
PHYSICAL REVIEW A VOLUME 44, NUMBER 1 1 JULY 1991
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We examine the dynamical behavior of the cryogenic hydrogen maser. Studying the coupled field-
matter equations, which have been reduced to the complex Lorenz equations, we obtain two operating
domains, one in which steady-state oscillation takes place and a time-dependent domain that is charac-
terized by a pulsed output power. For the latter we obtain bifurcation diagrams, both with and without
detuning, that display both periodic and chaotic attractors. Finally, we study the inhuence of thermal
noise on this time-dependent domain and show that for reasonable experimental conditions the pulse
triggering will be stochastic, but the pulse buildup and decay can be deterministic.

I. INTRODUCTION

From the moment it was first proposed and construct-
ed 30 years ago [1] interest in the hydrogen maser has
been concentrated almost without exception on its steady
oscillation mode. This is understandable in view of its
practical use as the most stable existing frequency stan-
dard for averaging times of seconds to days: Achievable
relative frequency instabilities are 10 ' for the room-
temperature H maser and 10 ' for its sub-Kelvin ver-
sion [2.,3], in both cases for 1-h averaging time. A recent
review of the history, principles, and applications of the
H maser can be found in Ref. [4]. Although the condi-
tion for the steady oscillation to be stable had been de-
rived for masers in general [5—8 j, it was recognized very
early already that the circumstances prevailing in the
conventional room-temperature H maser are far removed
from an unstable regime. In fact, it was pointed out that
the relative magnitudes of the relaxation rates allow for
an adiabatic elimination of the magnetization, leading to
the conclusion that the field amplitude would tend either
to zero or to steady oscillation.

Only recently [9] it was noticed by the present authors
that the unstable regime is much closer for sub-Kelvin H
masers. It can be reached, starting from the usual
operating conditions, by a readily achievable increase of
the cavity quality factor Q, . In addition, we dealt briefiy
with the kind of time-dependent behavior to be expected
in the new regime and pointed to the interest that would
be associated with its observation. First, the time-
dependent regime will ofter much more information than
the frequency and amplitude parameters which are given
by the stationary operation. Given the number of experi-
mental parameters which determine the maser dynamics
and which are often difIicult to diagnose, this extra infor-
mation is especially welcome. A second point of interest
is that the sub-Kelvin hydrogen maser is a realization of
the (complex) Lorenz equations in a parameter regime
[R,cr » 1, b =O(1)] which has hardly been investigated.
Although Fowler and McGuinness [10] have partially in-

vestigated the real Lorenz equations in this parameter re-
gime, the behavior of the complex Lorenz equations is
largely unknown in that domain of parameters.

In this paper we treat these aspects in a more detailed
way. In Sec. II we recapitulate the derivation of the
dynamical equations —on the one hand, to make our dis-
cussion self-contained and, on the other hand, to give an
unambiguous definition of variables and constants. The
latter is desirable since more than one convention is in
use. Moreover, we have to deal with a magnetic transi-
tion, contrary to the more usual situation, in which an
electrical transition is involved. In Sec. III we study the
linear stability of the steady solution and determine nu-
merically typical bifurcation diagrams. In particular, we
show that, even on resonance, periodic solutions are the
rule and chaotic solutions have only a set of restricted
domains. Finally, in Sec. IV we analyze numerically the
influence of noise on the deterministic evolution studied
so far. We determine the spread in pulse frequency and
peak intensity due to noise. We also determine the condi-
tions in which the time evolution of a pulse will be deter-
ministic, given the fact that its triggering will always be
stochastic in the domain of parameters considered.

II. THE MAXWELL-BLOCH EQUATIONS

We start the derivation of the Maxwell-Bloch equa-
tions for the cryogenic H maser by expanding [11] the
electromagnetic (EM) field in the cavity in modes n, with
frequency u„:

1 Q7~
B(r, t)= g p„b„(r), E(r, t)= g q„e„(r),

n & &p n &p

(2.1)

with Ib„(r)] and Ie„(r)I being orthonortnal vector fields
in the cavity of the hydrogen maser and c the velocity of
light. Using Maxwell s equations, it is easily seen that the
expansion eoefIieients p, and q, ean be interpreted as the
canonical variables of a harmonic oscillator. Quantizing
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E(r, t)= g 26p

1/2

(a„+a„)e„(r).

From now on, we will confine ourselves to a monomode
EM field corresponding to the TEp11 mode of the cavity
and will leave out the subscript n.

The Hamiltonian of the total system of atoms and field
1s

the EM field in analogy to the harmonic oscillator and in-
troducing creation and annihilation operators a„and a„,
Eqs. (2.1) can be rewritten as

1/2
i &~n

B(r, t ) = —g — (a„—a„)b„(r),
(2.2)

with the field, magnetization, and population inversion
defined by

B=(a), M=(J ), A=(J ) . (2.9)

Note that the field B is normalized so as to equal the
square root of the number of photons, whereas M and 6
are normalized so as to be equal to Xp„and
X(p„—p„), respectively, in terms of the number of
atoms X and the one-atom density matrix p.

Equations (2.8) are the field-matter equations for the
hydrogen maser in the absence of relaxation. Including
the phenomenological relaxation terms, we find

dB = —(ice, +a)B+gM. ,dt

with

Hatom Hfield +Hinteract (2.3)
dM = —(i co„+y ~)M+ gB b, (2.10)

Hatom a~~at X a3i

Hf;, id=%co, a a,
(2.4)

In Eqs. (2.4), o 3 and o+— are the familiar Pauli spin ma-
trices for the atomic two-level system, co„(co,) is the
atomic transition (cavity) frequency, and g is the Rabi
frequency divided by the square root of the number of
photons in the cavity

(2.5)

where g is the filling factor and V, is the volume of the
cavity. The summation over i is a summation over the
atoms in the storage bulb.

The Hamiltonian H can now be used to obtain the
Heisenberg equations of motion

The cavity loss rate is denoted by ~= I /T, and the relax-
ation rates for the magnetization and population inver-
sion by pi= 1/T2 and y

~~

= 1/T, , the so-called transverse
and longitudinal relaxation rates. The latter are primari-
ly determined by the finite residency time of the atoms in
the storage bulb and by collisional relaxation. The value
towards which 5 relaxes in the absence of field-matter in-
teraction is denoted by Ap.

Equations (2.10) are the Maxwell-Bloch equations.
They describe the time-dependent behavior of both the
room-temperature and sub-Kelvin hydrogen masers. In
the following sections we will discuss the correspondence
between these equations and the Lorenz equations and in-
vestigate the time-dependent behavior of the solutions.

III. DYNAMICS OF THE CRYOGENIC H MASER

To analyze the Maxwell-Bloch equations, we first in-
troduce the following scaling:

da l=—[H, a ]= ice, a+g—J
dt

dJ i=—[H,J ]= iso„J +—gaJ3,

dJ3
dt [H,J3]=—2g—(aJ++a J ),

where we have introduced the notation

(2.6)

B =() ~/2g )X exp( ice t )—,
M = ( 50/2R ) Y exp( —i co t ),
b, =b,o(1 —Z/R ),

R =g bo/(~@~),

(3.1)

(2.7)

Taking the expectation value on both sides of Eqs. (2.6)
and neglecting quantum Auctuations in the EM field then
leads us to

where co is chosen to be the maser operating frequency
in steady state. In terms of this scaling, the Maxwell-
Bloch equations (2.10) are transformed into the complex
Lorenz equations [12]

dB = —i co,8+gM,
dt

dM = —ice M+gBA, (2.8)

dX =o.[ —(1 i 6, )X+ Y'], —
d7

dY = —(I+i6„)Y+RX—XZ,

(3.2a)

(3.2b)

dA
dt

2g(BM*+B*M),— = —bZ+ —'(XY*+X*Y),
d7 2

(3.2c)
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where the detunings are defined by

5, =(co —co, )/ic, 5„=(co„—co )/yi . (3.3)

critical photon number lXHl =RH —1 —5 (in units of
the saturation photon number N, ) for the second thresh-
old is the real positive solution of

Let us consider the time scales involved in our problem.
Typical values (in sec ') for the time constants of the
cryogenic H maser are

yl! y~ 1, ~=10, g =10 (3.4)

Note the unusual orders of magnitude, in comparison
with typical laser values. The value of g follows directly
from Eq. (2.5). The maser y values are of the order of the
inverse residency time in the storage bulb. Spontaneous
emission contributions are completely negligible. One of
the advantages of the sub-Kelvin H maser relative to its
room-temperature version is the fact that atomic densi-
ties and thus Ao can be much higher for the same col-
lisional relaxation rates. This makes it possible to
achieve steady oscillation with modest cavity quality fac-
tors, which is of importance in reducing the frequency in-
stability due to cavity pulling. The higher atomic density
and lower temperature also provide for a reduced
inAuence of thermal noise on steady oscillation by in-
creasing the signal-to-noise ratio.

Given the large difference between the field and atomic
decay rates of the cryogenic maser, it would seem natural
to adiabatically eliminate the field variable which may be
thought to relax five orders of magnitude faster than the
atomic variables. However, the consideration of the un-
perturbed time scales is not sufFicient to justify the
asymptotic expansion known as adiabatic elimination of
the fast variables. This point was discussed by Lugiato
et al. [13],who stressed that the classification in slow and
fast variables must be based on the relaxation times of the
full problem including the effect of field-matter interac-
tion (see also Oppo and Politi [14] for an alternative point
of view). An analysis of these elfective time scales will be
presented after we have discussed the stability properties
of the steady solutions of Eqs. (3.2). For simplicity, we
restrict ourselves throughout this paper to the special
case b = 1, in which we can use the explicit analytic re-
sults obtained previously [15] for the complex equations
(3.2). The case b&1 has been treated recently by Ning
and Haken [16] and the results are considerably more
complicated. With b =1, Eqs. (3.2) have a trivial steady
state,

a2 IXH +oI IXa +oo =0

a2 =(1+3o.)(o —2),
a i

= (cr + 1)(o +2)(2o —5o —5)

—5 (o.—1) (6o +7cr+4),

ao = —2(o + 1)[(cr + 1) +5 (o —1) ]

X [(o+2) +5 (cr —1) ] .

(3.7)

In the limit cr~ ~, whose consideration is suggested by
the parameters (3.4), two domains have to be dis-
tinguished: a small detuning region, where

(1+5 )
1 —35 )0 and XH! =o. +O(1),

1 —35' (3.8)

As proved in Ref. [15], the Hopf bifurcation which takes
place at R =R~ is subcritical in the small detuning
domain, the only domain we shall analyze for the cryo-
genic maser parameters. In this case a linear stability
analysis does not give information on the nature of the
long-time solution which is reached beyond the second
threshold.

With these results, we are now in a position to explain
why the adiabatic elimination of the field variable is not
possible. As shown by Fowler and McGuinness [10], the
solutions of Eqs. (3.2) for R )RH with cr )) 1 and on res-
onance (i.e., 5„=5,=0) are pulse trains which can be ei-
ther periodic or chaotic. This remains true for 6„and 6,
sufficiently small. For the sake of this discussion, we in-
troduce the scaling

X=o.x, Y=o.y, Z =o.z, t =o.7.=~t, R =o.r,
(3.10)

e= 1/o. «1, 5, =O(1), 5„=0(1), r =O(1) .

(3.1 1)

and a large detuning region, where

1 35 &0 and IXHl'=-,'cr'(35' —I)+O(cr) . (3 9)

X=Y=Z=O, In these variables, Eqs. (3.2) become
3.5

corresponding to the absence of stimulated photons, and
a finite steady state,

Re(X) =Re( Y)=+&Z, Z =R —1 —5

Im(X)=0, Im(Y)=+5&Z, 5„=5,—:5 .
(3.6)

The trivial solution (3.5) is stable below the first threshold
of oscillation defined by Ri =1+5 . At this threshold
the nontrivial steady solution emerges as a stable solu-
tion. In the bad cavity situation (cr)2) which is pre-
valent in the cryogenic maser, the steady solution (3.6)
loses its stability at the "maser second threshold" RH.
The critical control parameter RH or the corresponding

x'= —(1 i 5, )x+y, —
y'= —e(1+i5„)y+ rx —xz,
z'= —ez+ —,'(xy*+x*y ),

(3.12)

where the prime stands for the derivation with respect to
t. These equations have two types of solutions. Between
pulses, x and y become exp[ —O(1/e)] and z=0(1).
This solution depends on the slow-time variable ~=et
given by (3.1) and the variable z can be adiabatically elim-
inated. The pulses themselves, however, are described by
solutions for which all three variables x, y, and z are O(1)
functions that depend on the fast time t. Hence, during
the pulses no variable can be adiabatically eliminated. As
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a result, the adiabatic elimination of the field X in Eqs.
(3.2) is not valid to describe the nonsteady solutions.

The number and the nature of the attractors which
Eqs. (3.2) can display besides the fixed points have been
investigated by direct numerical integration of the
differential equations. Although we know from the work
of Fowler and McGuinness that chaotic and periodic
solutions are expected to exist and to coexist, no general
picture of the bifurcation diagram has been provided in
the special limit
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FIG. 1. Bifurcation diagram of the complex Lorenz equa-
tions on resonance: plot of the maximum maser magnetic-field
amplitude ~X~ (divided by o.) vs the reduced pump parameter
R/o. . Crosses indicate periodic solutions while circles corre-
spond to chaotic solutions. The fixed point loses its stability at
RH /cr.

A bifurcation diagram is displayed in Fig. 1 for o. =200
and on resonance (5=0). For each value of R, Eqs.
(3.12) are integrated and the maximum of the field ampli-
tude is recorded. When the solution is found to be
periodic, the maxima are represented in the diagram by
crosses. For legibility, only large maxima, such that
max(~X )/o =O(1), are drawn. Five branches of solu-
tions are visible in Fig. 1. The topological difference be-
tween these branches is the number of smaller maxima in
each period. In the lowest branch, there is one smaller
maximum per period. Each of the next branches has one
more small maximum than the previous branch. If we
classify the maxima in each period of a periodic solution
by order of increasing size, each maximum is larger than
the previous one by about two orders of magnitude. It is
therefore dificult to show more than two of them in a
figure. A typical periodic solution is shown in Fig. 2. To
increase the resolution, we have plotted the real part of X
rather than the modulus of X. The abscissa coordinate is
o~=~t. This solution has five extrema per period but
only the first two are resolved graphically. Some solu-
tions are chaotic in time. Their 0 (1) maxima, which are
recorded over the same time duration for the entire figure
(Fig. 1) are represented by circles. An example of a
chaotic solution is given in our previous report on this
subject [9].

0 200 400 600 800 1000
07

FIG. 2. Example of a periodic solution above the maser
second threshold: the real part of the maser magnetic field (in
units of o.) vs cr~=~t =t/T, .
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x(t) I
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t

FIG. 3. Time evolution of z(t ) and ~x(t )~ showing the cou-
pling between the variations of the two variables. This figure is
obtained by solving Eqs. (3.12) on resonance (5=0) with the pa-
rameters r = 1.5 and @=0.01.

When the maser is in the pulsing regime (periodic or
chaotic), a complex interplay between the atoms and the
field takes place. Between pulses, the atomic population
inversion b, builds up (hence, z decreases) due to the fact
that atoms enter the storage bulb in the upper state while
the number of photons in the cavity is negligible. When a
critical population inversion is reached, a burst of pho-
tons is emitted, which corresponds to a sudden atomic
deexcitation and the consequent release of stimulated
photons in the maser cavity leading to the pulse. This is
shown in Fig. 3.

Quite surprisingly, the domain of periodic solutions is
much larger than the domain of chaotic solutions.
Furthermore, the first three branches overlap with the
domain of stable steady state. The coexistence of period-
ic, chaotic, and steady solutions was recently reported by
Ning and Haken [17] for u =2 and b =0.01 in a study of
anomalous switching. The left-hand sides of the four
upper branches show a similar structure. As R is de-
creased, a period-doubling sequence is observed and a
chaotic solution is reached. In many instances, higher-
period solutions were observed but not reported in the
figure, to retain some clarity. For example, many in-
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FIG. 4. Same as in Fig. 1 but with a very small detuning
6=0.01.

stances of period-8 solutions were recorded over very nar-
row domains.

The bifurcation diagram of Fig. 1 is very sensitive to
detuning. Figures 4 and 5 display how the bifurcation di-
agram is aftected by increasing 5. Already for 5=0.01,
the chaotic domains have disappeared (or they are so
small that they escaped our numerical capabilities) but
the branches of periodic solutions are still very distinct.
However, as 6 is increased to 0.1, only two branches of
periodic solutions remain. They still di6'er by the number
of extrema. The simplification of the bifurcation diagram
with increasing detuning has already been reported [18)
in the case of finite o..

Returning to the resonant case, we have analyzed the
inhuence of o.. Using the procedure described earlier, we
have also obtained the bifurcation diagrams for o. equal
to 100 and to 50. They are shown in Figs. 6 and 7, re-
spectively. As a. decreases, the number of branches of
solutions decreases as well. Furthermore, a comparison
of the three diagrams obtained under resonant condition
suggests that the pulse peak scales like a. :

FIG. 6. Same as in Fig. 1 but for o. =100.

One aspect which is not apparent in these bifurcation
diagrams is the extension of each solution s basin of at-
traction. For instance, in the case a. =100 depicted in
Fig. 6, if we start on the steady state and increase R by
sufFiciently small steps, the solution will jump onto the
chaotic part of the second branch rather than onto the
periodic part of the first branch. Hence, the bifurcation
diagrams do not yet tell the complete story.

Another useful piece of information is the variation of
the frequency of the periodic solutions versus R, i.e., the
inverse of the time duration between two consecutive
0 (1) pulses. For our reference bifurcation diagram given
in Fig. 1, the frequencies are displayed in Fig. 8.
Domains of period doubling and chaos are not reported
in this figure. The frequency varies significantly versus a. .
This is clearly realized by comparing Fig. 8 with Fig. 9
where the frequency of the periodic solutions is displayed
on resonance for o =50. Let us consider the period mea-
sured on time traces such as that shown in Fig. 2. On
resonance and for R = 1.2a. , for instance, we have

X(t ) =X(t+p ) =X[~(t+p )]
and the following numerical values are obtained:

max(X) ~ o .

0.7-
5=0. 1

(3.14) a =50, vp =48.22,
o. =100, vp =93.63,
o. =200, ~p —170.91 .

0.9—

(3.15)

b

'x~0.
X
U

5—
xx+

+
+++

+
+

+

x
x

xxx
x x

xx

0.3
+~R,/o.

0 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4
R/o-

FIG. 5. Same as in Fig. 4 but for a larger detuning 5=0.1.
The + and the X signs refer to periodic solutions with difFerent
numbers of (small) maxima per period.

0.8—

x~0.6
X
U

0.5

0.4 -.

0,3 [g ~ ~

0.6

0

8 I '

I)141.1jlio

X X
X

X X X
XX X X

XI

X

X X
X

X X
X X

X X
X

X
X"

0 8 1 0 1 2 1 4 1 6
R/cr

1.8 2.0 2.2 2.4

FIG. 7. Same as in Fig. 1 but for cr=50.
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FIG. 8. Frequency of the periodic solutions displayed in

Fig. 1.

Hence, ~p is an 0(o ) function and the physical frequency
is of the order of the atomic polarization decay rate y~,
This is indeed coherent with the fact that we are dealing
with a bad cavity. Despite this result, we have drawn our
frequency plots in units of T, ' because they were ob-
tained by solving Eqs. (3.12) for which T, is the natural
unit.

IV. INFLUENCE OF THERMAL NOISE

In the previous sections we have studied the deter-
ministic evolution of the maser equations. However, two
physical mechanisms may induce a stochastic contribu-
tion to the time evolution of the magnetic field: spon-
taneous emission and thermal noise. As mentioned previ-
ously, spontaneous emission is negligible for the cryogen-
ic maser, but thermal noise contributes to the average
photon number the amount

(n ),h=1/[exp(hv/kT) —1] .

For the cryogenic maser at v= 1.42 GHz (corresponding
to a wavelength of 21.1 cm), the thermal photon number
(n ),h equals 14.2 at 1 K, 6.85 at 0.5 K, and 1.02 at 0.1

K. Although these photon numbers are fairly small, they

I I I I 4 I I I I /
I I I I 1 I i I I ) I I I I 1 I I I I I I I I I I I I 1 I I

3 4 5 6 7

FIG. 10. Distribution of the maxima vs the noise amplitude
in the pulsed regime in the presence of noise for r =1.5, o.=50,
and on resonance. The vertical lines give the spread of the dis-
tribution and the horizontal bars are the mean values for a sam-
ple taken during 2000 time units.

are in fact large compared with the photon numbers ob-
tained between pulses in the deterministic periodic and
chaotic domains. Therefore, we have to investigate to
what extent they may e6ect our analysis.

A convenient way to model the inAuence of thermal
noise is to add a stochastic source term g(t) to the equa-
tion for the magnetic field B in (2.10). The corresponding
modification to Eqs. (3.12) on resonance is

x' = —x +y+ 10 i'[gI(t )+ i(~(t )],
y'= —ey+ rx —xz,
z' = —ez+ —,

' (xy '+x *y ),
(4.1)

where 10 ~=(2g ~/)Q(n ),h. We have solved these sto-
chastic equations numerically using for g, (t ) and gz(t ) a
pseudo-random-number Gaussian distribution, with zero
mean and unit variance. Although no detuning was in-
cluded, we kept the complex form of the equations and a
complex noise source to account for phase and amplitude
fluctuations of the magnetic field. In Fig. 10 we plot the
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FIG. 9. Frequency of the periodic solutions displayed in
Fig. 7.
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FIG. 11. Distribution of the peak frequencies for the samples
used in Fig. 10. The vertical lines give the spread of the distri-
bution and the horizontal bars are the mean values.
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FIG. 12. Same as in Fig. 10but for cr=100.

distribution of peaks of the periodic solution for I"=1.5
and o. =50 versus the parameter y. The horizontal bars
are the average values. For the same sample, we plot in
Fig. 11 the frequency distributions. We observe that in
these two figures, the averages practically do not vary
with y. For small y (i.e., large noise amplitudes) there is
a significant spread around the mean. For y) 4. 5, this
spread becomes constant. We have verified that this
spread is also present when the noise is turned off; it cor-
responds therefore to the numerical precision of our cal-
culation. When o. is increased, these results are
significantly altered. For o. =100, we see in Fig. 12 that
as y increases, two domains occur. For y &5, the mean
value increases with y but the spread of the distributions
does not vary in the same ratio as the added noise. In the
second domain, y ~ 5, the mean values remain practically
constant and the variance decreases. For o. =200, only
the first domain (increasing mean value with y) is ob-
served in the whole range studied, up to y=6. 5. To in-
terpret these results, it should be borne in mind that the
domain o. &&1 which we investigate is characterized by
pulsed rather than harmonic solutions in the nonsteady
regime. In particular, in the time domain comprised be-
tween two consecutive pulses, it was shown [10] that x

and y are exponentially small, being typically
exp[ —O(1/e)] functions. This is much smaller than ei-
ther added noise or numerical roundoff errors. There-
fore, one expects that the triggering of the pulse, which
takes place when x and y are larger than exp[ —O(1/e)]
but still smaller than O(1), will not be deterministic in
numerical simulations. However, in the absence of added
noise, the variance of the distributions is so small that it
does not appear in Figs. 1 and 4—9. As the value of x and
y between pulses becomes progressively smaller with in-
creasing a. , thermal noise will have a larger influence for
higher values of o.. This is apparent in Figs. 10—12,
where convergence of the maxima versus y takes place at
progressively higher y values. When these results are ex-
trapolated to the o values and the noise levels found in a
realistic cryogenic hydrogen maser, it is expected that the
pulsed behavior will be triggered by the stochastic noise,
i.e., the hydrogen maser is in the first domain of Fig. 12
where the maxima have not yet converged as a function
of y.

The influence of thermal noise will be largest between
two pulses. The remaining question is whether the pulse
shape itself is determined by stochastic processes or that
the time development of a pulse is a deterministic evolu-
tion. If the latter is the case, study of the pulse would
still yield useful information on both the parameters
determining the behavior of the hydrogen maser and the
complex Lorenz equations. If, however, the evolution of
a pulse would be a stochastic process as the evolution be-
tween the pulses, observation of the time-dependent
domain would yield information on the influence of the
noise on the system but not on the Lorenz equations
themselves. To analyze whether the pulse is determinis-
tic or not, we have plotted in Figs. 13—15 the maximum
of ~x

~

versus r —z at the beginning of the pulse for
o. =50, 100, and 200, and for various values of y. The
choice of r —z instead of z is a matter of convenience
only. The value of z at the beginning of the pulse [10] is
called z and is determined by the condition
~x

~

+ ~y ~

=E . The reason for this is that the pulse itself
can be described by the Lorenz equations neglecting all
terms of order e with x, y, and z being 0 (1). As a result,

X
X
U

0» - ~=5p
: 4.5~y~6.5

0.27 -.

0,26:
0

0

0.25:

:-(o)
0.34 0.36 0.38 0.40 0.42

X
X
D

0.28: 5p
: @=3.5 and 4

0.27 -.

0

. "t
0.26:

4
0 0

e 4
0
0

0.25:

:-(b)
0.34 0.36 0.38 0.40 0.42

FICi. 13. Maximum of ~x ~
vs r —z for each pulse of the samples used in Fig. 10. For the sake of legibility, we have plotted sepa-

rately but on the same scale the two domains y &4.5 {high dispersion of points) and y 4. 5 {small dispersion of points} since they
overlap.
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FIG. 14. Maximum of ~x ~
vs r —z for each pulse of the sam-

ples used in Fig. 12. The cloud of points results from the sam-

ples with y=3 and 3.5; the line is made up of the points of the
samples with y ~ 4.

e can be chosen as the zero leve1 for the pulse. It can be
seen in Figs. 13—15 that for each o. there are two
domains separated by a critical value y, . Below y„ there
is no correlation between z at the beginning of the pulse
and max( ~x

~
): We observe a cloud of points indicating a

stochastic process. Above y„ there is a clear correlation
between the two variables and all points fall nicely on a
single curve when the pulse triggering is stochastic or are
concentrated in a very small domain (whose width is due
to the numerical noise) when the triggering is determinis-
tic. The surprising result is that in all three cases
displayed in Figs. 13—15, we have found that y, =4.
More precisely, for o. =50, we have 4&y, &4.5, while for
o. =100 and 200, we have 3.5 &y, &4. Hence, this criti-
cal parameter is only weakly dependent on o. , at least in
the range considered here. Extrapolating the constant
value of y, to the high-o. regime of a realistic hydrogen
maser, we expect the corresponding value of y, i.e., about
6, to be larger than y„so that the pulse evolution will be
deterministic.

0.22 =

= a=200
0.20 - 3.5~'y~6. 5

0.18-

x 0. '16 =

x~ 0.14 —:

E
0.1 2—

0.10-

0. 8.08 ~ ~ ~ ~ ~ ~ ~ ~ ~ l I I I I ~ ~ I ~ I / ~ ~ ~ ~ I ~ I ~ ~ $ ~ I ~ ~ ~ I ~ I I i ~ I ~ ~ ~ I ~ ~ I i

0.20 0.25 0.30 0.35 0.40 0.45

,/
+ r'

r +

FIG. 15. Maximum of ~x~ vs r —z for r=1.5, cr=200, and
on resonance, for each pulse of a sample taken during 2000 time
units for each y. The cloud of points results from the samples
with y =3 and 3.5; the line is made up of the points of the sam-
ples with y ~ 4.

For the discussion which we have given, the actual
value of the thermal noise is of crucial importance. This,
however, depends on a couple of control parameters:
T, and v. Whereas changing ~ would merely change the
influence of any noise on the maser operation, changing
the latter two parameters would also change the ratio of
thermal to quantum noise. Although quantum Auctua-
tions are negligible with respect to the thermal noise for
T=0.5 K and B=0, they become progressively more im-
portant for smaller T and larger B (i.e., larger v). Experi-
mental realization of this new regime would thus be very
interesting from the point of view of the study of the
Lorenz equations with both thermal and quantum noise.

A source of noise which is unavoidable in the computer
calculations is the numerical noise due to roundoff errors
and the inherent limited precision in the integration code.
With the code used to solve Eqs. (4.1), we have verified
explicitly that in the absence of noise (y = co ), the solu-
tions are periodic (with a precision of three significant di-
gits) after a sufficiently long time. However, when the
numerical precision was changed, max( ~x

~
) appeared as

a sensitive function of the numerical noise, while the
period was remarkably independent of that noise. Al-
though numerical noise has probably introduced a bias in
our calculations, a strictly noise-free experiment is also
impossible. Hence, the possible bias introduced in our
numerical results should also be found in the experimen-
tal results.

V. CONCLUSIONS

The cryogenic hydrogen maser is a device which is
known for its extreme frequency stability. We have
shown that apart from this stable steady oscillation, a
second operation mode exists that is readily achievable in
the cryogenic hydrogen maser by increasing the quality
factor of the maser cavity. By analyzing the dynamical
maser equations, the Maxwell-Bloch equations, we have
identified this operation mode with a pulsed output con-
sisting of very sharp pulses separated by relatively long
periods of almost zero output power. By systematically
scanning through parameter space, bifurcation diagrams
have been obtained that have enabled us to make state-
ments about the complex Lorenz equations in a domain
of parameter space I R, o. » 1, b =O(1)j which had hard-
ly been investigated.

Furthermore, we have analyzed the inAuence of
thermal noise on the operation of the cryogenic maser.
Whereas the number of stimulated photons is large com-
pared to the number of thermal photons in the steady
mode of operation allowing for a deterministic semiclassi-
cal description of the maser operation, it is small in be-
tween the pulses in the time-dependent domain. We have
modeled the thermal noise by including a stochastic
Gaussian noise term in the Maxwell-Bloch equations and
have concluded that the time-dependent regime of the
cryogenic hydrogen maser will still be characterized by
pulsed behavior. The sequence of pulses, however, will
not be deterministic but stochastic, both in the maxima of
the pulses and the periods in between them, as the pulses
will be triggered by the thermal noise. The evolution of a
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single pulse, on the other hand, can sti11 be deterministic.
In terms of the Lorenz equations, our numerical work

gives a good picture of the behavior to be expected in this
part of the parameter space. The occurrence of only a
few small domains of chaotic behavior compared to rela-
tively large domains of periodic behavior is especially re-
markable. Furthermore, the coexistence of a stable
steady state, a periodic solution, and a chaotic solution is
apparent. As a last point, the stabilizing efFect of the de-
tuning should be noted. The question remains, however,
whether the cryogenic hydrogen maser is useful to study
the Lorenz equations as such, due to the inhuence of
thermal noise. If, on the other hand, one is interested
just in this inhuence, the hydrogen maser will be an excel-
lent tool, thereby giving the possibility to observe a gra-
dual transition from thermal to quantum noise in a single
experimental setup.

The second context in which our work is of interest is

from the viewpoint of the hydrogen maser. As men-
tioned before, the operation of the hydrogen maser is
determined by the interplay of a large number of parame-
ters which are often difficult to diagnose. In this case the
inAuence of thermal noise means that the sequence of
pulses will not give the information which can be expect-
ed from the operation without noise. As, however, the
evolution of a single pulse can remain deterministic, the
time-dependent domain may still prove to be an interest-
ing domain from this point of view as well.
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