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Establishment of an entangled atom-field state in the Jaynes-Cummings model
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We use the eigenstates of the reduced density operators to give an explicit form of the entangled
atom-field state in the Jaynes-Cummings model. We relate the expansion coefticients to physical quanti-
ties and discuss the effect of atomic coherence on this entangled state.
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I. INTRODUCTION

The Jaynes-Cummings model (JCM) of quantum opti-
cal resonance is an important fundamental theoretical
model of the interaction between two dissimilar quantum
systems. The model consists of a single quantized field
mode interacting with a single two-level atom [l]. Al-
though this model is of obvious theoretical significance
its interest is not solely confined to theoretical specula-
tion. Recent pioneering experiments have demonstrated
this most fundamental of interactions in the laboratory
[2]. This deceptively simple model has long been a test-
ing ground for theoretical concepts and it is only a matter
of time before some of the more complex features of the
model are subjected to experimental tests. One of the
most interesting features of the model is the correlation
which develops between the atom and field during the in-
teraction. This correlation is responsible for the interest-
ing properties observed in the evolution of the micro-
maser, where information concerning the field is inferred
by measurement of atomic properties. In this short paper
we give, explicitly, the form of the entangled atom-field
state as it evolves under the Jaynes-Cummings Hamil-
tonian. It is the establishment of entanglement between
the atom and field states which leads to the strong corre-
lation between the atomic and field properties.

The JCM (within the rotating-wave approximation) is
one of the few exactly soluble models in quantum
mechanics. Its apparent simplicity belies the fact that the
evolution of physical quantities in the model, such as the
atomic inversion, display an extraordinary complexity.
Of particular interest are the so-called "collapse" and

I

II. DIAGONALIZATION OF THE REDUCED
DENSITY OPERATORS

The Jaynes-Cummings Hamiltonian, on resonance and
in the rotating-wave approximation, is given by

H=co& a+ —,'co&3+A, (a & +a&+), (2. l)

where ~ is the atomic transition frequency, A, is the
atom-field coupling constant, & is the field annihilation
operator, &3 is the atomic inversion operator, o'+ are the
atomic "spin-Aip" operators, and we have set A' equal to
unity for convenience. Using standard techniques it can
be shown [5] that this Hamiltonian gives rise to the fol-
lowing time-evolution operator in the interaction picture

"revival" regions [3] which give a clear, unambiguous
signature of the quantum nature of a coherent field [4].
At first sight one may expect that the field and atom most
closely return to their initial states at the peak of the re-
vival. However, the work of Phoenix and Knight [5] and
the more recent work of Gea-Banacloche [6] has shown
that this expectation is incorrect and that the atom and
field most closely return to pure states during the collapse
region. Gea-Banacloche has given an approximate form
for the atomic state at this time and has shown that this
state is reached regardless of the initial conditions [6].
We give here an explicit form for the entangled atom-
field state which can be used to determine the atom and
the field states without any of the approximations used by
Gea-Banacloche.

cos[l,t(8& )'i ] ia(8 a) '—~ sin[At(& a)' ]
0(t)='—i& (8& )

' sin[At(8& )' ] cos[l,t(8 &)' ]
(2.2)

where we have written U in the atomic basis. We shall
assume that the initial atom-field state is a pure state and
that the atom and field are initially uncorrelated with the
atom being fully inverted. The initial atom-field state can

therefore be written as

I 'p,f (O) &
=

~ pf & Ot
~
e & .

The time-evolved atom-field state is then given by

(2.3)
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I e./( r ) &
=0

I y/ & I e & +s
I y/ & Ig &, (2.4) ' +—'=

—,'[1+(&+,&'+4&8 )(+ &)'"] . (2.12)
where we have written the operators

C'=cos[At(8& )'/ ],
S=—i(2 (8& )

' sin[At(Kd )' ] . (2.5)

The field density operator, p&=Tr, p, evolves according
to

p/(t ) = I
c & & c

I
+ Is ) (s I, (2 6)

1i&=i Ic&+vIs&, (2.7)

where we have written the field states IC) =C'Ip/) and
Is) =SIP/). An eigenstate of the field-reduced density
operator must be of the form

We shall see in Sec. III that these eigenvalues determine
the amount of entanglernent between the field and atomic
states in the JCM and therefore the degree of correlation
between the atom and the field.

The atom- and field-density operators have both been
diagonalized by the procedure sketched above. One re-
markable feature of this technique is that it reveals the
fundamental property of the field in the JCM; it can at all
times be described by just two quantum states. This is a
result of a deeper relation concerning the entropies of the
atom and field. The entropies of the atom and field are
defined through their respective reduced density opera-
tors by

so that an eigenvalue m. must satisfy the requirement
r

S = —Tr (plnp ) (2.13)

(cIc&+—&cIs& = &SIS&+~&SIc&
p V

(2.8)

and the subscript j is taken to imply either the field,
atom, or the complete atom-field system. The entropies
of a general two-component quantum system are linked
by a remarkable theorem due to Araki and Lieb [g]
which states

If we make the substitutions [5]

(cIs)=I(cIS&Iexp(ip), Is, —s/I ~s ~ s, +s/ . (2.14)

1

&I
(«Ic& —&sls&),

8=sinh '(fl/2),

p =exp(+8/2)exp(i//2),

v=+exp(+ 8/2)exp( iP/2—), (2.9)

then the eigenvalues and eigenstates of the field-density
operator are given by

~(-)=(cIc)+e+'I(cIS & I

=&sls&+e+-'I & cls & I,
~(+) ) (

(1/2)(i/+())
I
( )(2''+—'cosh8) '

+e —(1/2)(i((+8) Is ) ) (2.10)

The eigenvalues and eigenstates of the atomic density
operator can also be determined by similar methods. We
find that the eigenvalues for the field- and atomic-density
operators are identical so that both density operators
have the same ei;, ;envalue spectrum. This is a general
theorem for pure states of two-component quantum sys-
tems [7], as we demonstrate below. The eigenstates of the
atomic reduced density operator are given by

I

q(+) ) — (e
—1 ()/(2ig+())

I
e )+e(1/2)(i/+ 8)Ig ) )&2 cosh8

(2.11)

The eigenvalues can also be described purely in terms of
field or atomic operators. The expressions involving field
operators are a little more dif5cult to interpret. The ex-
pression for the eigenvalues can be written as

The subscripts "a" and "f"here denote any two general
quantum systems, which, for our purposes, are the atom
and field. The total entropy of the complete a fsystem is-
denoted by S. One immediate consequence of this in-
equality is that if the total system is prepared in a pure
state then the component systems have equal entropies
throughout their subsequent evolution. The atom and
field entropies in the JCM (with pure state initial condi-
tions) are therefore identical. This has been explicitly
demonstrated for both the single-photon JCM [5] and
two-photon generalizations of the model [9].

The semiclassical JCM in which the field is described
as a monochromatic excitation can be solved nonpertur-
batively to give sinusoidal Rabi oscillations [10] in the
atomic-level occupation probability. It is well known
that these oscillations are recovered in the JCM if the
field is initially prepared in a number state. However, the
state which most closely resembles the stable mono-
chromatic excitation of the semiclassical approximation
is the coherent state. If the field in the JCM is prepared
in such a state the individual number states in the
number-state expansion of the coherent state give rise to
Rabi oscillations at incommensurate frequencies. These
oscillations interfere to produce a complicated beat struc-
ture in the evolution of the atomic inversion. We plot the
atomic inversion and the entropy of the field (or atom) for
various values of the initial mean photon number in Figs.
1 —3. We have assumed that the field is initially prepared
in a coherent state and that the atom is initially fully in-
verted. We see from these figures that the atom returns
most closely to a pure state sometime during the collapse
region. As the photon number is increased this approach
occurs nearer to the center of the collapse region. How-
ever, this is consistent with the result that this pure state
is reached at precisely half of the revival time. The de-
gree to which the atom can be said to be pure at this
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(3.7)

We have thus derived the form of the atomic attractor
state without the necessity of approximations previously
used [6].
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FIG. 5. The shifted phase Pit)+sr/2 with the initial condi-
tions (a) n = 10, (b) n =50.

mixture of the above states. The evolution in the JCM is
such, however, that the dynamics eventually force the
atom into the state ~g,'+)(to) &. Note that P is, in fact,
time dependent and given by the formula

Im(o+ &

P(t) =tan (3.6)
Re(&+ &

The phases P(t) for n =10 and 50 are plotted in Fig. 5.
The phase oscillates between +m/2 being +m/2 during
the collapse region and —~/2 during the revival. The di-
pole moment as a function of time exhibits collapses and
revivals. The sharp jumps in P occur when the dipole
moment goes through zero. As Gea-Banacloche has
shown [6] the atom is forced into a unique pure state re
gardless of the initial atomic conditions. This state is
given by ~1(I,'+'(to ) & as determined from the above expres-
sions, and we find that, up to a global phase factor, that

I, =S,+Sf—S, (3.8)

where the entropies occurring in this expression are
defined by (2.13). It has been shown [11,12] that an op-
timally correlated quantum state of a two-component sys-
tem is pure in which each of the component systems
display maximal, and equal, disorder, subject to any
physical constraints. The maximum value that this index
can take is I, '"=2S, '", where "a" refers to the system
with fewer states. Thus in the JCM we have that, for
pure initial conditions, I, =2S, [of course, we must
remember that the Araki-Lieb inequality (2.14) imposes
the condition that for an initially pure atom-field state,
S, =Sf ', we use the atomic entropy here to remind us that
the entropy is a two-state quantity under these condi-
tions]. The atom-field state is maximally correlated when
S,=ln2. The entropy plots in Figs. 1 —3 are equivalent to
the index of correlation (to within the trivial factor of 2),
and can thus be interpreted as giving the evolution of the
correlation between the atom and field. We see that there
are certain times at which the atom and field are more
strongly correlated. At these times the information that
can be obtained about the field from measurements of
atomic properties is correspondingly greater. The index
of correlation thus allows one to determine the best cavi-
ty "time-of-Aight" in micromaser experiments in order to
yield maximum information about the field. The eigen-
state basis is thus the correct basis in which to determine
the overall correlation between the atom and field. It is
important to note that any measurement of the field by
measurement of the atom will change the state of the
field. One could then suppose that sending atoms
through a rnicromaser cavity for a time to would then
disturb the field least. However, we would need to make
more measurements in order to yield as much inforrna-
tion at these times as can be obtained from measurements
made on atoms with a different fIight time. It is the en-
tanglement which determines at which points maximal
information about the field can be obtained from atomic
properties, and it is the eigenvalues of the density opera-
tors which determine the entanglement. As a final point
we note that for long times the atom and field become ex-
tremely entangled so that maximal correlations are estab-
lished as t~ ~.

As has been previously demonstrated [6] all initial
atomic conditions lead to convergence of the atomic state
onto the unique pure state (3.7). Subsequent evolution
from this attractor state depends upon the choice of ini-
tial condition. It is interesting to examine the stability of
the attractor state in terms of phase-space trajectories on
the Bloch sphere. It is important to demonstrate that
this method is also capable of dealing with the effects of
coherence between the atomic levels and we shall exam-
ine this issue in Sec. IV.

An observable-independent measure of the amount of
correlation between two quantum states is the so-called
index of correlation [11,12]. This measure gives the in-
formation content of that correlation; failure to measure
joint properties of the correlated systems will result in a
loss of exactly this amount of information. The index of
correlation is given by [11,12]
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IV. THE EFFECT OF ATOMIC COHERENCE

One of the first studies of the effects of atomic coher-
ence in the JCM was by Zaheer and Zubairy [13] who
showed that the dynamics of the atom, when prepared in
a coherent superposition state, depend upon the relative
phase between the field and atomic dipole. Earlier stud-
ies had shown that a three-level atom prepared in a
coherent superposition of the upper and lower levels
could give rise to squeezing in the fiuorescence field [14].
The more recent work of Gea-Banacloche [6] has demon-
strated that the atomic attractor state is completely in-
dependent of the initial atomic state. We show here how
the methods of the previous sections can be extended to
include the case where the atom is initially prepared in a
superposition of its upper and lower levels. The exten-
sion to mixed states is then trivial.

Let us consider an initial atomic state of the form

lp. &=pic &+qlg), (4.1)

with Ipl +Iql =l. If we assume that the initial field
state is given by I(()f ) and that the atom and field states
are initially uncorrelated, then the time-evolved atom
field state is given by

%,f(t)) =(pc+qs')Ipf )(8 Ie)

+(ps+qc )Iyf &~ Ig & . (4.2a)

The primed and unprimed field operators are related by,
for example,

C=C'(a, a ), C'=C'(it, a) . (4.2b)

The primed operators are formed from the unprimed
operators by switching the creation and annihilation
operators in the unprimed expressions. If we define two
new quantum field states by

lg& =(pc+qs')Iyf &,

I ~) =(ps+qc" ) I y, ),
(4.3)

then all previous results hold provided we make the re-
placements

Ic& lg &, Is& (4.4)

The dynamics of the new eigenvalues will determine the
form of the atomic pure state in the collapse region. The

Thus, for example, the atomic inversion, with an initial
coherent superposition of atomic levels, can be written as

(4.5)

details are essentially similar to the results given in Sec.
III.

It is of interest to examine the form of the atomic in-
version more closely. We assume that the field is initially
prepared in a coherent state of amplitude n exp( —i/ )

We shall further use the subscripts ex and g to denote
quantities derived from the atom being in the excited and
ground states, respectively. If we let p be a real variable
and write q~q exp(i/~) then for high n &&1 we can
write.

&&, ) =(p' —q')(a, &,„+st (y, —y. ) pq„, &&, &, .d

(4.6)

Writing this out explicitly using the Poissonian number
statistics for the coherent state we find that this result
agrees with that of Zaheer and Zubairy [13]. It is impor-
tant to note that if the phase difference P —P is chosen
to be rr/2 then the evolution of the inversion is indistin-
guishable from that obtained from an initial atomic mix-
ture of the upper and lower levels. It is the phase depen-
dence which is the signature of the coherent superposi-
tion. One could then envisage an experiment to test this
phase dependence using two micromaser cavities, the first
of which prepares the atoms in the pure state (3.7).

V. CONCLUSIONS

The JCM is a fundamental, fully quantized, model of
the interaction between a two-level atom and a single-
field mode. It is of importance both theoretically and ex-
perimentally. Recent work has shown that examination
of the inversion alone is not sufhcient to give a clear un-
derstanding of the properties of this model. We have
demonstrated that the entangled atom-field state can be
derived and have given the form of this state at all times
in terms of the eigenvalues and eigenstates of the reduced
density operators. We find that the eigenvalues deter-
mine the degree of correlation between the atom and
field. The entropy also indicates an optimum cavity Aight
time for atoms in a micromaser experiment for which to
deduce maximal information about the field properties
from measurement of the atoms.
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