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Coexistence of a self-induced-transparency soliton and a nonlinear Schrodinger soliton
in an erbium-doped fiber
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The possibility of observing a self-induced transparency (SIT) in an erbium-doped optical fiber is in-
vestigated. A general equation that includes the SIT, the group-velocity dispersion (GVD) of the fiber,
and the nonlinear refractive index is discussed. It is shown that for one particular value of waveguide
parameters the nonlinear index can balance the GVD, that is, the nonlinear Schrodinger equation (NLS),
while maintaining a SIT soliton. This is called a SIT-NLS soliton. The phase change of the SIT-NLS
soliton is governed solely by the NLS component, and the pulse delay due to resonance is determined
solely by the SIT component when the detuning is zero. Practical parameters for silica-based fibers do
not allow the coexistence of a mixed soliton state. A simple derivation of a condition for a SIT-NLS soli-
ton is also presented. The SIT-NLS soliton is computer-run, and it is shown that a stable 2~/N= 1 SIT-
NLS soliton exists. However, high-order SIT-NLS solitons always split into multiple 2~/N= 1 solitons.
The NLS property can be preserved when Z,p &(L,b, . Finally, the NLS soliton that interacts coherently
with erbium ions is studied, and the coherent pulsation that produces multiple narrow pulses is de-
scribed.

PACS number(s): 42.50.Qg, 42.65.—k

I. INTRODUCTION

Erbium-doped fiber amplifiers (EDFA's) are of great
interest since they ofFer a great potential for opening new
fields in optical communications [1—3]. Their typical ad-
vantages are a polarization-insensitive high gain of more
than 40 dB in the 1.5-pm region, low noise, wide band
width, and high output power. Among these excellent
characteristics, the wide-band property of greater than 30
nm is very useful for amplifying ultrashort pulses includ-
ing optical solitons [4—6]. We have recently reported
femtosecond optical soliton amplification and trapping in
an EDFA [7,8].

The development of these EDFA's offers the possibility
for a variety of different fiber applications. When an elec-
tric field is guided by the fiber waveguide structure,
diffraction effects are eliminated, and this makes it possi-
ble for the field to interact with the fiber medium, which
has resonance effects over long distances. For example,
experiments on self-induced-transparency (SIT) solitons
have been reported by many authors [9—12]. However,
all of them had to cope in one way or another with
diffraction effects that were made even more complicated
by nonlinear interactions. Thus, from a purely scientific
point of view, it would be beneficial to perform a SIT ex-
perirnent in an environment in which diffraction effects
can be completely ignored. As a related phenomenon,
photon echoes of Nd ions in optical fibers were ob-
served at low temperatures [13,14].

More importantly, the SIT offers a possibility of pulse
shaping and standardization that is different from the
nonlinear Schrodinger (NLS) soliton formation [15].
Since some of the energy released in the reshaping of a
pulse remains in the medium, and eventually decays via
material relaxation processes, pulse shaping by the SIT

soliton may yield cleaner pulses than those produced by
NLS soliton formation in an essentially loss-free fiber.
Recently a SIT digital switch was also proposed [16].

Fundamental work on the SIT-NLS soliton was report-
ed by Maimistov and Manykin in 1983 [17] and more re-
cently related work was reported by Mel'nikov, Nabiev,
and Nazarkin [18]. However, the detailed characteristics
on SIT-NLS soliton propagation have not yet been
clarified.

In the present paper, we present detailed characteris-
tics of SIT-NLS solitons in optical fibers. In Sec. II, SIT
equations are briefly reviewed. Then, we introduce the
group-velocity dispersion (GVD) and the nonlinear index
for NLS solitons in Sec. III. In Sec. IV we show a
steady-state SIT-NLS soliton solution. Practical erbium-
doped fiber parameters are applied to the SIT-NLS soli-
ton solution in Sec. V, and the possibility of the coex-
istence of a mixed soliton is investigated. Conditions for
obtaining pure SIT solitons ignoring GVD and self-
phase-modulation (SPM) are also described. In Sec. VI
we discuss the relationship between the soliton period
and the absorption length, which characterizes the prop-
agation property of the SIT-NLS soliton. Computer runs
for the SIT-NLS soliton are presented in detail in Sec.
VII. Finally in Sec. VIII, the propagation of a NLS soli-
ton which interacts coherently with erbium ions is de-
scribed.

II. THE EQUATIONS OF SIT

In this section we review briefly the equations of a
two-level system excited by an E field [19]. In the slow-
envelope approximation, the wave equation for the
electric-field envelope E (z, t) of a plane wave propagating
in the z direction is
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where v is the group velocity of light, e is the dielectric
constant, co is the carrier frequency, and P is the polariza-
tion of the medium. The polarization P in a two-level
system with amplitudes of wave functions of the upper
and lower levels, v, and v2, respectively, is given by

where /3 has an arbitrary value, which is the imaginary
part of the pole position of the inverse scattering theory
and y is an adjustable parameter related to the time delay
due to the SIT effect.

This field partially, or totally, inverts the two-level sys-
tems, but returns the population to the ground state,
Iv2I =1 for r~ ~ and r~ —oo. The excited level v, is
zero for both these limits. By substituting (2.11) into Eqs.
(2.5) and (2.6), it is shown that the solutions of the equa-
tions, u, and u2, are

where ND is the particle density, p &2 =p2, is the matrix
element of the two-level system, p2, is the density of ma-
trix, and the brackets indicate an average of all inhomo-
geneously broadened two-level systems. Thus, the equa-
tions for the electromagnetic field interacting with the
two-level system are

and

u2 =sinh[2p(r —yg)+ ip]

X sech2P( r yg—)e '~1'

u, = —cosP sech2P(r yg—)e'~'

(2.12)

(2.13)

B n B

Bz c Bt
p2j.E

iA
=—02& v, u2 ),n

(2 3) with

tang= —g/P . (2.14)

0 = ~&D I p12 I'

2Aeon
(2.4)

eo is the dielectric constant of free space and cu is the opti-
cal carrier frequency. The wave functions v, and v2 obey
the differential equations

Bv& + l'gu, =
—,
' 6'V2

B7.
(2.5)

where n is the effective index for the linear propagation of
the field,

The derivation of v& and u2 are given in the Appendix.
The solutions v, and u2 obey the condition of return to
the ground state after passage of the pulse. In addition,
we have a condition of

Iv I
+ Iu I

= 1 . (2.15)

(ulv* ) = f d(g(g)ulu2 (2.16)

The low level population goes through a phase shift as
the pulse "passes through. "

Let us consider the average

Bv2

B7.
i gu2 =

—,
' 6—'*u, , (2.6)

2p2) E
ikey

(2.7)

(2.8)

where r is normalized to 0 and 8 is the normalized field

sinh213(r —yg)cos P
cosh 2P(r —yg)

(2.17)

over the distribution of inhomogeneously broadened par-
ticles with a symmetric distribution g(g), which satisfies

fdgg(g)=1. First, it should be noted that groups of
particles placed symmetrically around /=0 give only the
real contribution. From Eqs. (2.12) and (2.13), one has

and Aco2, is the energy separation of the two center-levels
in a homogeneously broadened medium. Coupled equa-
tions (2.5) and (2.6) are already the Zakharov-Shabat
equations [20]. If one introduces new coordinates

Thus, we obtain

2( vlv2 ) = 2f dg—g(g)cos p tanh2p(r —yg)

X sech2P(r —yg) . (2.18)

nz~=A
c

The integral on the right-hand side is equal to, or less
than, unity. From (2.10), we have

Qzn
(2.9) 2( V1V2

= SP y tanh2f3(r —yg)sech2P(r —yg) . (2.19)
(2.5) and (2.6) remain unchanged and (2.3) changes to

Be =2&v, u,*) . (2.10)

6 =4P sech213(r yg), — (2.11)

Equations (2.5), (2.6), and (2.10) are normalized equations
for the SIT soliton. They have a simple solution which
can be shown by assuming the form

Thus, one obtains

SP y= —2 f dg g(g)cos P

I+ (g/p)'
(2.20)

When the two-level system is not inhomogeneously
broadened, and g(g) is a 5 function, from (2.20) we find
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2

The actual space-time dependence of the pulse is

(2.21)
where e(r) represents the radial field distribution. In
(3.1) and (3.3), PNL(r, z, t) and E(z, t) are slowly varying
envelope functions in time and space. With envelope ap-
proximations of

6 =4P sech2PQ t — (1+y )
C

(2.22)
a's NL 2p —i(cot —kz)

at2 NLe (k')' «kk",

where the speed of the pulse is c/n (1+y). The bigger
the y value the slower the pulse. One would expect the
greatest slowdown when the medium is not inhomogene-
ously broadened. Thus, from (2.21) and (2.22) as the
pulse becomes shorter, everything else being equal, the
slowdown is reduced. This is because the slowdown is
due to absorption at the front end of the pulse and gain at
the rear. The slope-change accounts for the slowdown,
and the speed change is less noticeable as the slope be-
comes steeper.

It is also noted that the area f 6 dr of the normalized
field is fixed, just as with the soliton solution of the NLS
equation. The SIT pulse has a peak field inversely pro-
portional to its temporal width r, = 1/2PQ from (2.22).
From (2.7) and (2.11) we have a peak amplitude E„„„

(3.2) can be rewritten as

{V'Te(r)+ [co~e(r)p, —k ]e(r) }E(z,t)

coPpo B—i2k + +k' —i —,
'k" E(z, t)e(r)

Bz 2k Bt ' Bt 2

co~pPNL ( r, z, t ) (3.4)

V Te(r)+ [co e(r)p —k ]e(r)=0 . (3.&)

Here k'=1/U and k was expanded up to the second or-
der in (co —coo). Here we are dealing with the propaga-
tion mode (single mode) in a fiber waveguide, so e(r)
must satisfy

Epeak
= AQ

A'0

Thus, we have

+ E(z, t)e(r)a 1 B

Bz v Bt

lpga lr,

III. ADDITION OF THE GVD AND SPM

(2.23)
dE t

where fiber loss given by coppo. /2k was ignored and J, is
now the slow envelope function, in space and time, of the
nonlinear polarization density. With the use of the nor-
malization

SIT works properly only in a plane-wave configuration.
The peak field must be such that it returns the population
at the line center to the ground state and does likewise
for detuned two-level systems. If the product of the field
amplitude and the pulse duration does not satisfy this
condition, the pulse is not in a stationary steady state.
Thus, if we intend to perform guided SIT experiments,
the electric field across the SIT medium must be uniform.
This requires that the erbium-doped part in the core of
the fiber should be thin so that the electric field applied to
each erbium ion is constant.

The polarization currents due to the SIT and SPM ap-
pear as a sum on the right-hand side of Maxwell's equa-
tions. The Maxwell wave equation for an electric field
with nonlinear polarizations

f le(r)l dS =1

(3.6) is rewitten as

(3.7)

BE+ 1 BE ~ J e*dS+i—'k„a E
Bz v Bt 2K

(3.8)

Now, J, consists of two parts. One is the SIT contribu-
tion, which is represented by

J,(s,T)=i~Ps,T=i~NDp, 2(uiuz ) . (3.9)

s(NL) NL

The other is the nonlinear index contribution (SPM),
which is given by

PNL(r, z, t) =PNi (r, z, t)e

is given by

(3.1)
=iso(2nn2lEl )eoE

=2i n&e/p—lE I'E .
C

(3.10)

Thus, the total nonlinear polarization is
(3.2)V E =ppo +pp 2 +pp

Bt at' Bt' fJ,e*dS= ,'ico&p/eNDp, 2(—u, —vz )
effwhere o. is the conductivity and E is the scalar electric

field given by

E(r,z, t) =E(z, t)e(r)e (3.3) C A, ff
(3.11)
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Here S is the cross section of the SIT core where erbium
ions are doped, A, ff is the cross section of the mode, and

I
e

I
is set equal to 1/A, (r at its peak. Thus

Js,Te*dS =5/QA, (r. There are three kinds of radius.
One is the fiber core radius of r„ the second is the spot
size (mode-field radius) of w0, and the third is the SIT
core radius of r, . There is a relationship between them of
r, (r, (up, where the fiber core area A, ff and S are given

by mr„mm 0, and ~r, , respectively.
Thus one obtains

BE 1 BE S+ = 2icv—&p/eNDp(~(v(v2 )
Bz v Bt

A

( ,' e()c—nA,(f )
'~

7 s

where

Z

0

= 1
+Pp(NLS)

Zp

A
Q =

+PO(NLS)
(3.16)

BEIEI'E+ -' k"
I

(3.12)
CO n2K—
c

Introducing the transformation of variables (nonlinear coe%cient),

=S s

Z Z j

we obtain the following final equation as the SIT-NLS
equation:

(normalized distance). Thus we obtain

Bl
Bx

'i (2 W—')(uM* —u *M),

+2igQM= 2iWuF-,
Bx

(3.17)

(3.18)

. BE
~+V«&Dp(2(u(u2 ~

Bz

BE+— IEI E ——'k"
c A, ' Bs2

(3.13)

(
.)Bu'

Bq

Zp 1 A, ff—COKDP &2

+PO(NLS) 26'pen

+— +IuI'u,1 Bu
2 BX2

' 1/2

(3.19)

aF = 1 P (E*M EM*)
2

Bs 2 iA
(3.14)

Here k" should be negative for the generation of a NLS
soliton.

In order to computer run a SIT-NLS soliton, as de-
scribed in a later section, (3.13) is further normalized. In
addition, Eqs. (2.5) and (2.6) for ui and uz are also rewrit-
ten in the form F = v2I

—Iu, I =p22 —p» and
M =u, u 2 =p2, . This makes it possible to understand in-
tuitively the way in which the dipole phase rotation and
the population inversion change with the existence or
otherwise of the NLS soliton.

Noting here that r =As and from (2.5)—(2.7), we have

where we put S = A,ff. 8'satisfies

Pp(NLs) 8 —6'pen2 ]

P2& ~s
A.ff (3.20)

Since —,
'

e0cn (fi/p2(r, ) A,(t is equal to P0(s,T) using (2.22),

0(NLS)P

PO( SIT)
(3.21)

cIk"
I

2 &pen 2
A eff

COll 2 Ts
2 epCn eff

P2& ~s

Therefore

It should be noted that 2u satisfies 2~ pulses when

Pp(NLS) Pp(SIT), that is
2

2$'2i
+2i /AM= EF .

Bs
'

EA
(3.15)

or

c Ip I

Ik"
In2-

CO15

(3.22)
Equations (3.13)—(3.15) are a set of general nonlinear
pulse equations for SIT and NLS, in which Eqs. (3.14)
and (3.15) are simply the Bloch equations for a two-level
atomic system that couples with Eq. (3.13). To normalize
the coupled soliton equation, we use the following trans-
formations:

n2(vA n2hk" =
cIp~( I

2vrl. Ipz( I

When this condition is met, there is a secant hyperbolic
pulse solution for a SIT-NLS soliton. These results mean
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that when &is ~q~~l to u»ty, that is Po(NLs) 0(sIT), 2u
in (3.17) and (3.18) and the SIT part of (3.19) completely
describe SIT and u also satisfies the NLS soliton part
(3.19). It is easily confirmed that (3.22) is the same as

Thus, the phase change is given by aq= —,'(2g) q. This
means that the phase factor is determined only by the
NLS part.

(b) The sech (x) term:

= 1
KPO( NLS) Z 0

since

c ,'roc—nA,~

—KPO(sg T)

PO( SIT)

(2g) =(2g)' .

(c) The tanh(x)sech(x) term in the case of homogene-
ous broadening: Since —fdgg(g)c os /=1, 2'(x —5q)
is equal to 2P(r —yg). Thus, we have

r 1/2
ZO

(2g) 5e' ~=i —coNDp )2
QPO(NLS) 2 2eocn

In the next section, the pulse delay and phase change for
the SIT-NLS soliton are described.

In the above equation, the phase terms should be equal,
so that

IV. STEADY-STATE SOLUTION
FOR THE SIT-NLS SYSTEM

As for the SIT soliton, the phase rotation P(q) in the z
direction can be taken as an arbitrary value. That is, it is
possible to replace M with Me'~' '. This transformation
is useful for understanding how the phase change in the
SIT soliton is affected by the NLS soliton

P(q)= ——+aq .
2

(4.6)

It is important to note that the phase difference at q =0
between the dipole and the input field is vr/2, which is the
inherent nature of the dipole transition. Furthermore,
the z dependence of the phase of the dipole is determined
solely by the nonlinear phase change due to the NLS soli-
ton. Also, one has

BF =i (uM*e '~' ' —u*Me'~' '),
BX

A,~—CO

2eQcn

ZQ
NDp

+PO(NLS)

+— +IuI u .
1 8 u

2 aX2

a Me'~(&)
+2gnMe'&(~) = 2i.ur, —

BX
1/2

(4.1)

(4.2)

(M )e'~'~'

(4.3)

2 ~.a(2') 5= —o)NDp )2Pp ( b)i s )
2 ' 2e ocn

ZQ
' 1/2

(4.7)

which determines the pulse delay due to the SIT effect.
This means that there is no additional delay contribution
from the NLS part when a detuning from the resonance
is zero.

Thus, u =2g sech2q(x 5q)e' ~ sat—isfies

Both the SIT and the NLS equations give rise to a hy-
perbolic secant pulse solution. Therefore, it is expected
that a system can be constructed that has these kinds of
solutions. Hence, we assume here a normalized solution
of the form

( i ) = (2g )
—5 exp i ——+ —,

' (2r) ) q
Bq 2 2

+ — + IuI'u .1 Bu
BX

(M)

(4.8)

u =2il sech2ri(x —5q)e' ~ . (4.4)

a= 2((2g) (4.5)

When we introduce this solution into (4.3), we obtain
terms for the forms sech(x), sech (x), and
tanh(x)sech(x). That is,

Bu = [2ri5 tanh2q(x —5q)sech2g(x —5q)
Bq

i+saech2g( —x 5q)]2ge' ~,

IuI u =(2g)'sech'2q(x —5q)e' ~

1 Bu = [—,
' (2'�)'sech2g(x —5q)

BX

+(2r)) sech 2'(x —5q)]e' ~ .

Setting the coefficients of these terms to equal zero, we
obtain the following.

(a) The sech(x) term:

2
n + aabs s ~ g (Aco) d(~ )
c 2rrg (0) —~ 1+(Alor, )

(4.9)

where —2Qg'=co —
cuz) = b,co, a,b, is the absorption

coei%cient

~~&D Ip2( I'g (o)
~abs

Ae0cn
(4.10)

and ~g (0) = I/rrb, v„wHM, where FWHM is full width at
half maximum. We assume that g(hco) is a symmetric
function. For the case 2m. hvFwHM&s « 1

1/5 is the normalized speed of the SIT-NLS soliton, but
it is determined only by the SIT effect. Let the speed of
the SIT-NLS soliton be V. From (2.19) and (2.21)

—=—(1+y)1 n

V c
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=—(I+A r, )
V c

and the pulse delay per unit length, A~D, is

2
1 n n 2 &abs~~FwHM+s

h~I) =———=—(A~, ) =
V c c 4

(4.11)

(4.12)

Ik,'I;„I very much. Hence it can be concluded that it is
not possible for NLS and SIT solitons to coexist in silica-
based erbium-doped fiber.

We estimate here how much peak power is required in
order to observe a pure SIT soliton. The peak intensity
of a 2~ pulse, Ipeak(sIT) &

1s given by
2

If 2mhvFwHM&, is much larger than unity,

1 n 1+ 0!
V c 2

(4.13)

and, therefore, the pulse delay per unit length is given by

1 n 1=———=—e
V c 2

(4.14)

Then we investigate a condition where the GVD and
SPM are both negligible. Here, the slowdown due to the
SIT, as given by (4.7), must be large compared with the
pulse spreading due to the GVD. Since SIT accepts any
pulse width as long as the pulse duration is shorter than
T2, this reduces essentially to a pulse-width criterion.
This will be described in Sec. VI.

V. POSSIBILITY OF A SIT-NLS SOLITON
IN A SILICA-BASED ERBIUM-DOPED FIBER

Using typical values for n2 and lp(zl in silica-based
erbium-doped optical fibers, we can investigate whether
the SIT-NLS soliton can actually exist in those fibers.
The absorption cross section o. at the line center is given
by

~IP~II'
~eohnchv

(5.1)

I
k sIT-xLs I

=2.7 X 10 ps /km .

where b.vH is the half width at half maximum (HWHM)
of the absorption, co=2~v is the resonance frequency,
and h is the Plank constant. Assuming a typical
linewidth hAH of 3 nm (bvH =EAHc/l, ) and
o =5 X 10 m I21], one obtains

lp2( =1.4X10 Cm

=4.7X10 ' D,
where A, = 1.55 pm, go= 8.85 X 10 ' F/m, and
Q =6.63 X 10 J s. In silica fibers, n2 = 1.2X 10
m /V . Putting these values into (3.22), Iks'IT &Ls I

which
is required for maintaining a hyperbolic secant solution,
is

Ipeek(sIT) p
CII Eo( 1.76)

pp( lrF
W/m, (5.2)

PN =1(NLs) 0' 776
p

jef(~ cn2) F

where IDI is the GVD (=2nclk" I/X ). For rF=0. 1 ps,
A ff=~ (5X10 ) m, A, =155 pm, and Dl =20
ps/km/nm,

r

PN )(~Ls) —4. 8 X 10 W .

This result implies that the SIT soliton requires approxi-
mately a value six orders of magnitude larger than the
NLS soliton, which is consistent with the difference be-
tween

I
ks'IT ~Ls I

and
I k,' I;„I

as described earlier.
In fact we can derive (4.6) quite easily by using (5.2)

and (5.3). For a sech SIT-NLS soliton, the peak power of
the SIT soliton should be equal to that of the NLS soliton
for a given input pulse width. Noting that
0.776=(1.76) l4 and n2 in (5.3) has a dimension of
m /W, so that n2 should be rewritten as n2(2/coon)
when one uses a m /V unit, we have

SIT N = 1(NLS) &

2~zlk"
I

Ip» I 4~ n,
(5.4)

Thus

where rF( = 1.76&, ) is the FWHM of a hyperbolic secant
SIT pulse. At a room temperature, the homogeneous life-
time T2 is approximately shorter than a picosecond, so
that subpicosecond pulses must be used for the SIT ex-
periment. For example, adopting a value of ~F =0. 1 ps.

Ipeek(SIT)
= 3.4 X 10' W/m

Assuming a core diameter of 10 pm for a typical single-
mode fiber, the peak power in the fiber Ps,T is as large as

Psn =2.7 GW .

For reference, let us calculate N =1 NLS soliton power,
PN i(~Ls), given by

The negative GVD value at 1.55 pm of a 1.3-pm zero-
dispersion single-mode fiber is about —20 ps/km/nm, re-
sulting in

n h

27TA, IP2( I

(5.5)

Ik,'„„I=25 ps /km .

Therefore Iks, T ~Ls I
is six orders of magnitude larger

than that of a typical silica fiber. Since the zero disper-
sion of silica-based fibers cannot be shifted to a wave-
length region shorter than around 1.27 (u, m (the material
dispersion dominates), it is very difficult to increase

In order to observe the SIT solitons in fibers, ~, should
be long enough to decrease the coupled peak power, but
it should also be shorter than T2. This means that the
erbium-doped fiber should be cooled down to 4.2 K to
prolong the T2 value. For example, T2 of Nd'+ ions at
4.2 K in an optical fiber is of the order of —10 ns t13].

F 500 ps PsiT is calculated to be
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VI. ABSORPTION LENGTH, SOLITON PERIOD,
AND PULSE DELAY

The absorption length L»s is defined by the length
over which the transmitted intensity falls to 1/e of its
original intensity

L,bs
= 1/a, bs (6.1)

In erbium-doped fibers, the absorption at 1.535 pm is
about 20 dB for a doping concentration of 1000 pprn (0.1

Wt%). Hence, L,b, =(10 log, oe)/20=0. 21 m. For a 1-

ppm concentration, the absorption is about 2.4X10
dB/km, L,b, is 1.8 km.

On the other hand, the soliton period Zsp for the NLS
soliton is given by

Z, =0.322 (6.2)

For v+=0. 1 ps, lDl =20 ps/km/nm, Z, becomes 0.2 m,
and for ~F=500 ps, it becomes as large as 5X10 km.

From (4.7), 5 for a g= —,
' standard soliton with homo-

geneous broadening can be rewritten as
1/2

ZQ

=A~ —Z2
F 0

Zsp
(bvFr, ) .I.,b,

(6.3)

hvF~, is of the order of unity, and therefore, 5 indicates
the ratio of the soliton period Z,p

to the absorption
length L,b, . For example, when Z,p

&&I.,b, the SIT effect
appears in the early stages of the pulse propagation and is
dominant in the SIT-NLS soliton system. By using (4.12)

PsiT = 107 W .

This power level can be realized by using conventional
lasers or optical amplification techniques. A pure SIT
soliton will be observable in longer input pulses with a
low-temperature erbium fiber.

Similarly, PN 1 for ~F =500 ps is

PN —1(NLs) 1 9 X 10 W

When we couple the peak power of a 107-W pulse for the
SIT measurement, it corresponds to the excitation of a
very-high-order NLS soliton. Since the peak power of
the N soliton is given by

2
N N = 1(NLS) ~

N is as large as 751. In order to remove the NLS soliton
effect and to observe pure SIT, the GVD should be as
small as possible, resulting in a large extension of the soli-
ton period in comparison to the absorption wavelength.
Hence, a zero-dispersion fiber at the resonance length is
recommended. This will be discussed in detail in the next
section.

and lDl =(2rrc/A, ) k" l, Z,~))L,b, can be rewritten as

Here from (4.12), (n/c)Q r, is the pulse delay per unit
length (hrD ) due to the SIT eFect and lD lb', is the pulse
broadening due to the GVD. This indicates that the SIT
contribution is much larger than the NLS one. For
Z,p—=L»„ the SIT and NLS have a strong mutual in-
teraction. For Z, &&I.,b, the NLS effects dominate in
the system. For a g= —,

' standard soliton (P= —,
' ), Qr, = 1,

so that we may write

6= ZQ

(n /c)r,

This indicates that when the normalized distance ZQ is
equal to the propagation distance [(n/c)r, ] given by the
pulse width, 6 becomes unity.

We have learned that the observation of a SIT soliton
for a 0.1-ps pulse is very difficult since the peak power in
an erbium-doped fiber is in the gigawatt region. Expan-
sion of the pulse width to a few hundred picoseconds to
nanoseconds might be useful for a SIT measurement at
low temperatures, which would mean that Z, became
quite long. Therefore, in most cases,

I»s «Zsp .

This means that the SIT phenomenon will be observable
in the early stage of the erbium fiber before the oc-
currence of nonlinear wave-form changes due to the NLS
soliton.

Let us estimate the pulse delay ~D for a fiber length of
L (m) and an input pulse with of rz. Two-level resonance
is inhomogeneously broadened in rare-earth ions in a
glass medium. For a Nd -doped silica-based fiber, the
homogeneous lifetime T2 at 4.2 K is —10 ns [12] so that
a ~F of 500 ps is sufficiently short to allow the SIT to be
measured. However, we have to take into account the in-
homogeneous broadening Ak„wHM, which is -3 nm at
4.2 K at 1.535 pm. Therefore, the homogeneous
linewidth is much narrower than the inhomogeneous one,
so that from (4.14)

1

D
—

2 Q&bSL VZ

=0.284' b,l-wF .

The fiber length I. must be much longer than the pulse
length given by crF In in order to observe pure rD For.
a,b, =4.6 m ', which approximately corresponds to a
1000-ppm doping concentration, ~F =500 ps,

~FwHM 3 nm, an inhomogeneous lifetime T2
=4 4X10 ' s, T2 at 42 K= —10 ns, and L =2 m,
~D =1.3 ns. This can be easily observed with a fast pho-
todetector.

VII. COMPUTER SIMULATION OF SIT-NLS
SOLITONS

In this section we use computer runs to show how the
SIT-NLS soliton wave-form changes when it propagates
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down a fiber. Although it is usually very useful to adopt
the beam propagation method (BPM) [22], it cannot be
used in the present soliton because there is no explicit u
dependence on (M) in (4.3). Thus, the Runge-Kutta
method was used to calculate the time dependences of p, 2
and pzz

—p» [(3.17) and (3.18)]. These SIT equations cou-
ple with the main equation given in (4.3) through the z
dependence. Here for simplicity the coefficient of (M ) is
replaced with 5,

1 a2
( i) —=5(M)+ — +~u~ u .

Bq 2 Bx
(7.1)

To computer-run the above partial differential equation,
the three-point differential method was used [23]. In ad-
dition, (M ) is replaced with M by assuming a homo-
geneous broadening, and the frequency detuning from the
resonance is set to be zero, i.e., /=0.

The initial conditions are pzz(t =0)=0, p»(t =0)=1,
p, z(t =0)=0, and u =N sech(x). The midpoint method
was adopted, rather than the conventional Euler method,
to increase accuracy in the propagation direction [23].
The accuracy was checked by calculating the degree of
energy conservation of the soliton (integration of the 2'
pulse intensity) after a long propagation. In addition, the
stepsize b,z for SIT-NLS solitons was decreased to 1/100
that of Az for the SIT to maintain the stability of the
present method.

Before we investigate the detailed characteristics of the
SIT-NLS solitons, we show the importance of (3.22) to
the realization of the stable mixed soliton state. As given
in (3.20) and (3.21), if W is not equal to unity, in other
words if 2m SIT does not correspond to the 1V =1 NLS
soliton, a stable SIT-NLS soliton cannot exist. That is,
an arbitrary u is acceptable for (3.19) since there is no ex-
plicit expression of u for M. However, from the
viewpoint of the SIT soliton propagation, 8'=1 is the
only acceptable condition for (3.17) and (3.18) to main-
tain 2~ pulses.

When W is equal to 2, i.e., m/X =1, the pulse eventu-
ally disperses and a stable pulse cannot propagate. This
is shown in Fig. 1(a), where the delay 5 is equal to unity.

Figure 1(b) shows 2'/N =2 pulses, which are also found
to be unstable.

The propagation of stable SIT-NLS solitons is shown
in Figs. 2 —7. Waveforms (a) and (b) in each figure corre-
spond to the SIT soliton and the SIT-NLS soliton, respec-
tively. With this, we can compare the differences be-
tween the SIT-NLS soliton and the SIT or NLS solitons.
Figure 2(a) is a wave-form change for a 2m SIT soliton
with 5=1. With the addition of the NLS part as seen in
Fig. 2(b), a stable 2'/N = 1 SIT-NLS soliton propagates.
The delay for a 2m. /N= 1 SIT-NLS soliton is exactly the
same as that for a 2m SIT soliton. This agrees with the
theory described in Sec. IV. When there is a detuning
from the resonance, the NLS term produces an additional
delay due to the group velocity of dispersion of the fiber.
When 5 is changed to 3 as shown in Figs. 3(a) and 3(b),
the delay due to the resonance is three times as large as
that for 5=1, as we expected. Nevertheless it is impor-
tant to note that the delay for a 2~ SIT soliton with 6= 3
is the same as that for a 2~/N = 1 SIT-NLS soliton with
5=3.

Wave-form changes for a 4~ SIT soliton and a
4~/N =2 SIT-NLS soliton are shown in Figs. 4 and 5,
where 5 is 1 and 3, respectively. As seen in these figures,
the 4'/N =2 soliton eventually splits into two 2m. soli-
tons, even in the presence of the NLS component. The
SIT-NLS soliton cannot preserve the NLS soliton proper-
ty. If we look closely at transient wave-form changes
during the first Zo, a wave-form change caused by the ad-
dition of the NLS component can be found. However,
this does not inhuence the pulse delay due to the SIT
effect. For Fig. 5, the splitting of the soliton into 2m.

pulses occurs faster than that in Fig. 4, since 5 is 3. Un-
der this condition, the absorption length for the SIT is
shorter than the soliton period for the NLS.

Wave-form changes for the 6m SIT and 6m. /N =3 SIT-
NLS solitons are shown in Figs. 6 and 7, where (a) is SIT
solitons and (b) is 6m. /X =3 solitons. It is important to
note that the delay for the 6m/%=3 SIT-NLS soliton is
exactly the same as that for the 6m SIT soliton, although
the wave-form change, mainly caused by the nonlinear
wave-form change due to the NLS component, between

m/N=1 Nonlinear Pulse
3ZQ

2x/N=2 Nonlinear Pulse

3zo
2K

t' 2z
SIT-NLS N =1

q5 =1

2ZQ 2ZO
2ZQ 2ZQ

~ ZQ —ZO
ZO ZO

(a) 5= 1 (b) 5= 1 (a)

FICx. 1. Unstable propagation of ~/N = 1 and 2m/N =2 non-
linear pulses. The stable SIT-NLS soliton pulse cannot propa-
gate since 8'is not unity.

FIG. 2. Stable 2~/N =1 SIT-NLS soliton propagation for
5=1. (a} SIT, (b) SIT-NLS. The pulse delay is attributed to the
resonance and the delay in (a) is the same as that in (b).
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2Zp 2Zp 2Zp

~ 4~
SIT —NLS N=2

2Zp

ZO Zp Zp Zp

(a) (b)

FIG. 3. Stable 2~/N=1 SIT-NLS soliton propagation for
5=3. (a) SIT (2~), (b) SIT-NLS. The pulse delay is three times
larger than that in Fig. 2.

FIG. 5. 4~/N=2 SIT-NLS soliton for 5=3. (a) SIT (4m), (b)
SIT-NLS. The delay is three times larger than that of Fig. 4.

z =0 and z =2ZO is quite difFerent from that for the SIT
only. It is also clearly seen that the pulse-splitting speed
of the 5=3 SIT-NLS soliton is faster than that of the
5=1 SIT-NLS soliton. For example, compare the wave-
form changes at z =2ZO in Figs. 6 and 7.

Changes in the population difference p22
—p» for 2m,

4~, and 6~ SIT solitons and for 2'/N = 1, 4m /N =2, and
6~/N =3 SIT-NLS solitons are shown in Fig. 8, where 5
is equal to unity. (al), (a2), and (a3) correspond to 2',
4n, and 6' SIT solitons and (bl), (b2), and (b3) corre-
spond to 2m/N =1, 4m. /N =2, and 6m/N =3 SIT-N.LS
solitons, respectively. For the 2m. SIT and 2m. /N=1
SIT-NLS solitons, the population is changed from —1 to
1 by the ~ pulse and it is returned to —1 by the remain-
ing m-pulse component. For 4~ the SIT and 4~/N=2
SIT-NLS solitons, the population changes twice between—1 and 1. Similarly, for the 6~ SIT and 6m/1V =3 soli-
tons, three 2~ pulse changes in p22

—
p& &

are excited at the
input end. Note here that an asymmetric population
change is seen at z =2.5Zo in Fig. 8(b3), although there
is no great difference between Figs. 6(a) and 6(b) at
z =2 ~ 5Zo. This population change is caused by the non-
linear phase change caused by the NLS component.

We investigate here ~pz, ~
and the phase of pz, in Figs.

9—11, corresponding to the 2m SIT and 2~/N =1 SIT-
NLS solitons, the 4~ SIT and 4~/N =2 SIT-NLS soli-
tons, and the 6m SIT and 6~/N =3 SIT-NLS solitons, re-
spectively. There is a n/2 phase change from a peak of
the field amplitude in the phase of p2& for 2~ SIT shown
in Fig. 9(b), which agrees with our result shown in (4.6).
This is the inherent phase difference between the electric
field and the phase of the dipole moment. However, it
should be noted that there is no phase change due to
pulse propagation as shown by the dashed line of Fig.
9(b). Although ~p~, ~

for a 2m/N =1 SIT. -NLS soliton is
the same as that of 2m SIT, the phase of p2, is different
from 2~ SIT. The phase rotation is entirely determined
by the nonlinear phase change due to the NLS soliton
component. That is,

P(z) =—,'(2g)'
Zo

=1.25 rad

for g= —,
' and z =2.5Zo, which agrees well with the

present computer result as shown in Fig. 9(d).
In Figs. 10 and 11, ~p2, ~

changes very rapidly between
0 and 1, and the phase of pz, also changes between m. /2

4z
) [N=2 6', SIT —NLS

r

2ZQ 2Zp
2ZQ 2Zp

ZO Zp
ZQ ZQ

0

(a) (b)

FIG. 4. 4m. /N =2 SIT-NLS soliton for 5= 1. (a) SIT (4m), (b)
SIT-NLS. The SIT-NLS pulse splits into 2~/N=1 SIT-NLS
solitons. The delay for SIT is the same as that for SIT-NLS,
even when 2~/N =2.

FIG. 6. 6m /N =3 SIT-NLS soliton for 5= 1. (a) SIT (6~), (b)
SIT-NLS. The wave-form change due to the NLS part is seen
clearly in (b), but the delay is the same as that in (a).
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sn (,', j PhaSe Of P2& SIT
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(b)
SIT-NLS

I

5Zp 5Zp

Z=2.5Zp

I.l
' 1.25 rad

(d)

;..... ...j z=2.sz,
I

~'"I ~

'II
1L

Z=o
I I C

(a) (b)

FIG. 13. Comparison between the pulse delays of a 4m SIT
soliton and a 4~/N=2 SIT-NLS soliton where 5=0.2. It is
noted that the delay for the SIT-NLS soliton is identical to that
of the SIT soliton.

FIG. 11. Comparison of dipole changes for SIT solitons and
6n/N=3 .SIT-NLS solitons. lp2&l and the phase of p2, for 6~
SIT are shown in (a) and (b), respectively. Those for 6m. /N =3
SIT-NLS solitons are shown in {c)and (d), respectively.

splits into two 2~ solitons. To investigate the delay
difference between SIT and SIT-NLS solitons, both soli-
tons are propagated over 12.5Z0, as shown in Fig. 13.
As a result, it is found that the delay is the same as that

of a 2m. SIT soliton for 6=0.2. This is surprising since
the NLS term has no effect on the delay in the case of
zero detuning, even when the SIT-NLS soliton experi-
ences a strong interaction between the SIT and the NLS
components over long distances. That is, there is no ad-
ditional change in the delay in the SIT-NLS soliton, if
W = 1 and high-order perturbation are not applied to the
NLS component.

4~
N=2

2.5Z0

2ZQ

VIII. NLS SOLITON PROPAGATION COHERENTLY
INTERACTING WITH A RESONANT TWO-LEVEL

SYSTEM

Thus far we have described the SIT-NLS soliton prop-
agation where W in Eq. (3.20) is equal to unity. Howev-
er, W for a practical erbium fiber with a GVD of —5
ps/km/nm and p&zl =1.4X10 Cm is much smaller
than unity. That is,

W=
&Ik" lip

~n, A'

=4.8 X 10 (8.1)

ZO

Although the contribution of the two-level coherent in-
teraction to the NLS propagation is small, the interesting
feature of coherent pulsation appears. Therefore, this
section describes the coherent interaction between NLS
solitons and erbium ions.

Introducing time constant T2 for the dipole relaxation
between l, 3/2 and I&5&2 of erbium ions, time constant
T& of the population inversion, and the soliton self-
frequency shift (SSFS) [24,25], Eqs. (3.17)—(3.19) can be
rewritten as

FIG. 12. Interaction between the SIT part and the NLS part
in a 4~/N =2 SIT-NLS soliton with 5=0.2. A small 5
lengthens the interaction. Here, a wave-form change due to the
N =2 NLS soliton is clearly seen, accompanying a pulse split-
ting on the right wing of the main pulse.

()F &s

T
+ F = 'i(2W)(uM— ' —u*M),

BM ~s+ M+2i(QM= 2iWuF, —
BX T2

(8.2)

(8.3)
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(
.)Bu'

Bq

Zo

Qpo(NLS)
TmNDP ' 2@pen

1+— ", + iud'u+ "
u [ui' .

2 Qx a
(8.4)

T2
M = —2i 8'uF

7S
(8.5)

For a zero-detuning condition of g =0, r, ((T„and
~, ))T2, which means that the input pulse cannot in-
teract coherently with erbium ions, that is a noncoherent
condition, one obtains

the initial condition is given by pz2(0) —p»(0) = l. In this
case, both coherent and noncoherent pulse propagation
exhibit interesting features. Figure 14(a) shows a
coherent NLS soliton propagation for ~, =250 fs,
T2 =250 fs, CAVD = —5 ps/km/nm, and
X= 5 X 10' /cm, which corresponds to an erbium-ion
doping concentration of 620 ppm. The absorption
coe%cient is 2.9 m . The initial amplitude of the input
sech(x) pulse is unity, and the SSFS was not taken into
account. As shown in Fig. 14(a), multiple pulses are gen-
erated. Although the area of the pulse is not of the order

XF =exp f —4W' u~ dx
0 S

(8.6)

Since T2/r, ((1,M (q, r) can be expressed as

T2
M(q, ~)=——2iW u (q, r) .

S

(8.7)

~&D ~pi2~ T2
ZpQ

coen%

1—
CONDP12

&Po(NLs) 2eocn

From Eqs. (8.4) and (8.7), the following is obtained:
1/2

= l CX~bsZp Zl

=lI bQ (8.8)

where a,b, is given by Eq. (4.10) and I,b, is the normal-
ized resonant absorption coefficient. Therefore, for the
noncoherent condition which can be characterized by the
fact that the gain bandwidth is much broader than the
spectral width of the input pulse, the following equation
can be applied:

1
( —') = 't, ,u+ — + iud u + u iu i

. (89)
(b)

When I,b, is small, adiabatic soliton broadening occurs.
When the absorption coefficient is, for example, 20 dB/m
for a 1000-ppm fiber, a strong attenuation occurs through
the fiber, and only the SIT soliton is transmitted. When
I,b, is positive because of population inversion, adiabatic
soliton narrowing or the excitation of high-order solitons
occurs.

The number of erbium ions per crn is given as follows.
The density of Si02 is 2.22 g/cm and the atomic number
of erbium ions is 167.26 g/mol. When the weight of erbi-
um ions in 1 cm Si02 is 1 ppm (1X10 wt%%uo), it be-
cornes 2.22X10 g/cm . Thus the number of erbium
ions is given by (2.22 X 10 /167. 26)(6.02 X 10 )
=8 X 10' /cm . For example, the number of erbium ions
in a 1000-ppm erbium fiber is 8X10' /cm . This value
can be confirmed in a different way using the absorption
cross section given in Eq. (5.1). The o of erbium ions is
0.5X10 cm . For a 1000-ppm fiber, the absorption is
aPProximately 20 dB/m. Since Xpo = cx b Np is
9.2 X 10' /cm, which agrees well with the above-
mentioned result.

Here we analyze a population-inverted case, in which

E3

I—

C5

1.2 1.55
WAVELENGTH (pin)

FIG. 14. A NLS soliton which coherently interacts with erbi-
um ions. ~, =250 fs, T2=250 fs, GVD= —5 ps/km/nm, and
N0=5X 10"/cm, which corresponds to an erbium-ion doping
concentration of 620 ppm. (a) Wave form, (b) spectrum. The
input pulse is an N = 1 soliton and the SSFS is not taken into ac-
count. A coherent pulsation occurs due to the interaction with
erbium ions.
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of m, a coherent pulsation similar to a ~ pulse in a
coherent amplifier occurs. This is a new phenomenon
caused by the coherent interaction. The spectrum of the
waveform in Fig. 14(a) is shown in Fig. 14(b), in which
the sideband corresponding to a repetition rate of the
multiple pulses is clearly seen. If the process is non-
coherent, ordinary soliton growth from N = 1 to N =2 or
3 NLS soliton is observed. When the SSFS
(r„=5.9 X 10 ' s) is taken into account, the waveforms
in Fig. 14(a) change as shown in Fig. 15(a), in which a
sharp soliton pulse is delayed by the SSFS. Figure 15(b)
shows its spectral change. As shown in Fig. 15(b), the
SSFS changes the carrier wavelength of the soliton to
longer wavelengths, resulting in a soliton delay. Accord-

ing to Figs. 15(a) and 15(b), it can be said that the genera-
tion of multiple pulses (coherent pulsation) is suppressed
by the wavelength shift. This is reasonable since the
wavelength shift causes a detuning from the resonance.

Changes in the waveform for T2=100 fs, ~, =250 fs,
and no SSFS are shown in Fig. 16(a). The spectrum of
the waveform is shown in Fig. 16(b). This condition cor-
responds to noncoherent amplification of the NLS soli-
ton. A clear NLS soliton evolution from an N=1 to
N=2 soliton can be seen. Since T2 &~„ the soliton is
gradually amplified, and adiabatic soliton amplification
occurs for low gain. However, when the amplified pulse
has a narrower width with a higher peak intensity com-
pared to the input pulse because of the soliton narrowing
and the excitation of high-order solitons, ~, becomes

1 ps 1 ps

(b) (b)

LU
C3

I—
(f)
Cl

C3

I—
(f)
C3

1.4 1.55
WAVELENGTH (pm)

2.5
1.2 1.55

WAVELENGTH (pm)

0
1.9

FIG. 15. A NLS soliton with the SSFS which is coherently
interacting with erbium ions. ~„=5.9X10 " s and other pa-
rameters are the same as those in Fig. 14. (a) Wave form, (b)
spectrum. A sharp soliton pulse is generated, which is delayed
behind the ripple.

FIG. 16. A NLS soliton noncoherently interacting with erbi-
um ions. (a) Wave form, t',b) spectrum. A clear evolution from
an N=1 to N=2 soliton is observed. T2=100 fs, ~, =250 fs,
and there is no SSFS. Wave-form distortion at Z =2Z,~ is due
to the pulse narrowing that reduces the pulse width to less than
T2, resulting in a coherent interaction.
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shorter than T2. This results in bigger changes in both M
and F as shown in Eqs. (8.5) and (8.6). Hence a coherent
interaction is initiated eventually. The evidence for this
is seen in the asymmetric wave-form distortion on the
right-hand side of the NLS wave form at Z =2Z, . The
amplification of the NLS soliton shown in Fig. 15(a) is
rather more complicated than that in Fig. 16, indicating
that the NLS is coherently interacting with the erbium
ions in Fig. 15(a). It should be noted that a coherent in-
teraction, which generates multiple short pulses, occurs
although the amplitude of the input soliton pulse is much
lower than that of ~—2~ pulses.

IX. CONCLUSION

APPENDIX

BV)

By

BV2 +u'u, =iguz .
By

Qvp= E/ui (A 1)

(A2)

Thus, we obtain an equation for v
&

d vi 1du dvi . 1 du
2

+ ig— —+~u~ +g u, =O.
dy u dy dy u dy

By putting y=r —yg and u =
—,'6=2Psech2/3y, (2.5)

and (2.6) are rewritten as

The coexistence of the SIT-NLS soliton has been exam-
ined. A condition for the mixed soliton state is

n2h
SIT-NLS

k"
When we put

u& =C sech2/3ye'~»,

(A3)

(A4)

A simple derivation of the equality has been also present-
ed by ~quati~g PsIT PN=1(NLS) for a give»nput soliton
pulse width. It is concluded mathematically that the
SIT-NLS soliton exists, but it seems to be difficult to real-
ize it in actual silica-based erbium-doped fibers, since the
peak intensity of a 2~ pulse is much larger than that of a
conventional N=1 NLS soliton pulse. In other words,
nz should be much smaller or ~D~ should be much larger.
It is important to note that the phase change in the SIT-
NLS soliton is governed by the NLS component and the
pulse delay due to the resonance is determined only by
the SIT component when the detuning is zero.

The conditions for observing a pure SIT soliton in a
silica-based optical fiber were also presented, in which it
has been shown that the utilization of input pulse widths
of a few hundred picoseconds to nanoseconds will be
practical, by cooling the fiber to less than 10 K. In such
cases the pulse delay due to the SIT is of the order of ns.
Finally, the SIT-NLS solitons were computer-run and it
is confirmed that a stable 2m SIT-N =1 NLS soliton ex-
ists. However, high-order SIT-NLS solitons always split
into multiple 2m. /X = 1 SIT-NLS soliton pulses. It
should be noted that the NLS property can be preserved
when Zsp + I abs

NLS solitons which coherently or noncoherently in-
teract with erbium ions are described. When the NLS
soliton interacts with the erbium ions, coherent pulsation
that produces multiple pulses is obtained. It should be
noted that a coherent interaction occurs although the
amplitude of the input soliton pulse is much lower than
that of ~—2~ pulses.
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v, satisfies (A3). Using (A4), vz is calculated as
T

dV)
vz =— +igv,

0 dy

C
sinh(2/3y + i/ )sech2/3ye '~',

cosP
(A5)

where

tang= —g/P .

Thus, one obtains

~u, ~

+ ~uz~ =C [sech 2Py+( —tanh2Py+ig//3)

X (
—tanh2/3y —i g//3) ]

C2=C [I+(g/P) ]=
cos P

(A6)

In a two-level system, v, ~
+

~ vz ~

= 1, so that

C =+cosP . (A7)

Taking C = —cosP, we obtain

u, = —cosP sech2/3(r yg)e'~'—
uz = sinh[2P(~ —yg)+ ig]sech2/3(r —yg)

X ig(~—yg)

(A8)

(A9)

For reference in the case of an N = 1 NLS soliton, v, and
vz or u(y, O)=2gsech(2r/y)e ' ~", which pertains to the
pole g ( =/+i q), are given by [26]
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V2= sech(2' )e'~+'~'
2

u = —sech(2qy)e
1

2v' (A10)

(A 1 1)
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