [ dAhAp($1,A13600,) , (2.22)

where the distribution function p(¢;,A;¢,,A,) is defined
as

P, A3, A5) =3 [1+cos(d; —4,) [[8(A1)8(Ay) +8(A; —1)8(A,—1)]

+1[1—cos(d;— d) [[8(A; — 1)8(A,)+8(A,)8(A,—1)] .

The distribution function is bivalued, with the parame-
ters A; and A, being random numbers that can be O or 1.
If the random number is O no photon is detected. If the
value of this number is 1 a photon has been detected.
The expression (2.22) clearly has the form of a hidden-
variable theory. But there is a fundamental difference,
because the distribution (2.24) depends in addition on the
geometrical location of the detectors given by the angles
¢, and ¢,. In this sense this distribution is nonlocal be-
cause it depends on arbitrary and even remote positions
of the photodetectors [16]. This nonlocal character of
the distribution follows from quantum mechanics and re-
sults in the violation of Bell’s inequality (1.4). The
derivation of this inequality is based on the locality as-
sumption which requires that the distribution of hidden
variables is independent from the orientation (position) of
the detectors. From the nonlocal quantum-mechanical
distribution (2.24) one can easily establish joint distribu-
tions involving, for example, a photon detection at ¢, and
no photon detection at ¢,, or a no photon detection at ¢,
and no photon detection at ¢,. We shall denote these
joint distributions by p (i;j) with i,j =0, 1, where the first
digit corresponds to yes or no detection at the position ¢,
and the second represents a yes or no detection at the lo-
cation ¢,. From Eq. (2.24), it is easily verified that

p(0;0)=p(1;1)=¢[1+cos(¢;—¢,)], (2.25a)

p(0;1)=p(1;0)=1[1—cos(¢;—¢,)] . (2.25b)

We can rewrite the joint-probability distribution (2.24)
in terms of a conditional probability and a onefold distri-
bution according to the Bayes formula

P(B1A;300,4,)=(8(A—P(¢))8(A,— P(¢,))) . (2.23)
After some simple algebra, Eq. (2.23) yields
(2.24)
[
p (¢1’}"1;¢2’)"2)=P(¢27A2|¢1,k1 )P(¢1,7\1 ), (2.26)
and where the marginal distribution is
P($1,h0)= [ dAp($1,A13851,)
=18(A—1)+18(1)) . (2.27)

From these relations we derive the following condition-
al probabilities involving combinations of yes and no
detections:

p(0l0)=p(1[1)=1[1+cos(¢,—¢,)],
pO[1)=p(1/0)=1[1—cos(¢,—¢,)] .

(2.28a)
(2.28b)

Comparing Egs. (2.28a) and (2.21) we can conclude
that the second-order coherence function can be
identified with a conditional probability of yes-yes and
no-no detection. It means that the probability of photon
detection at ¢, under the condition of zero photon detec-
tion at ¢, is given by the formula (2.28a). The same rela-
tion holds for no photon detection at ¢, under the condi-
tion of no photon detection at ¢,. If the photodetectors
are at the same position, i.e., ¢;=¢, once a photon has
been detected the detection of the second one is a certain-
ty [p(1,1)=1 for ¢,=¢,]. If §;—¢,=m,37,... once a
photon has been detected at ¢, there is a certainty that
the next photon will not be detected [p(1,1)=0 for
¢1—¢,=m]. The outcome of each detector is represented
by a perfect random series of O and 1 equally distributed.
The nonlocal character of these two random sequences is
reflected in their correlations. For example, if the out-
come of the photodetection at ¢, is given by the following
random sequence: A,=(0,1,1,0,0,...) the outcome at
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¢,=¢,+m can be predicted with certainty and is equal to
A,=(1,0,0,1,1,...), i.e., no correlations of digits 1—1
or 0—0 can be observed. Changing the value of ¢, we
will change the outcome of the experiment according to
the formula (2.28a). This example illustrates the nonlocal
character of quantum correlations in which two perfectly
random sequences A, and A, are correlated with changing
position of photodetectors. This is how quantum
mechanics works.

In conclusion we note that the nonlocal character of
quantum fluctuations leading to the violation of Bell’s in-
equality cannot be tested in a single experiment. A
demolition of local realism always requires a series of ex-
periments involving different locations of ¢, and ¢, ac-
cording to the inequality (1.4). This situation is quite
different from the stochastic description involving classi-
cal inequalities (1.1)—(1.3) which are completely indepen-
dent from the location of the photodetectors.

In the following we shall investigate the stochastic pic-
ture of the interference of two photons.

C. Stochastic description of the interference

In classical wave optics, as we know, the electrical field
is just a ¢ number instead of an operator. In the two-
photon interference case, we can express the field at the
detector as a linear superposition of the signal (&) and
idler (&;) fields. For the positive-frequency part of this
field we have

6MNp)=6,+6e7 . (2.29)
The instantaneous intensity of this field is
I($)=I,+1,+E,6e*+E¥E.e ¢, (2.30)

where I, =6,|%, I,=16;|%.

In a stochastic description, the electric fields &, and &,
become random variables described by a classical distri-
bution function. The outcome of the measurement at the
detector is given as an ensemble average over different
statistical realizations of these fields. In addition, we
shall disregard all terms nonstationary in the phase
difference ¢; and ¢,. As a result of these assumptions we
obtain that the mean intensity at the detector is

(I($))=(I,)+(I,) .

Following the same procedure we obtain the following in-
tensity correlation function at two different locations ¢,
and ¢,:

(I(pI(y) )y =(I2) +(I2)+2(II; }[1+cos($;—¢,)] .

(2.31)

(2.32)
The degree of second-order coherence becomes
(I(p ()
(2) —
& 0= TG 1)
= Agr[1+ngrcos(d;—¢,)] , (2.33)

where the stochastic parameter Agr and 7gp are given by
the following formulas:
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(2.35)

Nst= <132)_|_(112)+2<ISII> .

The parameter 7gr has the interpretation of the
second-order fringe visibility of the interference pattern
in a ST:

(2) (2)

& max & min
NST™ () 1L (2 ° (2.36)
gga).x +g gl)n

From the formula (2.35) and the classical inequalities
(1.1) and (1.2) it follows that the visibility is always less
than or equal to 1:

Nst =3 2.37)

This stochastic result should be contrasted with the
quantum-mechanical prediction (2.15) leading to the
quantum visibility always equal to 1:

Nom=1. (2.38)

From this fact it follows that, for example, if a photon
has been detected at ¢;, the detection of the second pho-
ton for ¢,=¢,+7 is impossible with certainty:
p(1/1)=0. The stochastic description predicts that in
this case there is a finite probability of photodetection:
p(1]1)=L(1—ngr). This result is very similar to the
effect of photon antibunching. Quantum mechanically
single photons are antibunched, while classically the joint
probability of photodetection can never be equal to zero.

D. Stochastic versus local description of correlation

There is no general reason to believe that the ST of
field correlations is equivalent to the LHV theory of such
correlations. In fact, we have pointed out that a test of
Bell’s inequality requires a series of experiments involving
different locations of the photodetectors. On the other
hand, the ST can be tested performing a single correla-
tion experiment. For example, a test of the maximum
visibility for ¢, and ¢,=¢,+ 7 will be sufficient in order
to verify the quantum versus stochastic prediction. From
this simple argument it follows that a LHV theory is less
vulnerable to various experimental tests. This means also
that it is possible to have a range of parameters for which
a ST cannot hold while the LHV description is still possi-
ble. Because of this, extreme care is required before mak-
ing definite conclusions about the ST or the LHV failure
to describe two-photon correlations.

We have seen that the stochastic visibility gt has been
constrained by the inequality (2.37). This inequality has
been a consequence of the classical inequalities (1.1) and
(1.2). If we take the expression (2.33) at its face value, we
can assume that a LHV theory can predict that

%[1+7‘]LHVCOS(¢1_¢2)] . (2.39)

Pruv(,6,)=

It is well known that a maximum violation of Bell’s in-
equality (1.4) is reached for the following angles: angle
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FIG. 1. Joint-probability distribution as a function of relative
separation Ax on the screen [¢,—¢,=(2wAx/L)]. The solid
curve represents quantum mechanics (7=1), the dotted line
represents ST with 7=, the dashed line represents LHV
theory with §=V"2/2, and the superimposed experimental
points are from Ref. [1].

(a,b’)=37/4 and angle(a,b)=angle(a’,b’)=angle(a’,b)
=m/4. For this particular position (orientation) of the
photodetectors Bell’s inequality imposed on the expres-
sion (2.39) leads to the following inequality for the visibil-
ity Mpyv:

eyl = Kzg‘ . (2.40)
We see that this condition is less restrictive than the cor-
responding semiclassical inequality (2.37). If the visibility
is given in the range 0.5 < |9 ;yv| <V2/2 then the ST of
two-photon interferences are not allowed, while a LHV
theory of photon correlation is still possible.

In the experiment of Ghosh and Mandel [1] the joint
probability for the detection of the photons at two points
has been measured. It has been shown that the experi-
mental data are in good agreement with quantum
mechanics and violate the predictions of the ST. In order
to demonstrate the violation of Bell’s inequality four joint
probabilities for the detection at four different locations
would be required. These particular measurements have
not been performed so far. But in order to exhibit the
differences between the ST, the LHV theory, and quan-
tum mechanics we have plotted in Fig. 1 the joint-
probability distribution (2.39) for =1 (quantum
mechanics), n=1 (ST), and n=V"2/2 (possible LHV pre-
diction). On this figure we have superimposed the experi-
mental results of Ghosh and Mandel. It is quite clear
that the experimental points are in very good agreement
with quantum mechanics. While it is clear that ST
theory is violated, the experimental evidence for or
against the LHV description is much weaker.

We conclude this section by noting that an experiment
with interference coincidences measured at several loca-
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tions can actually rule out the LHYV description of corre-
lations in the interference of two photon. The ST can be
tested using, in principle, only one location of the detec-
tors. The experimental data from the interference of two
photons demonstrate the failure of the ST.

III. INTERFERENCE WITH BEAM SPLITTER
AND POLARIZATION

Hong, Ou, and Mandel [2] have demonstrated the
violation of Bell’s inequality in an experiment involving
mixed signal and idler photons. Correlation measure-
ments of this mixed signal have been performed as a func-
tion of two linear polarizer settings. The mixing of the
idler and signal photons produced in a down-conversion
process has been obtained with the help of a dielectric
beam splitter (BS). The action of the BS can be described
in the Heisenberg picture [17,18] (as a transformation of
the electric fields due to the mirrors of the BS) or in the
Schriodinger picture where the electric fields are un-
changed and only the states of the field are transformed
[19]. The Schrodinger picture of the BS transformation
has no classical analogy because it deals directly with the
quantum states of the electromagnetic field.

We start the discussion of this section describing the
action of the BS using the Schridinger picture.

A. BS in the Schrédinger picture

In this section we still consider the two-photon in-
terference produced by a parametric down-conversion.
The difference between this section and the previous one
is that the interference experiment involves the beam
splitter and two polarizers. Let us consider in the follow-
ing the experimental configuration of Hong, Ou, and
Mandel [2]. Linearly polarized signal photons and idler
photons are produced by a parametric down-conversion
process. Instead of letting them interfere directly the
idler photon passes through a 7 /2 polarization rotator.
Signal photon and idler photon are then incident from
opposite sides onto a beam splitter. The light beam after
the BS will consist of mixed signal and idler photons.
Then they pass through linear polarizers set at adjustable
angles 0, and 0, and finally fall on the photodetectors.
The coincidental counting rate of the two detectors locat-
ed at positions ¢, and ¢, provides a measure of the joint
probability p (6,,¢,;0,,4,) of detecting two photons for
various settings 6, and 6, of two linear polarizers.

Let us assume that before the beam splitter the signal
and idler photons are x and y polarized, respectively. Let
a,, a,, b, and b, denote the annihilation operators of the
x and y polarized signal and idler photons, respectively.
The corresponding number states of the system we shall
denote by |n,,n,;m,,m,)=|n,n,)®|m,,m,), where
the numbers n, and n, correspond to the signal photons
and the numbers m, and m, correspond to the idler pho-
tons. Before the BS the state of the field is

lo)=11,0;0,1) .

With the BS and polarizers the joint probability
P(61,61;65,6,)is

(3.1
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P12(01,8130,,8) =Y UTE{VETESVE (DUIy,)
(3.2)

where the signal and idler positive-frequency parts of the
electric-field operator projected on polarizers with orien-
tations 6, and 0,, respectively, are

E (M =(cosb))a, +(sind))a, ,
E {P=(c0s8,)b, +(sind,)b, .

(3.3a)
(3.3b)

The unitary operator U describes the action of the BS
and contains in its definition optical-path phases ¢, and
¢,. The action of the BS can be described in the Heisen-
berg picture, leaving the state |1,) unchanged and rotat-
ing the electric fields with the help of the U operator. In
the Schrodinger picture the operators are unchanged and
only the state |1,) is modified by the action of the BS. In
the following we choose to work in the Schrodinger pic-
ture. For a perfect 50/50 BS we obtain

lps) =Ulthy)

=1(11,0,0,1)¢" %"

4 10,1;1,0)

+i]1,1;0,0)e "#1—1]0,0;1,1)e'?) . (3.4)

Equation (3.4) tells us that the BS maps an initial photon
state |i,) into a state |¢gg) being a coherent superposi-
tion of four different two-photon states.

B. Angular momentum description of the interference

Following the procedure described in Sec. IT A, we in-
troduce an angular momentum description of the two-
photon interference with BS and polarization.

The intensity operator 1(6) of the signal field can be
expressed as

Fa ﬁ ~

I(6)=E{"E{"= 2" +7,6)), (3.5)
where

7,(6)=7,n, (3.6a)

is a projection of an angular momentum on the unit vec-
tor

n;=(sin26,,0,co0s26,) . (3.6b)
In Schwinger’s representation we have

N,=ala +ala,, (3.7a)

J,.=ala, J,_=ala,, (3.7b)
and

J.=Lala,—ala,). (3.7¢)

Similarly, for the intensity operator I(6,) of the idler
field we obtain

~ ﬁ A
76,)=E{E <2+’=—2”—+J,,(62) , (3.8)
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where N, » and fb are the corresponding angular momen-
tum operators composed of the b-boson operators.

In terms of angular momentum states the BS wave
function (3.4) has the following form:

lgs) =11+ ), 1= e’ 41— ) 0 |+),

i

+il0),®[1,0e Y1—il1,)®[0),e) . 3.9
where |+ ),|—) are states of spin-; with m =1 and
m =—1, respectively. The state |0) corresponds to spin

1 and m =0. In terms of this angular momentum state
we obtain the following formula for the wave function
after the action of the BS:

1 .
I¢BS)=‘/—§(,A)+IIB)), (3.10)

where the state | 4 ) involves only spin-1 states:
1 i($y—y)
[4) ==+ ,@l =) 4 =) e+,

(3.11a)

and where the state |B) involves only spin-1 states (1,
and 1, are unity operators):

i$,

[B>=T/1=2—(|O)a®|l,,)e —1,)®0),e) . (.11b)
From these definitions we obtain
(A|B)=0, (A|4A)=(B|B)=1. (3.12)

Let us express the initial state (3.1) in terms of the an-
gular momentum states following the definitions (3.7). As
a result we obtain

l¢0>=l+>a®‘—)b ’

i.e.,, an uncorrelated product of spin-J up and down
states. The BS transformation U maps this uncorrelated
state into a correlated state given by the formula (3.10).
From the definitions (3.10) and (3.11) we see that the vec-
tors |4,) and | 4 ) are spanned by spin-1 states, while the
vector |B) consists of spin-1 states. Because of the su-
perselection rules [see also Eq. (3.12)] we can ignore in all
next considerations the component |B) of the
transformed state. This component will never contribute
to any observable quantities. It is now well established
that the correct quantum state produced by weakly
driven parametric down-conversion contains a vacuum
component |0,,0, ) in its definition (3.9). It is easy to
check that this component in the subspace of angular
momentum (3.11) never contributes to the quantum ex-
pectation values. As a result of this step the action of the
BS is the mapping: |¢,)—|4), or in a more explicit
way,

(3.13)

UI+ )a®|—' >b'—)_‘_/%(|+ >a®l_ )bei(¢2_¢‘)

+|=)l+),) . (3.14)

From this remarkable relation we conclude that the BS
transforms a product state into an entangled state which
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has a form very similar to the well-known EPR-
correlated spin state. In fact, for ¢,=¢,+ the BS state
is identical to the spin singled state. From these discus-
sions we conclude that an interference of two photons
mixed by a 50/50 BS is mathematically completely
equivalent to the EPR correlations of entangled spin-}
states.

The joint probability defined by Eq. (3.2) can be written
in the form of p;,(Q,,Q,) where Q,=(20,,¢,) and
0,=(20,,¢,) are two arbitrary directions characterized
by their solid angles. If the BS is removed the directions
are characterized just by the two angles 6, and 0, and for
the uncorrelated state (3.13) we obtain

P12(91,62):<¢o'f1f2l¢'0)=<f1)<f2> , (3.15)
where
(T,)=cos?0,, (T,)=cos?, . (3.16)

It is well known that in classical wave optics the Malus
law predicts an attenuation of light intensity through a
linear polarizer. Equations (3.16) are just examples of the
Malus law. Because the initial state of the field is un-
correlated, if the BS is removed, the joint detection is just

P12(61,8,)=cos20,cos?0, . (3.17)

If the BS is included, the joint probability of photodetec-
tion becomes

P1(Q,Q)=(A|E{TESTVEVE (D 4)

=(A|:1(6,)1(6,):]|4) , (3.18)

where £ {*) and E §*) are given by Egs. (3.3). Because
the signal and the idler boson operators commute the
normal ordering of the intensities can be disregarded. As
a result of this we have

P12(Q,,Q,)=CA4|T(6))1(6,)| 4) , (3.19)

where the intensities are given by the angular momentum
formulas (3.5) and (3.8). For the BS state (3.14) this
correlation is

P12(Q1,Q,)=1[1+cosa—2(cos26,)(cos26,)] , (3.20)
where
cosa=c0s20,co0s26,+sin20,sin26,cos($, —¢,) . (3.21)

Equation (3.21) defines a, which is the relative spherical
angle between the two directions Q; and 2,.

The spherical cosine function (3.21) is rotationally in-
variant, while the probability distribution function (3.20)
is not. This property follows from the fact that the BS
state | 4 ) from the point of view of angular momentum
has no well-defined magnetic number m for arbitrary ¢,
and ¢,. If ¢,=¢,+ 7 this state becomes the EPR spin-
singlet state and then the probability distribution is rota-

tionally invariant:
P12(01,81;0,,¢,+7)=1sin*(6,—6,) . (3.22)

In this case the problem of the interference of the two
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photons is identical to the problem of EPR correlations
of the spin-singlet state.

For the state |ips) =| 4 ), the average of intensities is
found to be

(IY=(1,)=

Then the normalized second-order coherence function
() ;
g'“is

(3.23)

1
> -

(I,1,)
(I))(T,)
=[14cosa—2(cos26,)(cos26,)] .

8(2)(91’Qz)=

(3.24)

From these equations we see that we have two choices
for the correlation experiment. Either fixing ¢,,4, (i.e.,
positions of the photodetectors) and changing 6,,0, (the
polarizers) or fixing 6,,6, and changing ¢, $,.

If ¢,,4, are fixed and equal to ¢,=¢,+ 7 the state | 4 )
becomes a singlet spin state for which we have

g ?=2sin¥(6,—6,) . (3.25)

In this case the coherence function is rotationally invari-
ant and for 6,=0, the joint photodetection is equal to
zero as in the photon-antibunching effect.

If ,=¢, the state | 4 ) becomes a triplet spin state for
which we have

g®=25in%0,+6,) , (3.26)

i.e., a coherence function which is not rotationally invari-
ant. If the orientations 6, and 6, are fixed and equal to
6,=6,=1/4, we have

g ?P=14cos(¢,—¢,) . (3.27)

Note that this result is closely related to the case that we
have investigated in Sec. II.

C. Nonlocal description of photon correlations with the BS

In the subspace of spin-{ up and down states the inten-
sity operators (3.5) and (3.8) become spin projection
operators ﬁ(Gl) and 1/3(02). Following the procedure de-
scribed in Sec. II B we obtain

P, Q)= [ dA; [ dAAAp(Q,A;904,),  (3.28)

where the distribution function p(Q,,A;;Q,,A,) is
P(QLA;Q5,4,)
=1p[8(A)8(Ay)+8(A;—1)8(A,—1)]
+L(1=p)[8(A)8(A,—1)+8(A;—1)8(A,)] (3.29a)
and

p =4[1+cosa—2(cos26;)(cos28,)]. (3.29b)

This distribution function is nonlocal in the sense already
discussed by us in Sec. IIB. From this nonlocal joint
probability we can derive the following formulas for the
conditional probabilities of yes (1) and no (0) photodetec-
tions:
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p(111)=p(0|0)=p , (3.30a) p(Q,0)=p(0,0,)=1. (3.32)
p(O|1)=p(1|0)=1—p (3.30b) From this discussion we conclude that the interference

For the singlet state, and when 8, —6,=n, we have
p(1]1)=p(0/0)=0 . (3.31)

It means that for opposite orientations of the polarizers
one can predict with certainty that no correlations of di-
gits 1—1 and 0—0 (yes-yes and no-no) can occur at the
photodetectors. It means that the two sequences of ran-
dom numbers A,;=(1,0,1,0,...) and A,=(0,1,0,1,...)
have to be perfectly anticorrelated. This situation is very
similar to the photon-antibunching effect. The same con-
clusion holds for the triplet states when 6,+6,=n.

Because of the nonlocal character, the probability dis-
tribution (3.29a) and the resulting distributions (3.30) or
(3.28) violate Bell’s inequality (1.4). In this case the re-
moval of a polarizer is equivalent to a summation over
the projection operators P(8,) or P(8,) according to the
formula (2.17). As a result of this step we obtain

of two photons with polarizers and the BS is mathemati-
cally equivalent to the theory of quantum correlations of
entangled spin state | 4 ), which depending on the posi-
tion of the photomultipliers can become a spin-singlet
state or a spin-triplet state.

For photon polarizations the entangled state can be re-
garded in cascade-photon experiments and the violation
of Bell’s inequality has been observed for different orien-
tations of the polarizers [20].

D. Stochastic description of the interference with the BS

Following the stochastic description in Sec. IIC, we
can write the electric field at the first detector as a linear
superposition of transmitted and reflected signals. With
50/50 BS and polarizers 0, and 6,, we obtain that the sto-
chastic joint probability pgp(Q,,Q,) of photodetection
can be expressed as

Psr(Q1,Q,)=1{(cos?6,)(cos?8,){ I?) +(sin?6,)(sin’6,)( I} ) + (L, I; ) [ (cos’6, )(sin®6,) + (cos?6, )(sin0), )

+1(sin26,)(sin26,)cos($, —¢,)1} ,

where I, =|6,|? and I,=|&;|* are the stochastic intensi-
ties of the signal and idler signals.
Let us define the following two parameters:

ALy

=) (3.342)
and

_4h (3.34b)

X (I?) -~ )

If the idler and the signal fields are the same and if an at-
tenuator with efficiency 7 is inserted in the path of the
idler photons we have I, =l and accordingly y =n".
From the classical inequality (1.2) we obtain that for
equal beams we have
o0<k=1. (3.35)
Let us compare now the stochastic description given by
Eq. (3.33) with the quantum-mechanical result if the state
is a spin-triplet state (¢, —¢;=27). In this case the quan-
tum probability is given by

PQM(91,92)=%Sin2(61+92) . (3.36)

Let us consider in the following the specific case where
6,=m/4 and ¢,—¢,=27. From Eq. (3.33) we obtain in
this case

(3.33)

pST 91’_;1. =1_16<(IS+Ii)2)[1+USTSin(201"—'y$T)] >
(3.37)
where
) :[((1})—<13>)2+4<1,-1s>2]”2
ST (I, +1,7?)
) ay 172
— 2
=— - , (3.38a)
1+k (1+yx)?
e —1 | 1 x—1
= LI 38
Ysr=tan k x+1 (3.38b)

From the definitions (3.34) it is clear that the parameters
k and y cannot be independent because of the classical
inequalities (1.1)—(1.3). This means that the phase ygr
and the amplitude vgr in Eq. (3.37) are related. From the
stochastic inequalities (1.1)—(1.3) it follows that

< <

<vgr < ﬁ . (3.39)

1+k

For equal beams we have =1, k =1 and as a result a
visibility vgr=4. This result is identical to the result
given by Eq. (2.37). The only difference between these re-
sults is the inequality (3.42) which leads to 50% visibility
only if the beams are not attenuated, i.e., n=1.
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E. Stochastic versus local description of correlations
in the presence of the BS

Following the discussion presented in Sec. IID, we
shall compare the stochastic description of photodetec-
tion with polarizers and the BS with a LHV theory based
on a local distribution of hidden parameters A; and A, in
Eq. (3.28) [8]. Such a local description leads to Bell’s in-
equality (1.4) which is violated by the quantum result
(3.29). We shall compare the result of the stochastic
description given by Eq. (3.33) with the constraints im-
posed by Bell’s inequality. If we take the expression
(3.33) at its face value for a LHV description of the two-
photon interference we can assume that a local realism
leads to the expression

Pruv(6;,6,)=1N |cos?6,cos?0,

. XLHV
+(sin%0, — cos?6, ) —————
! g I+XLav
k
+ -V Gin20,46,) |,  (3.40)

2

where N is a normalization constant. In addition to this
expression, we need the following results if the polarizers
0, or 0, are removed:

XLHV kiay
PrLav(0;, ©)=+iN COSZGI— mcoszel + 2 ,
(3.41a)
XLHV kpav
Pruv(®,0,)=1N |cos?6,— — cos26,+ 5 ,
(3.41b)
pLHv(OO,OO)=% (1+kLHV) . (3.41¢)

In these expressions the parameters Yy and ky gy are
constrained now by the requirements that p; 4y are posi-
tive everywhere and Bell’s inequality (1.4). If the signal
and the idler beams have the same intensity we have n=1
and accordingly x gyv=1.

If we choose 20,=w/4, 20,=w/2, 20)=3m, and
20;=0, and assume that the location of the detectors is
such that ¢,=¢,+2m, Bell’s inequality and the positivity
of pyyv will lead to the following condition for the pa-
rameter ky yv:

1 ==1.707 .

0=k =
LHV =55

(3.42)

This condition is weaker than the corresponding condi-
tion of the ST which predicts in this case k =1. So here
we see again a range of k for which the stochastic theory
fails but the LHV theory is still possible.

F. Attenuation in quantum mechanics, ST, and LHV theory

The difference between quantum and stochastic or
LHYV description of the interference can be made more
pronounced if a quantum attenuator with the intensity
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transmission coefficient 7 is placed in the idler beam. If
we assume that the attenuator is in a vacuum state, due
to the normal ordering of the field operators in the photo-
detection process we obtain that the quantum result is
modified by a trivial scaling factor. For the triplet state
(¢,—¢,=2m) in the special case of 6,=/4, we obtain
the following quantum result:

Pom (3.43)

0
6, 4

= —Z—( 1+v,,,sin26,) ,

where v, is a geometrical factor that takes into account
the reduction of visibility due to an imperfect alignment
of the interfering beams.

The attenuation in the ST or the LHV theory is quite
different. We still consider the case of ¢,—¢; =27 and
6,=1/4 but with the attenuator in the idler beam.

In the ST we have in such a case I; =7I, and as a result
of this

T N .
DPst 01,7 =—4—[1+vSTvexpsm(29,—1/ST)] , (3.44a)
where according to the formulas (3.38) we have
_ 1497 o1 |1
Ve = R =tan (3.44b)
ST (1477 Yst 2

Note that in this case the visibility vgr is reaching its
maximum value in the inequality (3.39).

The attenuation of the LHV theory is given by the pa-
rameter X yy =17 and the expression (3.40) with 6, =7 /4
and kyyvy confined by the condition (3.42). We can write
this coincidence rate in the following form:

T N .
Pruv 91:: =T[1+vLHVvexp81n(261_7LHV)]’
(3.45a)
where
) 4y 1/2
vpv= T |1+ ki ——2— , (3.45b)
Y ki Y 4y
and
_ 1 2—1
=tan~! Tr—> . 3.45
YLHV Ky P+ 1 } ( c)

We take for k;yy the maximum value allowed by Bell’s

inequality:
/ (V3—1).

In Ou and Mandel’s experiments a 1:1 and a 8:1 neutral
density filter have been inserted in the path of the idler
photons. This corresponds to 7=1 and L. In addition,

kLHV = T (3 .45d)

0 2
V2 2y
1+9°
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FIG. 2. Joint-probability distribution as a function of the po-
larizer angle 0, with no attenuation of the idler photons (n=1).
The solid curve represents quantum mechanics, the dotted line
represents ST, the dashed line reprerents LHV, and the super-
imposed experimental points are from Ref. [3].

the experimental setup was such that v, =0.76.

In Fig. 2 we have compared the modulations of the
coincidence counting rate for quantum, ST, LHV, and
experimental predictions of Ou and Mandel for n=1. In
this case according to the formulas (3.44) and (3.45) we
have wvgr=1 and yg=0 for the ST and
VLav =(3—\/3)‘l and ¥y v =0 for the LHV theory.

In Fig. 3 we have the same comparison, but with the
idler photons attenuated by 7=1. In this case we have
ver =8 =0.802. ygr=—tan” }(8)=—75.75 for the ST

and vyyy=~0.824 and y;zy=—13.47° for the LHV.
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FIG. 3. The same as in Fig. 2, but with an attenuation of the
idler photons 7= 1.
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Note that quantum mechanics predicts for all values of 7
a visibility equal to 1 and no phase shift in the modula-
tion of the interference pattern.

From these figures it is quite clear that the experimen-
tal data rule out the ST and the violation of the classical
inequalities (1.1)—(1.3) is evident. The LHV theory pre-
dictions are much closer to the observed points. While
the experimental data does favor the quantum prediction,
the violation of local realism associated with the LHV
description is less pronounced.

IV. CONCLUSIONS

In this paper, quantum versus stochastic or hidden-
variable fluctuations in two-photon interference produced
by a parametric down-conversion process have been dis-
cussed. We have shown that the nonclassical effects in
the two-photon interference can be discussed in the
framework of two different descriptions. In the first
description a stochastic theory of electromagnetic fluc-
tuations can be used in the discussion of the interference
effects. In the second description a theory of hidden-
variable fluctuations can be applied to photon correla-
tions. Using the Schwinger-boson representation of the
angular momentum we have shown that the correlated
idler and signal photons can be described in terms of
spin-correlated states. In particular, we have shown that
the action of a BS on the two photons in a parametric
down-conversion is equivalent to the production of an en-
tangled state which is very similar to the EPR-correlated
spin state. We have shown that the ST of two-photon
fluctuations is not equivalent to a LHV theory of photon
correlations. We have shown that quantum correlations
are nonlocal and violate Bell’s inequality.

We have performed a comparison of quantum, ST, and
LHYV predictions with the experimental results and we
have concluded that a violation of the ST has been clearly
observed, while the violation of the LHV theory is less
pronounced. In view of new experiments [21-23] involv-
ing correlations of photons in down-conversion processes
we hope that a careful distinction of the ST from the
LHYV theories can play an important role in the investiga-
tions of quantum effects in fourth-order interference.

In two-color photon pairs experiments [21] the connec-
tion between spin-1 entangled EPR states and the photon
correlations is much more complex due to the finite pho-
ton bandwidth. In this case the theory of LHV involves a
continuous superposition of different angular momenta
corresponding to different states of the photon spectrum.
We plan to study this and other related problems in a
forthcoming paper.
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