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Model atom for multiphoton physics
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We describe in detail some properties of a one-dimensional model atom that has been used for the

study of multiphoton processes. We discuss static properties of the atom such as its energy eigenvalues,

dipole moment matrix elements, and dipole sum rule, and also some aspects of its time-dependent

response to a weak laser field, including second-order level shifts, and exact polarizability.

PACS number(s): 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

In this paper, we describe a model atom that has been
introduced by us (with J. Javanainen) and used for multi-
photon studies [1—3]. This model atom shares many
properties of real atoms. Our attention here is on the
basic bare properties since they are not available in the
literature in analytical or numerical form. We use these
bare properties in discussing a few weak-field radiative
efFects as well. Section II introduces the model and
discusses its flexibility through simple scalings. Section
III analyzes the bare energy eigenvalues and eigenfunc-
tions. In Sec. IV, we compute dipole matrix elements.
The dipole matrix scalings and their relations with energy
scalings are described. Section V presents results for os-
cillator strengths and a calculation of the dipole sum rule.
In Sec. VI we discuss the ac Stark level shifts. We calcu-
late the ground-state polarizability and discuss the ioniza-
tion threshold shift in weak fields. Bound-bound transi-
tions are discussed in Sec. VII through an example. The
photoelectric efFect is discussed in Sec. VIII, and ioniza-
tion rates are compared with the Fermi-golden-rule
values. Multiphoton ionization rates will be briefly dis-
cussed in Sec. IX. The failure to achieve agreement be-
tween our simulation results and perturbation expecta-
tions is mentioned. Section X sums up the paper.

II. MODEL ATOM —LONG-RANGE BINDING
POTENTIAL

This is a quasi-Coulombic or "soft" Coulomb potential.
The parameters a and Q are introduced to remove the
singularity at the origin and to adjust the depth of the po-
tential well. This potential function is plotted in Fig. 1

for a =1, Q= 1.
An important property of the potential represented by

Eq. (2.2) is that at large x it falls off like 1/x. Conse-
quently, it represents accurately the Coulombic electron-
ion final-state interaction during atomic ionization, and it
supports near-threshold levels that scale like Rydberg
levels should. In contrast, short-range potentials support
only a finite number of states, and are more appropriate
to electron-atom interaction [4].

In an early study of the one-dimensional hydrogen
atomic potential —1/~ x ~, Loudon [5] analyzed the
energy-level degeneracy due to the potential singularity
at x =0. Another study using a one-dimensional poten-
tial lacked space inversion symmetry and so parity was
not a good quantum number [6]. Our potential is both
regular and symmetric around the origin and energy and
parity have the same eigenstates. The positions of the
first few eigenlevels are drawn in Fig. 1 with the poten-
tial.

In actual numerical analysis, rather than Eq. (2.1) we
have used a dimensionless Hamiltonian H that follows
directly from (2.1) by identifying Q with electronic charge
e and also a with Bohr radius ao, and then adopting stan-
dard atomic units. It is easy to see that H is given by

0.2

g2 Q2 + V(a, Q;x),2' (2.1)

where the binding potential has the form

Our model atom is one dimensional in space. In addi-
tion our model will only treat one spinless electron and
only nonrelativistic efFects. These restrictions still permit
a relatively realistic treatment of the response of atoms to
intense radiation [1—3]. The Hamiltonian for our one-
dimensional atom is
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(2.2) FIG. 1. Potential V(x }=—1/(1+x )' vs x. The first few

eigenlevels are drawn to scale with the potential.
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1 a2H= ——
Bx

1

(1+x )'
(2.3)

It is useful to note, however, that the model is slightly
more general than this dimensionless form implies, if we
adopt the freedom to adjust the potential strength param-
eter Q in tandem with a (following the a.u. rule:
a=A /mg =1/Q ), but independent of the dipole in-
teraction strength exE(t ) when the atom is coupled to ra-
diation. This has been discussed elsewhere [7]. From
now on without specification we will use the scaled poten-
tial (2.3) and atomic units.

III. ENERGY KIGENVALUES AND EIGENFUNCTIONS

The eigenvalue equation for Hamiltonian (2.3) can be
written

1 8 1
P„(x ) = W„P„(x),

2 Bx (1+x )'
(3.1)

where P„(x ) is the eigenfunction for the state with quan-
tum number n and eigenvalue O'„. There are no known
analytic solutions, so the W's and P's must be obtained
numerically. The lowest 20 eigenvalues are displayed in
Table I, and the scaling properties of all the eigenvalues
are illustrated in Fig. 2.

In Fig. 2(a) we show the energy scaling for the first 40
eigenvalues below the threshold (with negative energies).
The vertical axis is Q —1/W„and the horizontal axis is
quantum number n. From the evident linear relation we

TABLE I. The 20 lowest-energy levels of potential
V(x)= —1/(1+x )' . The first column gives the principal
quantum number and the second gives the corresponding ener-

gy in atomic units. The number of spatial points N=32 767 and
the spatial increment hx =0.0707 were used in the calculation.
An increase or decrease of N by a factor of 2 will not change the
eighth digit after the decimal point in any of the values listed.
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see that these bound states scale like S'„——1/n . This
is exactly the Rydberg-level scaling rule.

In Fig. 2(b) we have plotted Q W„against the quan-
tum number n for the states above the threshold (with
positive energies). This curve also goes into a straight
line. It indicates that these continuum energies scale like
W„-n . This energy scaling is the same as that of an
electron moving in a one-dimensional square well. It
shows that at high enough energy the atomic potential
V(x) is not affecting the continuum energies too much,
and the continuum electron states are characteristic of
the large box we introduced to make the numerical calcu-
lations.

Figure 2(c) shows the eigenvalue spectrum near to the
threshold. It shows how bound states develop into con-
tinuum states. From this plot we can also see that there
are n =60 states below the threshold. There are relative-
ly more states around the threshold as can also be seen
from the density of states plotted later.

Typical eigenfunctions are shown in Fig. 3. The states
are labeled in order, from the lowest, n =1,2, . . . . In
addition to the lowest bound states, a typical continuum
state (n =287) is also shown. The one-to-one correspon-
dence between quantum numbers and spatial parity is
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—0.017729 34
—0.014 872 31
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FICx. 2. Eigenvalue (denoted as 8') scalings against the quan-
tum number n are examined for states (a) below threshold, (b)
above threshold, and (c) near threshold.
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FIG. 3. Eigenfunctions for the ground state (n = 1), the first
excited state (n =2), the second excited (n =3), and a typical
continuum state ( n =287).

clear: P=( —1)"+'.
We show in Fig. 4 the density of states as a function of

energy. This quantity is not well defined of course for
bound states. From this figure we see there is a high-
density region around the threshold, rejecting an obvious
feature of Fig. 2(c). We can also see that the density of
states falls off quite slowly in the continuum. We can in-
crease the density of states above the threshold by enlarg-
ing the size of the large box that we do the calculation in.
For most features of interest to us, 1000 states per atomic
energy unit is good enough.

the eigenstates have no permanent dipole moments.
Since dipole moments are defined by two energy eigen-
states, and since both bound states and continuum states
follow scaling rules as described in Sec. III, we expect to
see dipole moments follow scaling rules, too.

To demonstrate dipole scaling, in Fig. 5 we have plot-
ted logIxk„ I

vs log, on for k =2,4, . . . . All curves after
a peak at k-n fall off linearly. Taking Ixz„I as an ex-
ample, it is easy to check that Ix2„I -n . Not surpris-
ingly, in the case of atomic hydrogen, the dipole matrix
elements Ix2~ „,I and Ix2 „d I

can be proved analytically
[8] to scale as n for large n Th.is dipole scaling simi-
larity is natural, arising from the similarity in the 1/x
form of the potential for large x.

A more complete plot of bound-bound dipole matrix
elements is displayed in Fig. 6 with their numerical
values listed in Table II. In this plot the amplitudes of di-
pole matrix elements are plotted against quantum num-
ber indices. We see from this figure that dipole matrix
elements are quite small unless two indices are very close
in value. We then identify those dipole matrix elements
with indices that differ by +1 by the term "largest di-
poles. "

From the figure, we can determine that the largest di-
poles follow the scaling Ix„„+&I

—n . A simple argument
shows that this is related to the Rydberg-energy scaling.
This argument starts by assuming that the largest dipole
moments are related to classical orbits: Ix„„+,I-x„.
Here x„ is the classical turning point: x„—[ V(x„)] for
the 1/x potential. On the other hand, we know that
the potential energy has Rydberg scaling, i.e.,
V(x„)=W„n.-We then come to the conclusion that
x„-n, as is observed.

IV. DIPOLE MATRIX ELEMENTS

xk, = ~ k Ix In ) = f dx pk(x )xp„(x ) . (4.1)

Obviously, xnn for our model is equal to zero for all n
since parity is a good quantum number. In other words

While energy levels define the basic atomic structure,
dipole matrix elements play very important roles in the
transitions between these levels as an external field is ap-
plied. One defines dipole matrix elements between two
states k and n by

V. DIPOLE SUM RULE

Due to the special form of the Hamiltonian, various
sums [9] defined by

~kn Xkn
k

where cok„=( Wk —W„)/A' and P is a non-negative in-

teger, have simple closed forms. For p =1, one has the
Thomas Reiche Kuhn sum-. It is-usually written as (in
one dimension)
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FIG. 4. Density of states vs energy.
FIG. 5.

I x„„I
vs n on a log-log {base 10) scale for

k =2,4, 6, 8, 10.
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where fk„ is the oscillator strength

fkn
2711

(5.2)

(5.3)
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In Eq. (5.2) the summation includes a complete set of en-
ergy eigenstates consisting of bound and continuum
states.

The dipole sum rule applies to any binding potential
and it provides a way to check our numerical evaluation
of dipole moments. In Fig. 7 we have plotted the oscilla-
tor strength of the ground state (n =1). A sum over the
index k has been performed numerically to give the value

gk fk„-0.9990, taking all values k = I through k =739,
S 739 2.0 a.u. The last ten terms contribute only
0.00002 to the sum.

VI. ac STARK SHIFTS IN WEAK FIELDS

We have analyzed the static properties of our model
atom. Now we will begin to analyze its interaction with a
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FICs. 7. Oscillator strength fk& vs energy Wk.
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time-dependent radiation field. This is determined by the
solution of the time-dependent Schrodinger equation

i 'lI(x, t)=H(t)%(x, r ),
Bt

(6.1)

where the Hamiltonian consists of atomic and interaction
terms

H(t)=H„, +H;„,(t) . (6.2)

The atomic Hamiltonian is as expressed in (2.3) with all
the tildes dropped, and the interaction Hamiltonian will

be employed in dipole form

(6.3)H;„,(t ) =x ef(t ) singlet .

Here x is the electron's position coordinate. The parame-
ters 6' and co are the peak strength and frequency of the
laser field. The pulse envelope function f(t) describes
the temporal shape of the laser field and has a maximum
value of unity. The absence of the negative sign in (6.3) is
due to the electron charge. All the quantities are con-
sidered to be in atomic units.

The virtual transitions induced by the d E term give
rise to level shifts in the bare atom. The lowest nonvan-
ishing contribution. to a level shift is quadratic in the field
amplitude 6 and is called the ac Stark shift. For exam-

ple, the ground state shift is given formally by the expres-
sion [10]

x 1

2 8' H
(6.4)

From this expression we can define the ground-state po-
larizability [11]

(6.5)

The ground-state polarizability is plotted in Fig. 8 for
frequencies co between 0 and 0.65. The polarizability
curve diverges at around m=0. 39, 0.58, 0.62, 0.64. By
checking in Table I, we see that these divergences corre-
spond to one-photon resonances with levels n =2,4, 6, 8.
These frequencies are obviously the singularities in ex-
pression (6.5). There is no divergence corresponding to
one-photon resonance with all the odd states because di-

pole matrix elements x„, vanish for odd n. The applica-
bility of the ac Stark-shift formula is limited if one is too
near the singular frequencies where real physical transi-
tions are possible. The detuning 8'„&—~ should be much
greater in magnitude than the on-resonance Rabi fre-
quency x„,6' for (6.4) to be fully valid.

Like the ground 1evel, other levels also experience level
shifts in the field. The ionization threshold obeys a par-

20

a{a) 0

-10

x = —6" singlet . (6.6)

Here the pulse envelope function is assumed to be con-
stant. The velocity of the electron is found to be
x =(A'/co) coscot, if the initial velocity is set to zero. The
cycle averaged kinetic energy of the electron in such a
field is then

~ 2~ ~threshold
—

2
4co

(6.7)

The effective threshold shift in (6.7) is also known as the
ponderomotive shift and has been verified experimentally
[12].

As a consequence of the negative ground-state ac Stark
shift and the positive ponderomotive threshold shift the
ionization threshold is increased in the field by an
amount

ticu1arly simple shift formula. %'ithout the external field
the threshold energy can be associated with a free elec-
tron with zero kinetic energy. In the presence of the field
a "free" electron is forced to oscillate. Purely oscillatory
motion does not lead to escape from the nucleus. The ki-
netic energy associated with oscillatory motion is "use-
less" in this sense. A near-threshold electron automati-
cally acquires this energy and then must pick up addi-
tional kinetic "drift" energy in order to escape, to be-
come ionized, in an external oscillatory field. How large
is the useless jitter energy that a near-threshold electron
acquires? %'e can easily calculate it, and it is clear that it
is equivalent to a strengthening of the electron's binding
potential, or an upward shift of the threshold energy.

To estimate this threshold shift we solve the classical
equation of motion

-20 I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Io (a.u. )

~ ~threshold ~~g
a (co)

@2
4'

FIG. 8. Cxround-state polarizability vs laser frequency.
In addition to the 8 dependence, the increase in the ion-
ization threshold depends strongly on frequency co.
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VII. BOUND-BOUND TRANSITIONS

Atomic bound-bound transitions are another conse-
quence of the field interaction. Assuming the electron is
initially in the ground state, the dipole interaction (6.3)
may take the electron to any of the excited states with the
absorption of one or more photons. The simplified ener-
gy level diagram of our example to be discussed is drawn
in Fig. 9. The laser frequency is set to co=0.52. The
peak field strength is set to 8=0.05, so that no level
shifts are significant. The pulse shape function has the
form

I I I I I I I I ~
I

I I I I I I I ~ ~
I

~ ~ I I I I I I I
I

I I I I I I I I I
I

I I ~ I I I I I I
I

I I I I I

sion [13]. For one thing, a high-frequency oscillation is
present, and for another, the ground-state population is
almost constant and no significant Rabi oscillation is in-
dicated. To find the frequency content in these figures,
Fourier spectra of the level populations are computed
and then plotted in Figs. 11(a)—11(c). Fourier spectra in-
dicate that the high-frequency component appearing in
Fig. 10 is close to two times the optical frequency. Other
peaks in the Fourier spectra can be identified as the Rabi

f(t)= sin vr
T

(0~r ~ T), (7.1)

P„(t)=[(n~+(t))[' . (7.2)

If the first ten level populations are analyzed, among
them only three levels are strongly populated: n =1, 2,
and 4. The time-dependent populations P&(t), P2(t), and
P4(t ) are shown in Figs. 10(a)—10(c).

The numerical results in Fig. 10 are worth some discus-

where T is the pulse length. In this example exactly 96
laser optical oscillations are included, i.e., T=96(2m /co).
This is a very short pulse, but slowly varying in compar-
ison with the laser frequency. The pulse takes 48 optical
cycles to turn on smoothly and another 48 cycles to turn
off.

Notice from Fig. 9 that one-photon energy, represent-
ed by the arrow in the figure, almost matches the level
difference between n =3 and n =1, or Ace= W3 W].
However, since the dipole matrix element between levels
n =3 and n = 1 vanishes due to parity, a resonance does
not exist between these two levels. There are dipole con-
nections between the ground level and other even num-
bered levels. Two such levels, corresponding to n =2 and
n =4, are drawn in Figs. 9(b) and 9(c) together with their
detunings 62= W2, —co and 44 = W4, —co.

By solving (6.1) numerically, we get the wave function
~
V(t ) ). This can be projected onto the bare states

~
n ) to

find the population on each level n
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FICi. 9. Part of the energy-level diagram of the atom. The
photon energy nearly matches the energy difference between
levels 1 and 3. Note that level 3 has no dipole connection with
the ground state so no one-photon resonance through this level
is possible. Two channels that simplify the bound-bound transi-
tion dynamics are drawn in (b) and (c) with corresponding de-
tunings shown.

FIG. 10. Populations of bound levels (a) n =1, (b) n =2, and
(c) n =4 as functions of time in a 96-cycle smooth laser pulse.
The population oscillates rapidly at twice the optical frequency
and at considerably slower frequencies corresponding to the
transitions within the atom (see Fig. 11).
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x„8&b~, x,46 &b~ . (7.3)

(From Table II, x,z 8 =0.0524, b 2
=0. 1251; x,~

A'

=0.0096, 6~=0.0571). The generalized Rabi frequency
[14] in weak fields reduces to the detuning, i.e.,

j ~
I

j ~ 'j j ~ j j ~ j
I

~ j j j ~ ~ j j j I
j ~ j ~ j ~ j j j
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frequencies for different levels. The Rabi oscillation are
present but very weak in comparison with the 2' oscilla-
tion. The high-frequency oscillation at 2' will be ex-
plained shortly.

The reason for the weak Rabi oscillations is that the
field is weak in the sense that the following conditions are
fulfilled.

Q„=[(x,„b) +b, '„]' '-b,„. (7.4)

a(t ) = ix,bE(t—)e "b(t ), (7.5a)

b(t)= ixb, E(t)e —"a(t), (7.5b)

where E(t ) = 6'f (t) singlet is the electric field and
8 b, = 8'b —8' is the energy-level difference. %'e use the
approximation a(t) —1, observed from Fig. 10(a), which
holds within 5% for all time. Equation (7.5b) can be in-
tegrated for the amplitude of the upper level

The spectral components in Fig. 11 are found to be very
close in value to the detunings 62 and A4. These Rabi-
frequency oscillations are more than 100 times smaller
than the 2m component and are therefore dominated by
the latter.

The 2' oscillation is related to the contribution of the
counter-rotating term in addition to the rotating term.
So in the following analytical estimation we shall not ap-
ply the rotating-wave approximation (RWA) [14]. An in-
dication that the R%'A may be inappropriate in this case
is that the detunings are comparable to the photon ener-
gy: 62= —0.24co, 64=0. 11'.

As shown in Fig. 10(a), the population is almost entire-
ly in the ground state throughout the pulse. One can also
check that 99.93% population remains in the bound
states at the end of the pulse, so ionization is weak. We
therefore consider the transitions from the ground state
to the excited states to consist of two separate channels.
One channel, as drawn in Fig.9(b), describes the transi-
tion between n =1 and 2. The other channel, as drawn in
Fig. 9(c), describes the transition between n =1 and 4.
%'e will further assume that these two channels do not in-
terfere with each other. Each channel just described is a
two-level system and the upper-state population is to be
found.

For a two-level system, we use subscript b to denote
the upper state and subscript a to denote the lower state.
The probability amplitude of each state can be written as
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FIG. 11. Fourier transformations of the population curves in
Fig. 10. The energy di6'erences of the bound levels are
W2 —WI =0.76co, W3 —

W& = 1.0co, W4 —
W& = 1.11'. The fre-

quency components W3 —W2 and W4 —W3 are dominant.

exp[i( 8'b, aj)t]—
8'b, —

CO

(7.6)

Pb(t)=
2

@xba
p( )

1

(w + ) ( Wq, —co)

2 cos(2cot ) (7.7)

During the integration we have dropped the terms that
are proportional to the time derivatives of the pulse en-
velope function f(t) in view of the smoothness of the
pulse in comparison with the rapid optical oscillation. At
the end of the pulse the dropped terms cause a difFerence
in b(t) close to 9X10 in the case of level 2, for exam-
ple.

The population on the upper level can be found by
squaring the amplitude in (7.6),
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A 2'-oscillation term appears in (7.7). In order to find its
origin we go back one step. In the amplitude expression
(7.6), the first term is the counter-rotating term and the
second is the rotating term. Therefore the 2' oscillation
in (7.7) comes from the interference between counter-
rotating and rotating contributions while the two dc
terms come from the individual contributions of
counter-rotating and rotating terms [15]. The overall
modulation by the square of the pulse-shape function in-
dicates that the upper-level population follows the laser
pulse shape adiabatically.

Populations P2(t ) and P~( t ), based on expression (7.7),
have been plotted in Fig. 12(b) and Fig. 12(c) separately
by replacing the upper state with n =2 or 4 and the lower
state with n =1. Figure 12(a) is the approximation used.
The qualitative agreements between the three parts of
Figs. 10 and 12 are very good. Figures 12(c) and 10(c)
agree in order of magnitude. The quantitative disagree-
ments are because the two channels are not truly in-

dependent, and other levels like n =6 have not been tak-
en into account. Still this very crude estimation shows
clearly that the 2' oscillation of excited levels is due to
the contribution from the counter-rotating term in addi-
tion to the rotating term. The relatively great effect of
the counter-rotating terms indicates that the RWA can-
not be regarded as reliable for 8 ~ 0.05 a.u.

VIII. BOUND-FREE TRANSITIONS
AND ONE-PHOTON IONIZATION

The simplest bound-free transition is one-photon ion-

ization, the photoelectric effect. The electron's final ener-

gy is determined by Einstein's formula 8'f =%co+ 8';; in

other words, the transition has to conserve energy. The
ionization rate can be calculated in the long time limit
through the Fermi golden rule [16]
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ried out over all the bound states. Both expressions (8.2a)
and (8.2b) have been used in calculating the ionization
probability and the two formulas agree with each other
very well. Expression (8.2a) is sometimes harder to evalu-

R, =2' — ix, f i'p(8'f =%co+ W, ) . (8.1)

Al

ED
O

TIME

P(t)=l —QP„(t) . (8.2b)

Here P„(t) is defined in (7.2) and the summation is car-

Here 6' is the maximum field amplitude, x;
initial- to final-state transition-matrix element (the

bound-free matrix element) and p(Wf ) is the density of
final-state energies 8'f. The ionization rate R, is pro-

portional to the square of the electric field, i.e., to the

field intensity. The subscript "1"denotes a one-photon

process.
To find the ionization rate from our ab initio time-

dependent wave function
~
V(t ) ), we first calculate the to-

tal ionization probability. This is carried out by integrat-
ing the population over all continuum states:

P ( ~ ) = I d 8'I & II I +(& ) & I

' . (8.2a)
0

Since all states, bound and continuum, form a complete
set, we can also evaluate P(t ) by using projections on the
bound states,

Z Q0

Q0
Q

(c)

O

200.0 400.0 600.0 800.0 1000.0
TIME

FICi. 12. Populations of bound levels (b) n =2 and (c) n =4 as
functions of time obtained by regarding n =2 and n = 1 or n =4
and n =1 as two-level systems, respectively. Estimations as-
sumed constant population on level n = 1 [see (a)]. High-
frequency oscillatory behavior, which also appeared in Fig. 10,
is due to the interference between the rotating and the counter-
rotating terms.



Q. SU AND J. H. EBERLY

ate because the integrand can span a large range of ener-

gy W.
The ionization probability P(t ) and the associated rate

R are related through R =dP(t)/dt .It is frequently an
excellent approximation to take P (t)

1.0

0.5

(a) —8 = o.o3
(b) —8 = 0.05

(c) —4 = O.o7

(d) —4 = 0.10

IC

P(t)=1—e (8.3) 0.0

and in the case of weak fields when R is small, P( t ) -R t
For a laser pulse with a smooth turn-on, the peak intensi-

ty needs some time to develop and therefore there is usu-

ally a delay before one can find the linear dependence on
a probability versus time plot. The slope on a P(t ) plot is
the approximated numerical value for the ionization rate
in weak fields

-0.5 I ~ ~ I a I l c

0 100 200 300 400
t (a.u. )

FIG. 13. Ionization probability vs time for a one-photon ion-
ization process with co=0.8 a.u. The laser pulses took 10.25 cy-
cles to turn on smoothly and lasted 50.25 cycles. The results are
@=0.03 0.05, 0.07, and 0.10, respectively.

for P(t ) «1 (8.4)

where 5T,„ is the time delay associated with the pulse
turn-on. We have not put a subscript for the rate since
this expression is practically true for all weak-field ioniza-
tions regardless of order.

To compare (8.4) and (8.1), we fix the laser frequency at
co=0.8 a.u. and perform a set of simulations for field
strengths 8=0.03,0.05,0.07,0. 1. In all calculations, the
electron is prepared initially in its ground state. There-
fore we have W. = —0.67 a.u. and WI=0. 13 a.u. The
pulse is turned on in 10.25 optical cycles, in a smooth
form

13%%uo, and 23%, respectively. Figure 14 displays the in-
tensity dependence for the four calculations we have just
mentioned. The ionization rate is plotted versus the in-
tensity @ on a log-log scale. We expect a linear depen-
dence in this graph since the Fermi-golden-rule rate de-
pends on the first power of intensity. The slope in Fig. 14
turns out to be nearly 0.95 between the first two points
and 0.90 for four points. These results show that for
6=0.03, our field is weak enough to be described by the
Ferini golden rule For .6 close to 0.1, the disagreement
increases to 10%%uo. This indicates that these fields are not
really very weak. Similar situations have been found in
other systems [17].

n 2

2 5T,„
1, 5T,„(t(T

0(t (6T „
(8.5)

IX. BOUND-FREE TRANSITIONS
AND MULTIPHOTON IONIZATION

with oT,„=10.25(2m. /co); then it is kept as a constant for
the rest of the pulse. The total pulse length is 50.25 cy-
cles, i.e., T=50.25(2m/co), or around 400 a.u. The P(t)
curves for these four field strengths are plotted in Fig. 13.
The nearly linear dependence after the delays due to the
turn-ons is evident, at least for weaker fields. It is also
evident that as the field gets stronger the curves become
less linear and one can fit the curve better with the ex-
ponential decay formula (8.3).

We can make a specific comparison with the lowest
field value 6'=0.03, which should give the best agree-
ment between the numerical rate and the Fermi golden
rule. The slope from Fig. 13 is 1.31X10 a.u. while the
Fermi-golden-rule value is 1.35X10 a.u. The agree-
ment is within 3 fo. The parameter values
p( W/=0. 130)=1419.95/2 and lx; /l =0.011 579 have
been used in obtaining the golden-rule rate.

Ionization rates for higher fields give bigger disagree-
ments with the Fermi-golden-rule predictions. For
=0. 05, 0.07, and 0.1, the disagreements are 8.4%,

When the photon energy is less than the ionization
threshold, no energy-conserving one-photon transition is
possible. In this case the electron's kinetic energy de-
scribed by Einstein's formula gives a negative value.
However, the laser interaction can taken an electron to a
positive-energy state via a multiphoton process. The
electron energy created during multiphoton ionization
obeys the equation.

WI=XAco+ W; . (9.1)

2N

R~ =2' —
l
M 'I

l p( W~ =N fico+ W; ) .
2

(9.2)

Here M 'f is the N-photon multiphoton transition-
matrix element [16,18]

Here an N-photon ionization is assumed to take the elec-
tron from initial energy W; to a positive final energy W&.

For a multiphoton-ionization process, the ionization
rate is the generalized Fermi golden rule [16]

i&lx ln&i& tii lx lii2 & & it~ i lx lf &

( W, +Pie W„)(W;+2fico W—„). [ W;+(N —1)&oi—W„„,]—
1 2 X —1
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FIG. 14. Ionization rate vs intensity (in a.u. , 3.5X10'
W/cm ) on a log-log scale. The slope decreases slowly from the
perturbative prediction of unity as the intensity increases. The
averaged slope in the plot is 0.90.

FIG. 15. Ionization probability vs time for five-photon ion-
ization processes with co=0. 148 a.u. The laser pulses took 5.25
cycles to turn on smoothly and lasted 24.25 cycles. The results
are for 6 =0.03,0.05,0.06, respectively.

From (9.2), the ionization rate is proportional to the Nth
power of the field intensity,

R.~ =o.~I (9.4)

Expression (9.4) implies that on a log-log scale we expect
a straight line with the slope equal to the process order N
and the vertical intersection gives the cross section o.&.

Relation (9.4) is based on perturbation theory. But un-
like the one-photon ionization cross section it is very
hard to calculate 0.& because of the difficulties in calcu-
lating [16,18] the multiphoton transition-matrix elements
(9.3). For example, in our simple model atom a five-
photon process involves summations of 30 =24300000
terms, taking account only of the 60 bound states.

The I power law of (9.4) is easier to check. We have
performed a calculation of a five-photon process (N=5).
The laser frequency is chosen to be co=0. 148 a.u. The
same pulse envelope function as (8.5) is used with
5To 5 25 optical cycles and T=24.25 optical cycles.
The total ionization probability is formed through (8.2)
and the results for three peak field strengths are displayed
in Fig. 15.

For all three field-strength values, 6'= 0.03, 0.05, 0.06,
Fig. 15 shows some similarities with the one-photon
counterparts in Fig. 13. The similarities here refer to the
near linear dependence of ionization probability in time
and the existence of time delays induced by the pulse
turn-on. Unlike the one-photon ionization case, an
analysis indicates that for the two smallest field strengths
the power index of intensity is close to a value of 4.2,
much smaller than the expected ionization order 5.

The discrepancy comes from the fact that even the
lowest field considered here, 6 =0.03, is not weak enough
for a five-photon ionization process to behave fully per-
turbatively. Attempts in reducing the field strength turn
out to be limited by the numerical accuracy and the
amount of computer time. For 4=0.03, we already find
that ionization probability grows very slowly with time if
time is measured in optical cycles, which is the natural
time unit in all the ionization calculations. At the end of
the 24.25 optical cycles (close to 1000 a.u. ) the ionization
probability is only 9X 10 . This number is comparable
with our numerical accuracy. For a second field strength

=0. 015, which is only half of the above example, the
ionization probability is expected to decrease by 2 =32.
This requires us to increase computing time by about 32
times to keep the same accuracy. The weak-field
inefficiency of the numerical simulation method men-
tioned here is less serious in studying stronger field ion-
ization [1—3].

X. SUMMARY

In this paper we have discussed the basic properties of
a one-dimensional model atom. This model atom shares
many properties of real atoms. For example, it has a
series of near-threshold bound levels that scale as Ryd-
berg levels. The dipole matrix elements also follow scal-
ing rules reAecting the long-range Coulombic binding.
The numerical value of the Thomas-Reiche-Kuhn sum
gives us an idea of the computation accuracy. Although
the values of bare eigenlevels and dipole matrix elements
are limited by the space truncation, numerically these
values are stable up to the eighth digit after the decimal
point.

A number of calculations [19] using the same model
atomic system have appeared recently, with the use of
different methods. All results show good agreement.

As applications of our model we have discussed,
through examples, a few weak-field radiative effects.
These effects include the ac Stark level shift. These shifts
become non-negligible as we discuss stronger field effects
[20]. We have also discussed bound-bound transition and
bound-free transitions. We demonstrated that the fields
( —10' W/cm ) that we focused on in this paper cannot
be regarded as "weak. " In these fields the counter-
rotating term can become significant in the bound-bound
transitions. In the bound-free case ionization rates also
deviate substantially from their perturbative expectation
values. We pointed out that in still weaker fields one ex-
pects better agreement with the perturbation predictions,
but these weaker-field calculations require much longer
computing times and are not efficient for the ab initio
method.
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