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Amplitude-squared squeezing of radiation in some lossless models
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An analysis of the amplitude-squared squeezing is presented for the lossless anharmonic-oscillator,
Jaynes-Cummings, and intensity-dependent coupling Jaynes-Cummings models using coherent and
squeezed inputs. Periodic revivals of the amplitude-squared squeezing are shown to exist in the
anharmonic-oscillator and intensity-dependent coupling Jaynes-Cummings models for any value of the
initial average photon number n. The Jaynes-Cummings model, on the other hand, displays this charac-
teristic for small n only. The effect of the squeezing angle on the amplitude-squared squeezing is studied.
A comparison with the normal-order squeezing is presented.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The generation and detection in the laboratory [1,2] of
squeezed states [3] of the electromagnetic field has
spurred a great deal of activity [4] with the aim to discov-
er systems that produce squeezed output from a coherent
input, on one hand, and to explore changes in squeezing
of a squeezed input as the result of some interaction, on
the other. It is known [5] that squeezed states of the elec-
tromagnetic field can be obtained in the Jaynes-
Cummings model (JCM) if one works with a field initially
in a coherent state. This kind of squeezing, also known
as the normal-order or second-order squeezing, has been
shown to exist in many models including the rnultiphoton
JCM [6], the intensity-dependent coupling JCM [7]
(IDC-JCM) and the anharmonic-oscillator model [8,9]
(AOM).

More recently, attention has begun to turn to generali-
zations of the second-order squeezing to higher orders.
The first such attempt was published by Hong and Man-
del [10] in which they discussed applications of higher-
order squeezing to harmonic generation, degenerate para-
metric down conversion, and resonance Auorescence.
Later, it was shown [11] for the AOM that with a
coherent field input the degree of Hong-Mandel squeez-
ing increases with the order of squeezing. In the
meanwhile, a diFerent kind of generalization to higher-
order squeezing was proposed by Hillery [12]. Known as
the amplitude-squared (AS) squeezing, it has attracted
considerable attention recently [13,14].

The interest in the AOM derives [15] from its applica-
bility to the description of nonlinear interactions of a
medium. It is an exactly solvable model and can provide
important insight into the dynamics of a nonlinear sys-
tem even in its simplest form. The post-interaction be-
havior of the normal-order squeezing in this model re-
veals revivals [16] of squeezing and enhancement [17]
over the initial squeezing due to interaction with the non-
linear medium. In the same model, Kitagawa and
Yamamoto [18] have demonstrated the generation of
states with squeezed number fluctuation. Similarly, the
JCM [19] and IDC-JCM [20] are exactly solvable and

have been known to exhibit a number of interesting non-
classical features. Being three of the richest models of
quantum optics, we devote the present paper to a study of
their AS squeezing behavior. Generally employing
squeezed inputs, we focus attention on the dependence of
this behavior on the input field intensity. We also exam-
ine its dependence on the squeezing direction in the
AOM as a generic example. We assume a high-Q cavity
so that losses can be ignored.

The plan of the paper is as follows. In Sec. II we

briefly introduce the AS squeezing. In Sec. III we com-
pute the AS squeezing functions for the AOM and dis-
cuss numerical results for a number of initial conditions.
Section IV comprises the analytical and numerical results
as well as their discussion for the JCM and IDC-JCM. A
comparison of the results for the three models is present-
ed in Sec. V.

II. AMPLITUDE-SQUARED SQUEEZING

To compute the AS squeezing we introduce the quadra-
ture operators

= ( g ~+ g t~) /2, X2
——( g 2 —g t~) /2i

which satisfy the commutation relation

[X„X2]=i(2N+1), N=a a .

The corresponding uncertainty relation reads

(bX, )(bX~) ~ (N )+—,',

(3)

(4)

with bX; denoting the respective variances. If the field is
in a coherent state, it is easily checked that

bX; =(N)+ —,', i =1 or 2 . (5)

A state is AS squeezed in variable X; if its variance

Let a and a denote the annihilation and creation
operators of a single-mode cavity field of frequency co. It
is convenient to work with the slowly varying operators
A and A~definedby

A=e' 'a A =e ' 'a
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satisfies

Let us introduce the quantities

(6)

(7)

coherent excitation, and P the direction of squeezing rela-
tive to the direction of coherent excitation. The initial
average photon number n is given by n = ~a~ +v . Using
Eq. (14) we have

A 0
= ( e '/p ) g n ( n —1 )(z 0 /2"n! )H„( x* ) H„( x),

n=0

so that the normal-ordered variances

are given by

S;= —,
' [+( A 2+ A 2 ) +2 A () + ( A, + A ", ) ] .

In terms of S;, the AS squeezing is defined by

S; &0, i=1 or 2 . (10)

A, = (zo/2p)e'~ ' ' g ( z") /2"n! ) H„( x* ) H„+2( x),
n=0

(17)

A2=(zo/4p)e2'~ ' ' g (z2/2"n!)H„(x")H„+4(x) .
n=0

Here

ZO V/ P Z1 ZOe Z2 =ZOe

Note that S; are bounded below by —
( ( N & + —,

' ). e=iai [1+zocos(28—P)] .
(18)

III. THE ANHARMONIC-OSCILLATOR MODEL

A. Description of the model

The sums over n in Eqs. (17) can be evaluated by making
use of the well-known relations involving the Hermite po-
lynomials [21]

where )[, is the nonlinearity parameter which is real. We
assume that there are no losses present.

Since a a is a constant of the motion, integration of the
Heisenberg equation of motion with the Hamiltonian (11)
yields the result

a(t) =(expI —it[co+7(a (0)a(0)] j )a(0) . (12)

At a later point we shall also briefly comment upon
another form of the anharmonic-oscillator Hamiltonian,
namely,

H=ficoa ta + —,
) A'A. ( a'ta

) (13)

B. Evaluation of the variables Ap A i awk A2

A commonly used form of the AOM Hamiltonian is
given by

H=g~a~g+ 'gag~ a

g (z "/2"n! )H„(x)H„(y)
n=0

z2) —1/2e[2 ) —( '+)') '!/(1 — ')
~z~ & 1

H„+1(x) 2xH„(x ) +—2nH„) (x ) =0,
H„'(x) =2nH„, (x) .

After a somewhat tedious calculation we find that

A() =(e '/p)[z()(d 6() Idz() )],
A, =(z /2p)e'~ ' 'F, ,

(z2 /2p )e 2i(P 3r) —E—

X ((2x —3)F2 z2(dF2/dz2 )—

—I4x [2+z2(dldz2)]

+2x[2+z2(d /dxdz2)]]62),

(20)

(21)

(22)

(23)

(24)

Using Eq. (12), we can evaluate the quantities Ao, A „
and A2 of Eqs. (7). We assume that the field is initially in
a general squeezed state so that its wave function at t =0
can be written as

where ~=At, and

F;=F;(~)=[6;/(1—z; ) ][2(x—z,x') —(1—z, )],
(25)

g(0)& = g Q„~[n &,
n=0

(14)
G;=6;(v)

[2~x~ z,.
—(x +x* )z,. )/(1 —

z,. )= 1 —z; e (26)
where

Q„=(n!p) '/ (ve'~/2p)" / H„(x )

Xexp[ —
—,'/P/ +(ve '4'/2p)P ],

The corresponding expressions of the A, for the squeezed
vacuum and coherent inputs can be recovered by going to
the limits ~a~ ~0 and r~0, respectively. We thus find
that for the squeezed vacuum input,

p=coshr, v=sinhr, x =P/(2pve'~)'

a= ~(a~[e'e, p= pa+ ve'&a* .

Here r is the squeeze parameter, 0 the direction of

Ao=v (1+3v ),

A, =(zo/p)e'~ '(1—z', )

3(z2 / )ei2(P 3~)( 1 —2
)

/2

(27)

(28)

(29)
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For the coherent input, we find

Ao=(n) (30)

8--

2& =ne "('c' ' ')[cos(r+n sin2&) —i sin(r+n sin2r)],

(31)

(n)2 n[(cos4') —1]
2

X [cos(6r+n sin4r) —i sin(6r+n sin4&)] . (32)
0

M

The functions S;(r) of Eq. (9) can be obtained from the
values of A;. Before proceeding further we note that
S;(r+m) =S,(r) for the three cases considered. Thus, if
the squeezing functions exhibit squeezing they will do so
periodically. We note also that the S; are related for
different values of P. For example, for a general squeezed
input, S,(/=0) =S (/=2m) while with a squeezed vacu-
um input S;(/=0) =S;(P=~). In the latter case one has
also the relation S& 2(/=0) =S2 &(P=m/2). In Sec. III C
we present and discuss the numerical results obtained.

C. Results and discussion

0.5 1.5 2.5 5.5

FICir. 1. The squeezing function S&(v.) of the AOM with the
field initially in a coherent state. (a) S, X 10' for n =0.25; (b) S&

for n = 16. S&(~) & 0 implies amplitude-squared squeezing.

The AS squeezing for r=0 (coherent input) and
n =0.25 and 16 is shown in Fig. 1. For both cases, only
the in-phase component shows revivals of squeezing in
the form of a succession of duplexes of "squeezing holes. "
With n large, the holes become deeper and narrower.
For a sufficiently large value of n (~ 100) the duration of
squeezing becomes too short for it to be noticeable with
our resolution. We refer to it as the revocation [22] of
squeezing.

We next consider the case when the input field is in a
squeezed uacuum state (a=0). The results for r =0.3 and
0.9 and /=0 are shown in Fig. 2. Although the photon
number is not too large for r =0.9 (i.e., n = 1.05), we can
already see from Fig. 2(b) a sharp change in the squeezing
behavior of S& (and of S2, not shown here) in that the
periodic oscillations of squeezing in the two quadratures

I

seen for r =0.3 [Fig. 2(a)] have turned into rare excur-
sions to the region below the standard quantum limit
(SQL). S, which starts out from a positive value shows
later a slightly greater amount of squeezing than S2
(which is initially negative). This happens for both r
values. An inspection of Fig. 2(a) reveals the existence of
three revivals in one oscillation period of S, . Already for
r =0.9 this number reduces to one and the oscillation and
revival periods almost coincide.

Finally, we consider the case of an input in a general
squeezed state. We take r, a, and P nonzero but 0=0,
i.e., a real. The initial values of S,. can be obtained from
the expressions

2

S&2(r=0)= —,
' +(a+3p v cos2$ —6a pvcosP)+(a+@ v+2v —2a pvcosP+4a v )

—2
a —pvcosP

pvsinP (33)

Before proceeding further, we make a number of com-
ments about this result. Firstly, the value of P will deter-
mine whether S, or S2 are less than zero at ~=0. In par-
ticular, while the first quadrature may be initially
squeezed for /=0, it cannot be so for P=m. . Secondly,
the change of P from 0 to m. /2 which interchanges S, and

S2 in the case of the squeezed vacuum does not have the
same effect here. Thirdly, this result shows that the
amount of initial squeezing increases as P increases from
0 to m. Lastly, for P=m/2 only S, shows squeezing pro-
vided that a(2

Figure 3 shows how the AS squeezing behavior
changes as we change P from 0 through m. /2 to m for
small n. As an example we set r=0. 3 and a=0.25
(n =0.155). Periodic revivals of squeezing can be seen in
all the three cases. Interestingly, S& is seen to have two

I

revival periods (ran=1. 0,0.34) for /=0 and two
(r'=0. 73,0.37) for P=n. , while three such periods
(rz =0.84, 0.54, 0.65) for P=m. /2. S2, on the other hand,
has one revival period (ran=2. 93) for /=0 and two
(r~ =0.89, 1.73) for P=n/2 and two (rz =0.76,0. 84) for

For the time duration considered S, remains
below the SQL for approximately 27%, 36%%uo, and 4l%%uo of
the time for the three P values. Similarly, Sz remains
below the SQL for about 7%, 14%, and 23%%uo of the time.
That is, the duration of squeezing increases with
There is, however, no enhancement in the AS squeezing
after the interaction is turned on.

The results for r=0.9, a=0.25 (n=1. 116), and /=0,
m. /2 and mare shown in .Fig. 4. These values were chosen
with a view to examining the effect of a high squeeze pa-
rameter at low intensity. Although periodic revivals of
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FIG. 2. S&(~) of the AOM with the field initially in a
squeezed vacuum state. (a) S, X 10 or r =for r =0.3 (n =0.093); (b) S&

for r =0.9 (n =1.05).

FIG. 4. S&(~) of the AOM with the field initially in a general
squeezed state for r=0.9, a=0.25 (n=1. 116), 8=0. (a) /=0;
(b) P=~/2; (c) S&+7 for P=m.

the AS squeezing are still there, their frequency has de-
h smallercreased and the duration has become muc. . srna

equals the oscillation period. Notice that the maximum
squeezing o taina e

'
b

'
bl in this case does not exceed the

amount of input squeezing.
We next consider large values of n. TheThe results for

r=0.3 and hz=4 (n =16.09) for three values of P are
shown in Fig. . e ~z-F' . 5 Th ~~=0 case shows that the initially
present AS squeezing in S, (at t =, , q=0 S e uals —7. 11) re-
vives periodically but for a very short duration of time
(b,r —=0.046). As we increase P from 0 to n /2 the amount
of AS squeezing increases and the reviv —

p
into two closely spaced revivals, each of approximate
duration b,r-=0.018. For both values of P, Sz remains

Sabove the SQL. Figure 5(c) shows the case of P=m.
star s ou wt t t with a positive value but shows AS squeezing
later. As with case 5(b), it shows a revival doub e a

In addition, however, it shows a single revival at
/2. Unlike the cases 5(a) and 5(b), here Sz also

shows revivals of squeezing. The r =0.9 case also exhi-
its these squeezing characteristics, showing greater A
squeezing for smaller duration.

At this point, it will be instructive to compare our re-
sults on the AS squeezing with those on the normal-order
squeezing. is nowIt '

known that the normal-order squeezing
can be obtained in the AOM with coherent [8, ] an
squeezed vacuum [16,17] inputs. The squeezing functions
of the normal-order squeezing being periodic (with perio
2m. ), it will recur periodically. Insofar as the n epen-

O.2
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0.05 .
C)

I
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]
3 iI

I
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5 ~)1(
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-O.O5-
ga)

-O.&5
0 0.5

I

1.5 2 2.5

0--

0.5 2.5 3.5

FIG. 3. S&(~) of the AOM with the field initially in a general
squeezed state for r=0.3, a=0.25 (n =0.155), 9=0. (a) /=0;

FIG. 5. S&(~) of the AOM with the field initially in a general
squeezed state for r =0.3, a=4 (n =16.115), 8=0. (a) /=0; (b)
S, +300 for P =vr/2; (e) S, +550 for P =n.
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dence is concerned, not only the occurrence and revoca-
tion are hastened with increasing n but we have also
checked that the frequency of recurrence reduces. To see
the influence of P on squeezing, we carried out a compu-
tation of the normal-order squeezing with a general
squeezed input. It turns out that P has little or no efFect
on its degree. We may thus conclude that while the n

dependence of the AS squeezing behavior is similar to
that seen in the normal-order squeezing, i.e., the re-
currences become fewer and the duration smaller as we
increase n, the P dependence is significantly different. Of
course, the periodicity of S; in the two cases is di6'erent
too. Interestingly enough, we find that the degree of
squeezing is higher in normal-order than in AS squeez-
ing. This is a manifestation of the fact that the AS
squeezing is different from the Hong-Mandel [10] squeez-
ing for which Gerry and Rodrigues [11]have shown that
the degree of squeezing increases with the order of
squeezing.

Before closing this section, we mention that we have
also computed the AS squeezing with the Hamiltonian
(13). We find that the AS squeezing behavior of the two
models is dissimilar for small n values but becomes iden-
tical when n is large.

IV. JAYNES-CUMMINGS MODELS
AND INTENSITY-DEPENDENT COUPLING

A. Description of the models

The two models are characterized in the rotating-wave
approximation by the Hamiltonians

H=ficoa a+ ,'Ac—oocr3+fig(rr+a+o a ), (34)

and

H=ficoa a+ pkc0003

+fig[o+a(a a)' +cr (a a)' a "], (35)

respectively. Here o.
3 and ca+ are the Pauli spin matrices,

mo is the atomic frequency, and g is the atom-field cou-
pling constant. Again, we consider a lossless situation.

We denote by ~+ & the excited and ground states of the
atom and, for simplicity, consider the resonant case,
CO

—
COO.

B. Evaluation of the variables Ao, A g, and & 2

For the atom initially in the ground state and the field
in a general squeezed state, the state vector of the system
at v.=0 is written as

(36)

where Q„ is given by Eq. (15). With the Hamiltonian
(34), the expression for the field density-matrix elements
at ~) 0 is given by
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FICx. 6. The squeezing functions of the JCM with the field initially in a squeezed vacuum state for r =0.3 (n =0.09). (a) Sl(w); (b)
S2(~).
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p„„.(r) =exp[ —i(n n—')cot][cos(&n r)cos(~n'r)p„„, (0)+sin(&n + lr)sin(&n'+ lr)p„+, „+,(0)] .

The corresponding expression in the case of a squeezed vacuum field input can be obtained by taking a~0,
cos(&n r)cos(&n'r)p„„.(0), (n, n' even)

p„„(r)=exp —i(n —n')cot
sin[&(n+1)r]sin[V(n'+1)r]p„+& „+&(0) (n, n' odd),

(37)

(38)

where ~=gt.
The expressions of p„„(r)with the Hamiltonian (35) can be obtained by dropping the square roots in Eqs. (37) and

(38). Using these last two equations, we can compute the variables Ao, A „and A2. In the special cases of interest we
have for the general squeezed input,

Ao= g p„„(0)[n(n —1)—2(n —1)sin (&n r)],
n=0

(39)

A, = g &(n +1)p„„+2(0)I&(n +2)cos(&n r)c os[&(n +2) r] +&n sin(&n r)sin[&(n +2)r]],
n=0

(40)

Az = g +(n +1)(n +2)(n +3)p„„+4(0)[&(n +4)cos(&n r)cos[+(n +4)r]+v n sin(&n r)sin[&(n +4)r] j .
n=0

(41)

For the squeezed vacuum input we have

Ao=tanh r g [(2n +1) /(n +1)]p2„2„(0)[n+cos [&(2n +2)r]],
n=0

(42)

A
&
=tanhr g (2n + 1)pz„z„(0)[cos(&2n r)cos[&(2n +2)r]+&[n /(n + 1)]sin(&2n r)sin[&(2n +2)r]],

n=0
(43)

A2=tanh r g (2n +1)(2n +3)pz„2„(0)[cos(&2n r)cos[&(2n +4)r]+&[n/(n +2)]sin(&2n r)sin[&(2n +4)r]] .
n=0

(44)

3 w
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I
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II
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) 1
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I
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FIG. 7. Same as in Fig. 6 but r =0.9 (n = 1.05).
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C. Results and discussion

p.x-

il
t

I

I
I

FIG. 8. The squeezing functions of the IDC-JCM with the
field initially in a squeezed vacuum state. (a) S&(~) and (b) S2(~)
for r =0.3 (n =0.09); (c) S,(~) and (d) S&(~) for r =0.9
(n = 1.05).

The case of a coherent input has been considered by
Mahran and Obada [13] and Xiaping and Xiping [13],so
that we confine ourselves to the discussion of squeezed in-
puts only.

The time evolution of S, and S2 based on (34) with the
field initially in the squeezed vacuum state is shown in
Figs. 6 and 7. For r =0.3 (small input squeezing) the ini-
tially present AS squeezing revives periodically with S&
and S2 exchanging noise. However, for r =0.9 (large in-
put squeezing) the AS squeezing in S2 is revoked soon
after the interaction is turned on. After a sufFiciently
long time (&~48) S& also stops going below the SQL.
The large n values (n =v ) act to destroy not only
normal-order squeezing due to a larger emission rate [23]
but also the AS squeezing.

Figure 8 displays the behavior of S& and S2 obtained
from the IDC-JCM Hamiltonian (35) for r =0.3 and 0.9.
We see periodic revivals of AS squeezing both for low
and high intensities, though the duration of squeezing
reduces with increase in r or n. In other words, for high
n, the two models show totally difFerent behavior: exact
revocation versus strictly periodic recurrence of AS
squeezing. To achieve revocation in the IDC-JCM in the
sense of Ref. [22] we need extremely large values of n.
Note that for small n the maximum AS squeezing achiev-
able in the two models is comparable.

The results for a general squeezed state field input
(with /=0) in the case of the JCM are shown in Figs. 9
and 10. With a low input intensity (Fig. 9) we do have re-
vivals of AS squeezing but, unlike the case of the
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FIG. 9. (a) S&(~) and (b) S2(~) of the JCM with the field initially in a general squeezed state for r =0.3 and a =0.25.
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FIG. 10. S&(w) of the JCM with the field initially in a general squeezed state for +=4. (a) r=0.3; (b) r=0.9.
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squeezed vacuum, they are not periodic. With the same
value of e but r =0.9, we found that AS squeezing disap-
pears within a few moments of turning on the interaction
and does not return later. For the higher input intensity
(Fig. 10), while S2 remains above the SQL at all times,
S&, which is initially squeezed, desqueezes after awhile
but squeezes again once after which it remains above the
SQL. It seems then that while larger initial AS squeezing
reduces squeezing later, a acts to partially offset this
effect.

The corresponding results for the IDC-JCM are shown
in Figs. 11 and 12. Again for small n (Fig. 11), there are
strictly periodic revivals of AS squeezing with two
periods for S i (r —=0.7, 1.07 ) and only one for Sz
(r—= 1.07). For large n (Fig. 12) S2 remains above the
SQL but S, squeezes periodically with the period depend-
ing on the value of r (r= 1 and 1.2 fo—r r =0.3 and 0.9, re-
spectively). We see again that with a small input squeez-
ing we obtain larger AS squeezing later, while a large in-

put leads to reduced AS squeezing.
Let us compare our results with those on the norrnal-

order squeezing with squeezed inputs [23,24]. In the case
of the JCM we find that (i) the revival periods in the two
types of squeezing are different, (ii) the AS squeezing is
much harder to revoke than normal-order squeezing, and
(iii) the degree of squeezing in the AS case is higher than
the normal-order case.

In the case of IDC-JCM, Buzek [7] has shown that
with a squeezed input the normal-order squeezing re-
vives periodically with a period independent of the value

of r. We have seen, on the other hand, that the revival
periods of AS squeezing depend on r. We also find that
the two types of squeezing are equally persistent and that
their degrees of squeezing are comparable.

Finally, for the sake of completeness we refer to the
work of the authors of Ref. [14]. Kien, Kozierowski, and
Quang [14] have studied fourth-order squeezing as given
by Hong and Mandel in the rnultiphoton JCM with a
coherent input. Although their analysis mainly focuses
on the short time behavior, using low and moderate in-
tensity inputs (n ~ 4) they point out that this kind of
squeezing recurs at the long time scale. Gerry and
Moyer [14] give a somewhat brief discussion of higher-
order squeezing in one- and two-photon JCM with the
field initially in a coherent state. With n =10, they find
that the AS squeezing does occur once but for an extend-
ed duration of time. Their observations are in general
agreement with the work reported here in which we have
used squeezed rather than coherent inputs.

V. SUMMARY AND CONCLUSIONS

In this paper we have examined the AS squeezing be-
havior of three different models for a broad range of in-
put intensities ranging from low values (low enough to
have appreciable degree of AS squeezing greater than or
equal to 5%) to high values (high enough to cause revo-
cation [22] of AS squeezing) assuming that our field in-
puts have squeezing characteristics. For the AOM, we
have studied the dependence of our results on the input
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field intensity and the squeezing direction. We found
that as long as the initial average photon number is small,
we see genuinely periodic revivals of the AS squeezing in
the two quadratures with one or more revival periods.
As we increase the value of n, these oscillations turn into
sharp periodic spikes reaching below the SQL. With still
larger n the squeezing appears for extremely short mo-
ments. This effect is more pronounced with a squeezed
input than a coherent one. We note also the important
fact that an increase in the value of P leads to an increase
in the AS squeezing. The AOM more or less mimics the
IDC-JCM in many aspects of the AS squeezing.

The JCM radically differs from the AOM and IDC-
JCM in the n dependence of its squeezing behavior. The
AS squeezing is promptly and completely revoked for any
but low or moderate input field intensities in contrast to
the continued existence of periodic revivals of the other
two models.
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