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Amplitude-squared squeezing in the multiphoton Jaynes-Cummings model: Effect of phases
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The phenomenon of amplitude-squared squeezing is investigated for the one- and two-photon Jaynes-
Cummings model. The relative phase between the atomic coherent state and the coherent field state is
found to affect this phenomenon with larger amounts of squeezing that can be found by changing the an-

gles (0) for fixed relative phase.

PACS number(s): 42.50.Dv

I. INTRODUCTION

When the atom is prepared initially in a coherent su-
perposition of its upper and lower levels, and its interacts
with a single coherent mode, it has been shown recently
that the population inversion and field spectrum show
dramatic changes with the change in the relative phase
between the atomic dipole and the coherent field [1]. For
a special choice of the relative phase, the population in-
version essentially remains unaffected (i.e., coherent trap-
ping), contrary to the case of incoherent atomic excita-
tion, where collapses and revivals occur [2]. Such a
phase-sensitive system has been proposed as a tool to
probe the coherence produced in the field by the atom
[3]. It is worth mentioning that when the field is taken
into the squeezed vacuum state the model does not have a
phase sensitivity in this case due to the lack of coherent
coupling between the one-photon transition and the
"two-photon" squeezed state.

The squeezed state in quantum optics is characterized
by the property that the quantum fluctuations in one of
the field quadratures are smaller than those associated
with the vacuum [4]. There are a number of nonlinear
systems that are capable of producing squeezed fields [5].
One of these systems is the Jaynes-Cummings model
(JCM) [6]. This model has been investigated and it was
found to produce squeezed states for the field when the
input field has a coherent, binomial, or logarithmic distri-
bution, whether the atom starts in its grounds or excited
state [7].

The definition for the field quadrature squeezing (or
normal squeezing) has been generalized to Nth-order
squeezing [8]. The quantum nature of this definition is
implied by the fact that it is only significant for even N.
Many systems, such as those producing resonance
Auorescence, second-harmonic-generation parametric
down-conversion, kth-harmonic-generation multiphoton
absorption, anharmonic oscillator, and multiphoton
JCM, have been analyzed for higher-order squeezing
[8,9]. Another definition has been proposed for higher-
order squeezing [10]. This type of squeezing, namely
amplitude-squared squeezing, arises in a natural way in

second-harmonic generation and in a number of non-
linear optical processes [10]. It should be noted that all
the squeezed states produced by the different kinds of
higher-order squeezing definitions are nonclassical states.
The JCM has been analyzed for the amplitude-squared
squeezing when the atom starts in its ground or excited
state and coherent input for the field [7(a),9(a), 11]. It has
been found that the amplitude-squared squeezing occurs,
which takes its maximum amount and then decreases
during the period of collapse in the collapses and revivals
phenomenon of the photon number (or population inver-
sion) [11]. Its amount increases by increasing the initial
mean photon number (for

~
cz

~

))1).
In this paper we investigate the amplitude-squared

squeezing in the JCM when the atom is supposed to be in
a coherent superposition of its two states and the field in
a coherent state. In particular, we emphasize the role of
the relative phase. In Sec II an evolution operator is used
to calculate the density operator for the field under the
initial conditions specified above. Once this operator is
computed, the expectation operator for any field operator
can be easily calculated. The required expectation values
for the discussion of amplitude-squared squeezing are
given in Sec. III. A discussion of the effects of the change
in the phases on the amplitude-squared squeezing
comprises the final section.

II. THE DENSITY OPERATOR

The multiphoton Jaynes Cummings model (JCM) de-
scribes the interaction of a single-mode quantized elec-
tromagnetic field with a two-level atom via a k-photon
process. The effective Hamiltonian in the rotating-wave
approximation (RWA) [12] is given by

H= —,'cooo.z+cod et+A[(& )"cr +cr+&"], (1)

where ci (a ) and co are the annihilation (creation) opera-
tor and frequency of the radiation field mode, respective-
ly, and A. is the coupling parameter between the atom and
the field. The two-level atom with transition frequency co

is described by the Pauli raising and lower operators
o. , o and the inversion operator o.z. For simplicity,
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we consider the resonant case (i.e., ken =coo).
We consider the atom injected into the field in a

coherent superposition of its excited and ground states,
i.e., in the state ~9, 4& & where [1]

~9, $&= cos(9/2)~e&+e ' sin(8/2)~g& . (2)

The states ~e & and ~g & denote the excited and ground
states of the two-level atom, respectively.

The density operator for the system at time t =0 is as-
sumed to be decoupled, thus it is given by
p(0)=p~(0)cep„(0), where p~(0) and p„(0) describe the
initial values for the field and the atomic density opera-
tor, respectively. Thus by taking the state (2) to describe
the atom we get p „(0)= ~ 8, N & ( 9,4 ~.

The evolution operator U(t)= exp ( iH—t) can be cal-
culated easily [7a, 1,12] and at any time t )0 the field den-
sity operator for the system is given by

p,, (t)=Tr„. ( &(t)p(0) U+(t))

= gp, e ' " ' sin (9/2)[cos(ktp, )cos(ktp )~m &(l~
I, m

+ sin(Atpi) sin(Atp )~m —k &(l —k~]

+ cos (8/2)[ cos(«p&+k ) cos(itp +k )~m &(1

+»n(~tpi+k)»n(«p +k)lm+k &&l+kI]

+—sin(8)e' " "[sin(Atp&)cos(Atp +k)~m &(l —k~

—cos(Atpi)sin(Atp +k)~m +@&(l~]

+—sin(8)e ' " "[sin(A, tp&+k ) cos («p ) ~m & ( l+k
~ )

—cos (ktpi+k ) sin («p )
~
m —k & ( I

~ ]

where p, =s!/(s —k )!. When we set 8=0 (8=sr), we get
the case of the atom in its excited (ground) state that is
discussed in Ref. [12].

Let the field be initially in a coherent state ~a & given
by

where A =Be'"' ' is a slowly varying operator. These
operators satisfy the commutation relation

[d„d2]=i(2A A+1),

and as a result they satisfy the uncertainty relation

la&=e ~ g I!n &, a=&Ne'
&n! (4) Ad, hd~) ((A A+ —,')& .

with the average photon number X= ~a~ . The initial
density operator pz(0)=~a&(a with its matrix element
(n lp, (0)I» =p„,.

Now the expectation values for any function F(d, d )

can be computed in the usual manner. Hence, many
features can be discussed, such as the phenomenon of
amplitude-squared squeezing.

When either of them satisfy the condition

(bd. ) &((A A+ —,')&, j=1,2 (8)

we say that the field is in an amplitude-squared squeezed
state. Condition (8) can be rewritten as Si and S2, which
are cast in terms of the expectation values of the field
operator in the form

III. AMPLITUDE-SQUARED SQUEEZING

We define the operators that represent the real and
imaginary parts of the square of the amplitude [10]

(5)
and

S, =(bd, )
—((A A+ —,')&

=—,'I2((A A) &
—2(A A &+(3 &+((A ) &

—[( A &+((A ) &] J
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s, =(sd, )' —&( ~'~+-,') &

2 A A)& —2&2 3& —&A &
—&(A )&

4

+[& &'& —&(~')'&]'j (10)

and squeezing occurs w en S& 2n S (0.
b-e 6eld o erator can be o-The expectation values of the e p

tained by using q.E (3). For example, the time evo ution
(A )sA" isgivenby

&(A ) A "&=~a~ ' ~~ Pn cos (8/2) cos (Atpn+k ) cos Attn+„, +k
n=s

+p +I pn+r s+k S'n—(~tpn+r s+k—Pn+k
sin ( A,,tp„+k )

2
Pn —s+k

+,sin (A.tp„)+sin (8/2) cos (At@„)cos(At@„+„, p„
Slil( ktP'n +r —s )

PnPn+r —s

2+ I& I sin(8) exp (iI3k) )un —s cos ~tpn+r —s2' sin(ktp„)

sin (Attn+„, ) cos (Atpnpn+r —s Sin

—~a~" in(8) exp( iPk—) )M„+k cos At@„+„,+i,+2' "" sin( A, t)M „+„)
2

Pn —s+k

COS (2b, tPn +k )
sin(At@„+r s+k

Pn+r —s+k

p =(Cb —k4) is the relative phase.
1 behavior of S when

e =, and
Below, we discuss the tempora e

weta ek N=10, and different values of 8 and Pk.

IV. DISCUSSION AND CONCLUSION

E (11) it is no et d that choosing the coherent
' '

1 state for the atom in-mic state to represent the initia s a eatomic s a e
d th elative phase betweentroduces term sthatde en on er

se (0')]. For the one-photon model standar
the population inversion exhi its a p

I

~ ~

tl 1 . Coherent trapping is shownhas been shown recent y . o
sim le model of a two- eve a oto exist in this very simp

when (8) equal (m/2) and zero relative p ase. so
1 the ra hs for the photon numberthe two photon mode, g p

expectation value is shown
'

g .in Fi s. 1 an . igu
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FICi. 1. (a)a (8 8 ) N for the two -photon JCM-M for 0=0; (b)
( & 8 ) N the same as in (a) bu—t for 8= sr.

f the hoton numbe ( & 8 ) forFIG. 2. The time evolution of t e p o
M O=m. /2, and N=10. (a) (a 0the two-photon JCM, O=m. , an

for p =0; (b) (8 0) N+2 for P2=sr/4; —(c)
P2 =sr/2.
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shows the collapses and revivals phenomenon for the
ground and excited incoherent states of the atom [i.e.,
8=0 (excited) shown in Fig. 1(a) and O=n. (ground)
shown in Fig. 1(b)]. The periodicity is noted in this case.
The effect of the relative phase is shown in Fig. 2 when
0=m/2

We note that at P2 there is almost a coherent trapping
and the change in the photon number is almost unnoticed
in comparison with the case of the characteristic collapse
and revival pictures shown in Fig. l. As P2 increases, we
note that the collapses and revivals phenomenon starts to
appear in a pronounced way and takes its full feature
when the relative phase equals m/2 in this case.

The numerical results are shown in Figs 3—8 for the
different values of (8), the relative phase Pk, and N= 10.
In Figs 3 and 4 we have plotted the squeezing parameter
S, against time (for 0 ~ A.t ~ 10) for one photon (k = 1),
while in Figs. 5 —8 we have plotted the squeezing parame-
ter S, against time for the two-photon processes (k =2).

In Figs. 3(a) and 3(b), the two special cases of 8=0 (the
excited atomic state) and O=vr (the ground atomic state )

[7a, 1] are reproduced for later comparisons.

10

5.0

2 10

(a) FIG. 4. The temporal behavior of S& for N=10 and the
one-photon JCM. (a) (S, +15) for 8=rr/4;, for P, =O;
and. . . ., for P, =vr/2; (b) S, for 8=~/2 and the same param-
eters and notation of (a).

(b]

2 10 '~ 'vI yx
{b)

I

'G

FIG. 3. The time evolution of amplitude-squared squeezing
parameter S& for the one-photon JCM and for N=10. (a)
S

&
+ 1 5 for 0=0 (excited incoherent atomic state); (b) S

&
for

0= m. (ground state).
FIG. 5. S& for the two-photon JCM and N =10. (a) S&+10

for 0=0; (b) S& for 0=m.
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FIG. The time evolution of S for
0=m/4, and N=10

or two-photon JCM,

/4 ()S d
(a) S&+20 and & =

FIG. 8. The samarne as &n Fig. 4, but with g= 3m/4.

When 8=m. /4 [Fig. 4(a)], two cases for
and m'/2, are consider d
amount of squeezing is a little sm

a a ~~&=0, the
aller than the case of

with squeezin d
a . en i =n /2, the curve oscill ates. It starts

'
g, an squeezin~ occurs

y a ains its largest value later.
In Fi . 4(b)

, we obtain no squeezing on th hn e s ort-time interval.
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FIG. 7. The se same as in Fig. 4, but with 0=m/2

But when Pi = a/2, we find that theat the curve oscillates and a
i e sma squeezing occurs in the short ti
h h 8= gvr an m—./2, amplitude-s u

ar can be increased b incr
relative phase from 0 to vr/'

e excite and ground state
~

p
a t e squeezing occurs periodicall in th

and long-time interval b h
that the curve oscillat d l ue

rva s in ot cases. In Fi . 5 b

th i Fi . 5( ) [
sci ates and lar e s ue

ig. a 7a, l2]. It is observed that aa amplitude-

d 1

In Figs. 6(a) —6(c), the angle 8=m/4 and
I ofth l t h
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a ive p ase i (namel 0y 0, n/4 and vr./2)

ere . e note that the squeezin a
short-time intervals a 11 1 er
case it is noted that as =0 Fi

s as we as long-time inter
z=o [ 'g. 6(a)], the amplitude-

q eezng p am
es an squeezing is attained (albeit

slightly.
arger squeezing decreases however

The same values for Pz and 8=m.z an =m/2 are studied in Figs.

e case of coherent trapping. While at
the amplitud - d q

'
oe-squared squeezin od q

'

g occurs frequently on
- an ong-time intervals, but with a small

in coinparison with Fig 5(b)
The case 8=3m/4 is studied in Fi s. 8 a-

observe that (when P =0 a i u e-en &=0, a small amount of amplitude-
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squared squeezing occurs during collapses and revivals
periods. By increasing Pz to m. /4and m /2, it is noted that
the amount of amplitude-squared squeezing increases.
The same remark about the periodicity of (2m. /A, ) of
amplitude-squared squeezing is applicable in this case
also.

In conclusion, the amplitude-squared squeezing for
one-photon JCM and fixed value 8(WO or m) can be in-
creased by increasing the relative phase P, from 0 to n. /2.
It is noted that the maximum amount of the squeezing

occurs during the collapse time and P, =m. /2. Also, we
remark that for the two-photon JCM and a Axed value of
the relative phase Pz, the amount of amplitude-squared
squeezing increases and occurs more frequently by in-
creasing (0) from m /4 to 3m. /4. It is found that the larg-
est amount of amplitude-squared squeezing (two-photon
JCM) increases by increasing 8 from n /4 to 3m/4 for the
relative phase equal m. /2. It is observed that for the two-
photon JCM, the amplitude-squared squeezing
phenomenon has a periodicity of (2~/A, ).
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