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Photon-counting statistics of resonance fluorescence in a squeezed vacuum
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We discuss the consequences of the interaction of a broadband squeezed vacuum on the photon statis-
tics of a coherently driven two-level atom. The statistics is described in terms of the Mandel function
Q(T) and the probability P(n, T) of counting n photons in a time interval T. The phase-dependent de-

cay in the squeezed vacuum is highlighted with these functions.

PACS number(s): 42.50.Dv, 42.50.Kb

I. INTRODUCTION

Resonance Auorescence from a two- and three-level
atom placed in a squeezed vacuum has received consider-
able attention in recent years [1—12]. A particular case
of interest here is a broadband squeezed vacuum, which
essentially describes a time-stationary squeezed broad-
band field with Gaussian statistics [1—3]. In the case of a
two-level atom interacting with a broadband squeezed
vacuum, the component of the atomic polarization that is
in phase with the low-noise quadrature phase of the field
experiences reduced fluctuations [2] and therefore decays
more slowly when compared with spontaneous emission
in a normal vacuum. The other component of the atomic
polarization, on the other hand, experiences increased
Auctuations. Consequently, the Auorescence spectrum of
a coherently driven two-level atom in a broadband
squeezed vacuum exhibits a marked departure from the
usual Mollow triplet in the normal vacuum [3]. It is
dependent on the relative phase between the driving field
and the squeezed vacuum. This opens possibilities of ob-
taining subnatural linewidths [2—8].

The phase-dependent decay of the atomic dipole in
squeezed vacuum is also manifested in the statistics of
photon emission [9,10,12]. This aspect of resonance
fluorescence in a broadband squeezed vacuum was dis-
cussed recently in terms of the second-order intensity
correlation function [9]f(r), Mandel's response function

[9,10] Q(r), and the waiting-time distribution [12] w(r).
Here the functions f(r) and w(r) describe, respectively,
the probabilities [13] of emission of any photon and the
very next photon at time t+r following the emission of a
photon at time t. In a broadband squeezed vacuum the
functions f(r) and tU(r) evolve on a time scale slower
than the spontaneous-emission time scale and exhibit a
marked increase in the probability of detection of a subse-
quent photon for delay times much greater than the natu-
ral lifetime of the excited level [9,12]. This behavior is a
consequence of the inhibition of Auorescence in a
squeezed vacuum. The Mandel response function Q(r),
on the other hand, has been used to infer the sub-
Poissonian statistics of the photon emission in a broad-

band squeezed vacuum [9,10].
In this paper we study the probability P(n, T) that n

photons are emitted in a given time interval T in steady
state by a coherently driven two-level atom when placed
in a broadband squeezed vacuum. Mandel [14] has calcu-
lated the distribution function P(n, T ) in a normal
unsqueezed vacuum to highlight the antibunching and
sub-Poissonian nature of the resonance fluorescence.
Here we examine the consequences of phase-dependent
decay in a squeezed vacuum in terms of the distribution
P (n, T ). We also study the Mandel function Q ( T ) to de-
scribe the statistics of photon emission. In Sec. II we
define various quantities that are required to describe the
statistics of photon emission. The problem of resonance
Auorescence in a broadband squeezed vacuum is dealt
with in Sec. III. Analytical results in the intense-field
limit are discussed in Sec. IV. Finally, some important
conclusions from this study are summarized in Sec. V.

II. BASIC DEFINITIONS

The probability that n photons are detected in some
finite time interval T when Auorescence light falls on a
photodetector is given by [14,15]

.
n~

—U

P)n, T) = (T~: n!
(2.1)

G(A, , T)= g (1—A. )"P(n, T)
n=0

(2.3)

It then follows that

where Tz represents the normal-ordering time-ordering
operator and U is the integrated intensity

TU=q I ~ d~.
0

Here I(t) is the instantaneous intensity of fluorescence
and q is a measure of the quantum efficiency of the detec-
tor. We now introduce the first-order generating func-
tion G(A, , T) such that [15]
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n n

P(n, T)= G(A, , T)Ii=1 .
n! gA, "

(2.4)
Now defining G(A, ,Z) to be the Laplace transform of
G(A, , T), it follows that [17]

Note here that the quantity (T&.U:) is kth factorial
moment of n .Mandel's response function Q(T) is the
normalized second-order factorial moment [14]

Q(T)= f dt2 f dt f(t ) I(o—o)T, (25)2I(co ) T '2

where I( oo ) is the steady-state fluorescence intensity and
f(r) is the normalized second-order intensity correlation
function. The parameter Q is a natural measure of the
departure of the variance of the photon number n from
the variance of a Poisson distribution. The evaluation of
Eq. (2.3) requires knowledge of the intensity correlations
of arbitrary higher order. Using the factorization proper-
ty of the higher-order intensity correlations [14,16].

T

(
k —1

T~:1( t 'll( t + r, ) I t + x r;:)
i=1

k —1

(2.6)

we may rewrite Eq. (2.3) as

G ( A. , T ) = 1 A,qI( oo )T—

G(A, ,Z)= ——1 AqI( oo ) (2.8)Z Z [I+AqI(oo)1(Z)]
The Laplace-transformed distribution function P(n, Z)
then reads as [17]

1 qI( oo )P(n, Z)= ——,n =0
Z [1+C(Z)]

p(, Z)= qI oo ) qC(Z) "

Z2[1+ C(Z)]n+1 ~

where C(Z ) is the Laplace transform of

C(r)=I( ~ )f(r) .

(2.9)

(2.10)

III. TWO-LEVEL ATOM IN SQUEEZED VACUUM

We mention here that C(r)dr is the conditional probabil-
ity of an atom emitting any photon between ~ and ~+d ~
after it has emitted one at time ~=0, where dr is an
infinitesimal time delay [13]. The counting distribution
P(n, T) then can be obtained by taking the inverse La-
place transform of Eq. (2.9). In the analysis that follows,
we assume that the detector is an ideal one (with quan-
tum efficiency of unity).

+ g [ AqI(~ )]"—
k=2

(2.7)

Consider a two-level atom of transition frequency co0

between an excited level I 1) and ground level I2) in-
teracting with a classical driving field of frequency coL.
The master equation for the reduced atomic density
operator p(t ) describing the interaction of this atom with
a broadband squeezed vacuum has the form [2,3]

= —i[H&,p] y(N+1)(A—»p+PA11 —2A21PA1, ) —yN(&22P+p~22 2~12P~21)

—2y IMI exp( i p) &12p&—12
—2y IMI exp(10 ) ~21P~ 21

(3.1)

where

Ho =a( 212+ 221 )+6211 (3.2)

assume that there is a window for observation such that
only fluorescence photons can be detected by the photo-
detector.

Here 2;~. is the atomic operator Ii )(jI, 2a is the laser
Rabi frequency, 2y is the Einstein coeScient for spon-
taneous emission in the usual unsqueezed vacuum, and
b, =(coo—coL ) is the frequency detuning of the laser from
the atomic resonance frequency. The quantity

P =2PL —P„where PL and P, are, respectively, the
phases for the laser field and the squeezed vacuum. The
parameters N, M =

I
M

I exp( i P, ) char—acterize the
squeezed vacuum, with 1V being proportional to the num-
ber of photons in squeezed vacuum. Also
IMI ~N(N+ I), where the equality sign holds for a
minimum uncertainty squeezed state. In arriving at Eq.
(3.1), it is assumed that the bandwidth of the squeezing is
suKciently broad so that the squeezed vacuum appears to
the atom as a 5-correlated white noise [1—3]. We further

The normalized second-order intensity correlation
function f(r) may be expressed in terms of the atomic
operators 3; as

( 212(t) 2 12(t+r) A2, (t+r) 321(t ) )
f(r)= lim 2

c ~ ( Aii(t) )

Similarly, the steady-state intensity is given by

(3.4)

Using the master equation (3.1) and the definitions of
Eqs. (2.10), (3.3), and (3.4), it is straightforward to obtain
an expression for C(Z) as
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c(z)=2y
Do(Z)

where

(3.5)
0.0;

N(Z)=2yNZ +[2yNy„, +2I (1—r )]Z

+2yNy„y, +4I (yo ry—),
Do(Z)=Z +2y„,Z +(y„y, +y„,+4I )Z

+r.r,x., +8m, r' .

(3.6) —O. 2-

In writing Eq. (3.6), we used the following definitions [3]:

y„=2y(N+ ~MI+ —')

y, =2y(N ~M ~+ '),
3 us Vu +Is

(3.7) 0.0
I

5.0
T

1

]O.O

yo=y[(N+ —,')(1+r )+ ~M~(1 r) cosP—] . (3.8)

The generalized Rabi frequency I and the parameter r
have the following meaning:

( 2+ g2)1/2
4

FIG. 1. Plot of Q(T} vs T=2rT for a/2r=1 in a normal
vacuum (curve A ) and in a squeezed vacuum (curves B—E ).
The parameters (N, P} for 8 Eare (2—, 0), (2,~}, (10,0), and
(10,m ), respectively.

21

The steady-state intensity is then simply given by

(3.9)

I( ao ) =C( ae ) = lim ZC(Z ) .
Z~O

Now substituting Eq. (3.5) into (2.9) we obtain

(3.10)

P(n, Z)= '

—I( ~ )Do(Z)
ZD, (Z)

(2y )" 'I( ~ ) [N(Z ) ]" '[Do(Z ) ]'
(Z)]n+1

(3.11)

where

(3.12)

D, (Z)=Z +2y„,Z +(y„y, +y„,+4y N+4I )Z

+ [r.r, r ..+4r'Nr. ,
+8yoI +4y I ( 1 r)]Z-

+4y Ny„y, +8rr (y ry) . —

The expression for P(n, T) then depends on the roots of
the biquadratic equation (3.12). These roots are generally
difficult to obtain. In such cases we resort to the numeri-
cal evaluation of Eq. (3.11).

Before we discuss the counting distribution P(n, T) in
a squeezed vacuum, it is instructive to study Mandel's
function Q(T). For Poisson statistics, Q=O, whereas
Q (0 and Q )0 describe, respectively, the sub- and
super-Poissonian statistics [14]. Analytical expression for
Q(T) is generally difficult to obtain. We display in Fig. 1

the behavior of Q(T) in a squeezed vacuum compared
with that in normal vacuum for a/2y= l. This figure is
plotted by evaluating Q(T) numerically. It is clear from
this figure that the squeezed vacuum tends to smoothen
the behavior of Q(T) and that this behavior is phase
dependent. Specifically, Q( T) is more negative for P =0
as compared with the P=m. case. When squeezing in-
creases, the sub-Poissonian nature of the emission de-
creases.

The function Q(T) for large counting times (T +ee)—
can be obtained analytically. Using Eqs. (2.5), (2.10), and
(3.5) it is straightforward to show that

8y

(y.y, r., +8r,r')'
+ I'[2(ro r'y )(r.y.y'. ) 4r N(2y—.,ro y.y, )

—(1 r')y—.y,—r., 1 ] . (3.13)

In order to obtain the essential features of Q(0e ), we
consider the two-level atom driven at exact resonance
(r =0). Furthermore, we use the notation Q,o and Q, to
describe the function Q in a squeezed vacuum for /=0

and 1r, respectively. Similarly, Q corresponding to the
unsqueezed normal vacuum will be denoted by Q„. In
the normal vacuum Eq. (3.13) reduces to the familiar one
given by Mandel [14]



PHOTON-COUNTING STATISTICS OF RESONANCE. . . 6033

6(a/y ) (3.14)
[2(a/y) +1]

which has a minimum value of ——', when a =y /&2.
However, under ofF'-resonance conditions the absolute
value of Q„( oo ) can be larger than —,'. In a squeezed vacu-
um at exact resonance, 2y o

=y „, for P =0,~ and Eq.
(3.13) yields

„(oo)=—

21 (y +2y)+2yNy
,(oo)=-

(y.y., +4r')2 (3.15)

where y =y, „ for /=0 and ~, respectively. When
squeezing is high (N ))1) and the squeezed vacuum is in
a minimum uncertainty state [M =N(N+ 1)],

1 1

2N [(a/4yN) +1]
(2a/y) +1/8N
[(2a/y ) + 1]

(3.16)

r y(yo y)—
( oo )=-

70
(3.17)

which depends critically on the detuning parameter r. In
the normal vacuum, Eq. (3.17) shows that Q„( oo )~r /2,
whereas for N ))1, M =N(N+ 1) and for small r,

I

It is clear that Q, ( oo ) increases monotonically to zero as
the squeezing parameter X is increased. On the other
hand, Q,o( oo ) is weakly dependent on N for reasonable
values of the field strength a. For a~0, Q, =Q,o, as
can be seen from Eq. (3.16). Furthermore, Q,o( oo ) shows
an absolute maximum value of 1 for a=—y/2 when the
vacuum is highly squeezed. This indicates that the emis-
sion in this case is more sub-Poissonian than that in the
normal vacuum.

Another interesting case is when the driving field is
strong. In that case

IV. ANALYTICAL RESULTS
IN THE INTENSE-FIELD LIMIT

When the effective Rabi frequency I ))yN, we may
invoke high-field approximation and obtain approximate
analytical results for P(n, T). In this limit, the steady-
state intensity is given by

I(oo)= (yo —r y) .
3 0

(4.1)

Moreover, Do(z ) admits the following analytical roots:

Z& = 2&o Z2 3
= y')+2iI

where

(4.2)

y, =y[(N+ —,')(3 r) M(1 ——r) cos—P] . (4.3)

The analytical expression for the second-order correla-
tion function then reads

f(r)=1+ e
(yo r'y )—

(1 r)yo-
e ' cos(2I r) .

(yo —&'y )
(4.4)

Similarly, Mandel's response function Q(T) can be writ-
ten as

Q, (oo )~16Nr and Q,o( oo )~ r—/2N. The large
value of Q, ( oo ) is reminiscent of the one exhibited by a
system undergoing a quantum jump [9]. Moreover, the
emission is sub-Poissonian for /=0 and super-Poissonian
for P=m. in the squeezed vacuum. The high-field situa-
tion is of particular interest as it exhibits the essential
features of the interaction of a squeezed vacuum with a
two-level atom. It is also amenable to the analytical
treatment as shown in Sec. IV.

(y yo)r—
3 0 2/oT

2y(1 —r )
y, + [(y2—4I 2)(e ' cos2I T 1)—4I y, e —' sin2I T]1 2 2 ~1 Y1T

(y, +4I ) (4I +y, )
(4.5)

Z, 2= —A+ = —(P+y+y),
Z3 4

= —y, + —,'y(1 r)+2iI— (4.6)

The second term in Eq. (4.5) contributes negligibly to
Q(T). Moreover, Q(T) exhibits sub-Poissonian charac-
ter for a normal as well as a squeezed vacuum (/=0, m. )

in a narrow initial time domain [9]. Finally, approximate
roots of D, (z ) may be obtained as

From the structure of P(n, Z) of Eqs. (3.11) and (3.12) it
is clear that the contribution to P(n, T) by the terms
exp(Z3 &T ) is 0(yN/I ~) or less as compared with that
by exp(Z'i &T). Therefore we can conveniently neglect
their contribution to P(n, T) in the intense-field limit.
The analytical expression for P(n, T) in this limit then
reads as

where

y=(I3 +r y )'~, P=yo —
—,'y(1+r ) .

P(n, T)=P'"'e +P'"'e +

(4 7) where

(4.8)
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A ++2(0)—

n —i
y

n —iI( oo )ypy3~(n)—+
(2y )n+&

—k,z

k it(2n k, =O
X
2

y3
- —k2

„—k) —k

1

k,(„1—k, )l

(n+k3)'—k3(2y)
T

0
n —

k& 2

f r n)O
k —k3

(n —kl —k2
(4.10)

and

F( ) —F+ (y~(.~—

Furthermore,
2(1+r')+ y('

(4.11)

(4.12)
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0.20- manifestation of the phase-dependent decay in the
squeezed vacuum.

O. I 6

O. I 2-

P(n, T)

0.08

0.04

0.00
0 I 2 5 4 5 6 7 8 9 lO I I

fl

FIG. 3. Probability distribution P(n, T) with 2y T= 10. For
each n, the central histogram corresponds to the normal vacu-
um. The left and right ones are for squeezed vacuum (N=2)
with P= ~ and 0, respectively. Other data are same as in Fig. 2.
The Poisson distribution with the same mean coincides with the
distribution in a normal vacuum.

duced fluctuations tend to inhibit the emission. As a con-
sequece the probability of detection of photons is higher
at longer times. This behavior may be further seen from
Fig. 3, where we have plotted the distribution P(n, T) vs
n for counting time 2y T=10. This counting time is close
to T„=—T3. Therefore for n & 3, P,„&P„, whereas

P,p&P„. On the other hand, for n &3, P, &P„and
P p )P as can be seen from Fig. 3. This behavior is a

V. CONCLUSIONS

In conclusion, we find that the statistics of resonance
fluorescence in a broadband squeezed vacuum is marked-
ly different from that in the normal vacuum. For large
counting times, the analytical form of Q(cc ) suggests
that at exact resonance, the fluorescence in the squeezed
vacuum has a sub-Poissonian character that depends on
the phase P. The case with /=0 is more sub-Poissonian
than the case with P=w. Interestingly, for a Rabi fre-
quency a-=y/2, the distribution in a highly squeezed
vacuum is narrower than that in the normal vacuum
when a proper choice of the phase is made. In the high-
field situation with nonzero detuning, /=0 and rr exhibit
sub- and super-Poissoman statistics, respectively. This
phase-dependent decay in a squeezed vacuum is also
refiected in the counting statistics P(n, T). The analytical
expression for P(n, T) in the intense-field limit shows time
scales that depend on the parameters N and P. The inhi-
bition of fluorescence in a squeezed vacuum is reflected in
the probability of detecting photons at times longer than
the spontaneous-emission time scale.
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