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We study the operational properties of the lasing field generated from strongly driven two-level atoms
in a ring cavity by including the field saturation to all orders. Lasing without inversion between bare
atomic states can occur for both off-resonant — and resonant-pump fields. In the case of an off-

resonant —pump field, lasing occurs at one of the Rabi sidebands, for which there exists population inver-
sion between the relevant dressed-atom —field states. In the case of a resonant-pump field, lasing can
occur near either of two Rabi sidebands, for which there is no population inversion between the dressed
states; here the gain is due to the atomic coherence between the dressed states. While the operation of
the off-resonantly —pumped dressed-state laser is similar to that of an ordinary laser, the operation of the
resonantly pumped dressed-state laser exhibits some interesting features, such as (1) mode pushing and
(2) larger laser intensity coming from smaller linear gain as the detuning is changed. In order to show
such features, the calculations have to go beyond the secular approximation.

PACS number(s): 42.50.Hz, 42.55.8i, 42.55.Hq, 42.65.Ft

I. INTRODUCTION

Recently there have been considerable interest in
studying lasing action without population inversion
[1—11]. Traditionally, the concept of lasing action in a
cavity is introduced and understood in terms of the popu-
lation inversion between two transition levels in the ac-
tive medium. When more than two atomic levels are in-
volved in the lasing transition, however, it is possible to
achieve lasing without population inversion through in-
terference between different channels [1,2,4,5]. If only
two atomic levels are involved in the lasing transition,
such interference is impossible. However, one can still
achieve lasing without population inversion in a two-level
system by using initial atomic coherence between the
upper and lower atomic levels [3]. Such a two-level laser
is the simplest system for lasing without inversion.

Another kind of system that can exhibit lasing without
population inversion is a sample of strongly driven two-
level atoms placed within an optical cavity [6—12]. It is
well known that the steady-state probe spectrum from a
sample of two-level atoms driven by an off-resonant,
strong pump field exhibits one emission peak at one Rabi
sideband and one absorption peak at another Rabi side-
band [13,14]. The lasing action studied in Refs. [7—10]
and [12] corresponds to the gain at the emission peak.
Since there is no population inversion between the upper
and lower atomic states, one obtains lasing without popu-
lation inversion in this case. Physically, the lasing action
coming from the strongly driven two-level atoms can be
best understood and explained in terms of the dressed-
atom —field states [15], which are the eigenstates of the
atoms plus the strong pump field. The lasing actually
occurs between such dressed states for which a popula-
tion inversion exists. In other words, in the dressed-atom

picture (DAP), lasing occurs with population inversion.
In fact, the cavity frequency is tuned to be resonant with
the dressed states, not the bare atomic states in Refs.
[7—10]. When a strong pump field is on resonance with a
sample of two-level atoms, only the emission peak ap-
pears in the transient probe spectrum provided the two-
level atoms are prepared initially in a pure dressed state
[16]. The dressed-state laser discussed in Ref. [6] corre-
sponds to this situation.

In this paper, we develop a nonlinear theory for lasing
action from a sample of driven two-level atoms in a ring
cavity, and study the operation of the dressed-state laser.
Both off-resonant —and resonant-pump fields of arbitrary
strength are considered. For the resonant-pump field,
there is no population inversion between the two bare
atomic states as in the case of an off-resonant pump.
However, in contrast to the off-resonant —pump case,
there is no population inversion between the relevant
dressed states for a resonant-pump field. We find that
one can still obtain lasing action with a resonant-pump
field and show that the lasing is due to the atomic coher-
ence between the actual transition (i.e., dressed) states,
similar to the situation found in Ref. [3]. Comparing the
resonant-pump case with the off-resonant —pump one, we
find that, while the operation of the field in the off-
resonant —pump case is quite similar to that of an ordi-
nary laser, the resonant-pump case exhibits some interest-
ing characteristics. They include (1) mode pushing in-
stead of the usual mode pulling, and (2) the fact that de-
tuning giving rise to maximum linear gain does not pro-
duce the maximum laser intensity. To demonstrate these
characteristics, our calculations in the resonant-pump
case are carried out beyond the secular approximation.

This paper is organized as follows. In Sec. II we devel-
op a general formalism for the dressed-state laser. In Sec.
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III we study the off-resonant —pump case within the secu-
lar approximation, and in Sec. IV we examine the
resonant-pump case beyond the secular approximation.
Finally, Sec. V contains a discussion

II. GENERAL FORMALISM

We consider a system of X two-level atoms interacting
with an external pump field and a cavity field. A two-
level atom, say the jth one, is represented by its ground

state
~
1~), an excited state ~2J), the atomic transition fre-

quency cu2&, and its position rJ. The external pump field
is treated classically in our calculations and is character-
ized by its frequency ~1 and wave vector kL. The cavity
field, with the passive cavity frequency cu, and the wave
vector k„can be treated as quantized: a and a are, re-
spectively, the annihilation and creation operators for the
cavity mode, which satisfy the commutation relation
[a,a ]=1. The total Hamiltonian H for the atoms and
the cavity field can be written as

ik -r. —ik r. i (kL .r . —coLt) 'y e
—i (kL .r - —coL t

H/%=co, ata+ g ,'co2, o—,—g ,'(ge—''o ta+g*e ' 'ato ) g—,'(ye—' ojt+y'e ' oj), (2.1)
J J J

where o 1= ~1')(2J~, oi = 2')( lj~, and o~ = ~2i)(2J~ —~lj)(1J~ are the atomic lowering, raising, and population-
difference operators for the jth atom, respectively, g is the coupling constant between the atoms and the cavity mode,
and y is the Rabi frequency between the atoms and the external pump field.

Using the Heisenberg equation of motion and Hamiltonian (2.1), we obtain the following equations of motion for the
cavity field and for the atoms after taking expectation values:

&a ) = —( —,'y, +ice, )(a )+-,'i gg*e ' ' "(o.'),
J

ik r. i(kL r. —coLt)
&o &= —(yz, +ico2, )(o & ,'ig—e —' '&oja &

—
—,'ice ' &cr, &,

(o', &= —y, (&o', &+1)+ige' '"'&cr'ta& ig*—e
' '"&atoj&+ice' '" ' &cr't& ig*e—' '" &oj& .

(2.2a)

(2.2b)

(2.2c)

In writing Eqs. (2.2) we have included the field and atom-
ic relaxation terms; y, is the cavity (intensity) loss rate,
y2, is the atomic coherence decay rate, and y2 is the
upper-level —to —lower-level population decay rate. Since
the two-level atomic system under consideration is a
closed system, we have used the closure theorem

~
1j ) ( 1~~ +

~

2~) ( 2J
~

= 1 in obtaining Eq. (2.2c). To remove
the fast oscillating terms in Eqs. (2.2), we introduce a ro-
tating frame through the relations

a (t) =a(t)e
i(kI r. —coLt)o'(t) =o'(t)e

(2.3a)

(2.3b)

where v, is the cavity oscillation frequency. After substi-
tuting Eqs. (2.3) into Eqs. (2.2), we get the equations of
motion for the mean values of the cavity mode and of the
atoms in the rotating frame,

&a) = —[—,'y, +i(co, —v, )]&a)
d
dt

P j.2

Pz&

pJ —pJ

we can put the optical Bloch equations, consisting of Eq.
(2.4b), its complex conjugate, and Eq. (2.4c), into a matrix
form:

w e e 6=v, —coL, K=k, —kL, and the atom —pump-field
detuning 6=co2i —coL .

Our purpose in this paper is to calculate the expecta-
tion value (a ) for the cavity mode. Thus we need to ob-
tain the atomic coherence (o~), which could be calculat-
ed through Eqs. (2.4b) and (2.4c). However, Eqs. (2.4) are
not a closed set of equations in their present form.

Equations (2.4) are reduced to a closed set of equations
if we make the semiclassical approximation
(of a) =(o~ )(a ), (a o~) =(a )(aj), which is valid
when

~ ( a )
~

&& 1. By introducing a complex Bloch vector
RJ for the jth atom,

(~~) (2.5)

(2.48) R (JL+S )RJyJ. (2.6)

Here the matrix I. describes the effects of the pump field
(as well as those of the atomic relaxation),

—i(5t —K r. )

,'ige ——'&cr&cr) ,'iy(oj &,——

(oj ) = —y2((oj )+1)+ige ' (cr a )

(2.4b)
—y~, +ih

0

0

r2.
(2.7)

i (6t —K.r. )ig*e ' (—atcT')+iy(o't) iy*(o'), —

(2.4c)
the matrix SJ governs the additional inhuence of the cavi-
ty field,
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and

'0

S, =ig*&a"& 0
0
0

S,=ig&a & 0

0

0 0
—1 0

0 0
0 —-'

2

1 0 0

~ i(5t —K.r. ) —i(5t —K r )SJ—S,e ' +S 1e (2.8a)

(2.8b)

(2.8c)

photon resonance [9].
In what follows we consider the situation where the

Rabi frequency ~g & a &
~

of the cavity field and the atomic
relaxation rates y2 and y2, are much smaller than the
generalized Rabi frequency of the pump field, i.e.,
Ig&~ & l, y2, y2i «(lyl'+6')'~'=~». Such a feat«e of
a strong pump field prompts us to introduce the so-called
dressed states, which are the eigenstates of the atom and
the pump field [19]. Since the pump field is treated classi-
cally in our calculations, we use the semiclassical dressed
states [20]. The semiclassical dressed states are

0
0

y2
(2.9)

~
2 1

&
=cos( —,

' 8)
~

1j & +sin( —,
' 8)

l
2 &,

~B &= —sin( —,'8) 1 &+cos( —,'8)l2'&

(2.14a)

(2.14b)

Owing to the time-dependent behavior of the matrix
SJ, the general form of the complex Bloch vector R J can
be written as [17,18]

where ~1J&=~1 &e ', I2 &= 12 & and, «r»m-
plicity, we have assumed that y is real and positive, i.e.,
y&0. Also

~ (n) in (5t —K.r . )
R ne (2.10) cosO= sinO=, 0&O&m .

~BA
(2.15)

where

R (n)

-(n)
P12
-(n)
P21

(n) (n)
P22 P11

(2.11)

In view of E . (2.3b), it is easy to see that the atomic
coherence p2i propagates in the direction of kL nK-
=(n +1)kL nk, —with frequency col —n5=(n +1)coL

neo, —Upon .substitution of Eq. (2.10) into Eq. (2.6), we
can obtain an equation of motion for R '"', which shows
that R'"' is independent of the quantity K.r .. In other
words, R '"' is independent of the atomic index j. Since

PAB

PBA
8'J

= U(8)R J, (2.16)

where

We now introduce the atomic lowering, raising, and
population-difFerence operators in the DAP,

—
~

AJ&& A'~. Using Eqs. (2.14) it is easy to verify that
the complex Bloch vector in the DAP is related to that in
the bare-atom picture (BAP) by the relation

—i{n +1)K.r.
e n+1,0 &

J
(2.12)

~J=pJ PJ

is the population difFerence in the DAP, and

where N is the number of the active atoms in the cavity,
we obtain from Eq. (2.4a)

U(8) = —sin ( —,'8) cos ( —,'8) —,
' sin8

cos ( —,'8) —sin ( —,'8) —,
' sinO

(2.17)
&a &

= —[—,'y, +i(co, —v, )]&a &+ ,'ig*Np2i '—, (2.13)
dt

—sinO —sinO cosO

which is valid for any value of the detuning 5. Equation
(2.13) demonstrates that, in spite of the fact that the
pump field may generate many atomic coherence com-
ponents p21' that propagate in various directions, only
one component, p21 ', that propagates in the k, direction
can contribute to the buildup and sustenance of the cavi-
ty field. This fact is independent of the frequency
difference 5(%0), and whether or not it is one- or two-

is a transformation matrix. It follows from Eqs. (2.6) and
(2.16) that the matrix form of the optical Bloch equations
becomes

(2.18)

in the DAP, where various matrices in the DAP are re-
lated to their counterparts in the BAP by the following
relations:

I 2+ l CUBA

L = U L U ' = —
—,
' yosin 8

—
—,
' yosin(28)

—
—,
' yosin28 —

—,
' yosin( 28 )

12 i co~—„———,
' yosin( 28 )

—
—,
' yosin(28)

(2.19)

(2.20a)
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—,
' sinO

0
—sin ( —,'8)

0
—

—,
' sinO

—cos ( —,'8)

—,
' cos ( —,'8)

—,
' sin ( —,'8)

0

(2.20b)

—,
' sinO 0 —

—,
' sin ( —,'8)

0 —
—,
' sin8 —

—,'cos ( —,'8) (2.20c)

2
sinO

I =Uy=y2 —,
' sinO

cosO

cos ( —,'8) sin ( —,'8) 0

(2.21)

with

I,=y2, +y0cos O,

I 2= y&(+-,' y csin'8= -,'(y2+ y2i —yocos'8»

y0 y2 y21

(2.22a)

(2.22b)

(2.22c)

In Eq. (2.19), I, and I 2 are, respectively, the population- and coherence-relaxation rates in the DAP. In the above
equations, the inverse matrix U is simply given by

U '(8)=U( —8) .

Substitution of Eq. (2.10) into Eq. (2.16) leads to

in(st —K r. )

(2.23)

(2.24)

Here

~(n) U(8)R (n)

which is similar to Eq. (2.16). The components of %'"' obey the following relations:

(
—n)

(
(n) )eI AB PBA

pr( —n)
( pr(n))n

(2.25)

(2.26a)

(2.26b)

Using the relation pz& "=(0,1,0)R' " and Eq. (2.25), we obtain from Eq. (2.13) the equation of motion for the cavity
field expressed in the DAP,

(a &
= —[ —,'y, +i(co, —v, )]((2 &+ ,'i''( —sin—(—,'8), cos ( —,'8), —

—,
' sin8)A( (2.27)

In the stationary state, W( "and all other %(")are time independent. Substituting Eq. (2.24) into Eqs. (2.18), we ob-
tain a set of recursion relations in the stationary state,

in5%'"'=RA'"'+S, A'" "+g,R'"+"—I 5 (), n =0,+1,+2, . . . . (2.28)

Equations (2.27) and (2.28) are the basic equations for calculating the intensity and frequency of the dressed-state laser.
In the following we always assume that the generalized Rabi frequency of the pump 6eld is much larger than the Rabi
frequency of the cavity field and the atomic relaxation rates, coi)„» ~g (a & ~, I „I2. Under such conditions we can ap-
proximate the matrix X in Eq. (2.19) as a diagonal one by neglecting all off-diagonal elements (all of them are propor-
tional to yo). With such an approximation, the recursion relations (2.28) are simplified, yielding for each of the three
components of A(")

[I ~+i(n5 co~„)]p'~~ =— ,'y25„()sin8+ —,'i—g*(a &[p'„"i) —"sin8+8"" "cos ( —,'8)]

+—,'ig (a & [p'„"+"sin8—W("+ "sin ( —'8) ] (2.29a)

[I 2+i (n 5+co&& ) ]pi)z = —
—,
' y25„0sin8 —,'ig (a & [pz—z+' sin8+ W "+"cos ( —,'8) ]

'ig'(a &[p~"„"sin—8 ——8'" "sin ( —,'8)], (2.29b)
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( I,+ in 5 ) W' "'= —y z5„ocos8+ ig ( a ) [p~s"„+"sin ( —,
' 8) +p'„"~+"cos ( —,

' 8) ]

—ig'(a )[p'~ii "sin ( —,'8)+p~ii„"cos ( —,'8)] . (2.29c)

In Secs. III and IV we study separately the operation of an off-resonantly —pumped and a resonantly pumped
dressed-state laser, which correspond to lasing with and without population inversion in the DAP, respectively.

III. OFF-RESONANT-PUMP FIELD

We consider in this section the case in which the exter-
nal pump field is off-resonant with the two-level atoms,
b.AO, ~b,

~ &&yz, y2, . We first examine the result of the
pump excitation before the buildup of the cavity field.
Setting (a ) =0 in Eqs. (2.29), it is straightforward to see
that the components for the atomic population difference
and coherence in the DAP are

nant with the atomic transition in the DAP and, thus, are
large. None of the other components is resonant with a
dressed-state transition. Consequently, they are small
compared with the three resonant components, since the
generalized Rabi frequency co~~ is much larger than the
cavity-field Rabi frequency ~g(a ) ~

and the atomic relax-
ation rates I „Iz.

Keeping the leading contribution only, the cavity-field
equation (2.27) can be simplified to

r '"
1

(3.1a) (a ) = —[—,
' y, +i (co, —v, ) ]( a ) + ,'ig *N—p'„~",

dt
(3.2)

PAB 5n 00(y2~r08A ) . (3.1b)

When b, & 0 (i.e., F02, & coL ), we see that W(0, i.e., there
is more population in the dressed state

~
A J ) than in the

dressed state ~BJ). Note that the dressed state ~AJ)
( ~B~) ) in the semiclassical DAP corresponds to the lower
(upper) one in a doublet of the conventional DAP (see
Fig. 1), in which the strong pump field is quantized.
Thus, the driven two-level atoms exhibit gain at the lower
Rabi sideband (5= —coii„) and absorption at the upper
Rabi sideband (5=coii„). Obviously, lasing action is pos-
sible only at the lower Rabi sideband, which involves two
dressed states with population inversion between them.
Note that there is no population inversion in the BAP,
»nce p22 pl 1 5.,0(y2yr, )cos'8 ~ 0.

We now study the situation when the cavity field starts
to build up and limit our discussion to the lower Rabi
sideband, 5= —cori„. By examining Eqs. (2.29) we find
that only three components p~~", p~~, and 8' ' are reso-

(I i5)p'„"—= ,'tg(a ) W—''',
(I +i5)p'" = —,'ig'(a —)W' ',
r, W'"=r, W —ig(a &p,"„'+ig*(a'&p'„-,",

where

(3.3a)

(3.3b)

(3.3c)

5=5+ops~ vc (~OL cia~ ) (3.4)

where g= —g sin ( —,'8). Comparing Eq. (3.2) with Eq.
(2.13), we see that g is replaced by g and p2,

"by p'„~".
Thus, g is the efFective coupling constant in the DAP
(when 5 = cps —„), and the dressed state

~
A ' ) ( ~I

BJ ) ) is
the upper (lower) transition level. For the purpose of cal-
culating the dressed-state coherence p'~~" to leading or-
der only, we can make a secular approximation, i.e.,
neglect all those nonresonant components. The equations
of motion for the remaining three resonant components
form a closed set of equations,

~ ~ ~

I B„,„)
I A„,„&

is the atom —cavity-field detuning in the DAP.
Solving Eqs. (3.3), we find the atomic population

difference in the DAP to be

8'
I+(re, )(1+5'yr,')-' ' (3.5)

where we have introduced the mean photon number I
and the phase P for the cavity field through the relation

I B„&
and

(a ) =&Ie'& (3.6)

~ ~ ~
I AA )

FIG. 1. Energy levels and lasing transition in the convention-
al dressed-atom picture. The dressed states

I A„) and IB„)
within each doublet are linear combinations [similar to Eqs.
(2.14)] of the bare states I l, n ) and ~2, n —1), where n indicates
the photon number of the external pump field. The energy
difference between the two dressed states IB„)and

I A„) within
each doublet is fico&&, whereas that between the centers of adja-
cent doublets is RcoL.

r,r,Io= (3.7)
g

In Eq. (3.5), Io(1+5 /rz) is the saturation photon num-
ber, which depends on the detuning 5 in the DAP. Equa-
tion (3.5) shows that the population inversion between
the dressed states

~
A J) and ~B~) decreases when the cav-

ity field builds up, similar to what happens in an ordinary
laser. Substituting Eqs. (3.3a), (3.5), and (3.6) into Eq.
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I=[6(I) y—,]I,
and that for the laser phase,

P =v, —co, + —,
' G (I)5 /I z .

(3.8)

(3.9)

Here

(3.10a)

is the nonlinear gain, and

(3.2), we find the equation of motion for the laser intensi-
ty,

quency co, toward the atomic frequency coL
—coB~ in the

DAP, when m, and coL —coB& do not coincide. When the
passive cavity frequency is tuned to exact resonance with
the dressed states, i.e., co, =cuL —coB&, there is no mode
pulling, i.e., v, =m, .

Comparing the results of the off-resonantly —pumped
dressed-state laser to those of an ordinary laser, we find
that their operations share many common features, pro-
vided the longitudinal (i.e., population-difference) and
transverse (i.e., coherence) relaxation rates, atomic transi-
tion frequency, and detuning are replaced by their coun-
terparts in the BAP.

(3.10b)

6 (I) 6 (0)
~(p) (3.11)

which implies that the saturation of the laser field, caused
by the decrease of the laser gain, is solely due to the de-
crease of the population inversion. It is clear from Eqs.
(3.8) and (3.10a) that the threshold condition is
G (0)=y, . Above threshold G (0) & y„ the laser intensi-
ty I will build up from vacuum through spontaneous
emission until it reaches its steady-state value Iss. In
steady state, I=0 leads to G (Iss ) =y„ i.e.,

is the linear gain coefficient. Note that, in Eq. (3.10a), the
nonlinear gain 6(I) includes saturation effects to all or-
ders in the laser intensity I and, in Eq. (3.10b), the posi-
tive quantity —8' is the population difference between
the upper transition level

~
A ~) and the lower level ~B~).

The quantity 6(0)=ao/(1+5 /1 2) is the linear gain of
the cavity field, and eo is simply the linear gain at 5=0.
We emphasize that the ratio of the nonlinear gain G (I)
to the population inversion —8"' ' is independent of the
laser intensity I,

IV. RESONANT-PUMP FIELD

Having discussed the off-resonant —pump case in Sec.
III, we now turn to the resonant-pump case, 6=0, in this
section. All other assumptions are the same as in Sec.
III; moreover, we again focus our attention on the lower
Rabi sideband 5= —co~„=—g (y&0). The reason that
we have to discuss the resonant-pump case separately is
due to the fact that the results of Sec. III based on the
secular approximation are not adequate for a resonant-
pump field, since 6=0 leads to zero population difference
W=O [see Eq. (3.la)] and, consequently, vanishing gain
G (I)=0 for any detuning 5 [see Eqs. (3.10)]. In order to
obtain the results in the resonant-pump case, we need to
go beyond the secular approximation.

As in Sec. III, we first analyze the result of the pump
excitation before the cavity field builds up. Setting
(a ) =0 in either Eqs. (2.28) or Eqs. (2.29), we find that
the populations in the two dressed states are exactly
equal,

(4.1a)

and, to leading order, the atomic coherences between the
dressed states are

0
Iss =Io

C

(3.12) (n) —g
l~

PAB,OP AB P AB (4.1b)

For given parameters I 2 Ip (xo and y„ the steady-state
laser intensity Iss is a function of the detuning 5 in the
DAP and reaches its maximum value at 5 =0, as does the
linear gain G (0). In other words, when the detuning 5 is
changed, the larger the linear gain, the larger the laser in-
tensity.

Also in steady state, the cavity oscillation frequency
will take a value such that /=0, which leads to the
mode-pulling relation for the off-resonantly —pumped
dressed-state laser,

(3.13)

This is a center-of-mass formula in which the oscillation
frequency v, is a weighted average value of the passive
cavity frequency co, and the atomic transition frequency
coL —mB„ in the DAP. Thus v, is always between co, and
coL

—coi)z. Equation (3.13) also predicts a pulling of the
oscillation frequency v, away from the passive cavity fre- (1 fi) ( — ) — g( —)(~( ) 2p( )

) (4.2a)

As in the off-resonant —pump case discussed in Sec. III,
there is no population inversion in the BAP; however, in
contrast to that case, there is no population inversion be-
tween the two dressed states now. It is our purpose to
show in this section that one can still obtain gain in the
case of a resonant-pump field.

We now consider the situation where the cavity field is
building up. Since 5= —y, we find that, as in the off-
resonant —pump case, only three components p'~~", its
complex conjugate pB&, and 8' ' are resonant with the
atomic transition in the DAP. Because of Eq. (4.1a),
however, these three components are of the same order as
the nonresonant component p'~B. None of the other
components is resonant with a dressed-state transition.
Consequently, they are much smaller than the above-
mentioned four components. After neglecting all those
small components, we find that Eq. (3.2) is still valid here,
but Eqs. (2.29) now give us
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&+)p(o) — ) y ig (&t)p( —ll

I,W' '= —ig(a )p'" + ig'(a )p'

(4.2b)

(4.2c)

2t p AB5 I/Io
1+5'/r,'+I/I, ' (4.3a)

and, to leading order, we find the atomic coherence in the
DAP to be

(p) ——
PAB PAB (4.3b)

Equation (4.3a) is quite different from Eq. (3.5), its coun-
terpart for an off-resonant pump. Substituting Eqs.
(4.2a), (4.3), and (4.1b) into Eq. (3.2) and using relation
(3.6), we find that the intensity equation of motion is still
of the type of Eq. (3.8) but with a different nonlinear gain
G (I), and the phase equation of motion is now

1+I/Io
P =v, —co, —G (I)

25/I 2

(4.4)

For the resonant pump the nonlinear gain is given by

2G,„S/r2G(I)=
1+5 /I 2+I/I()

where Io has been defined in Eq. (3.7), and

(4.5)

where the dressed-state detuning 5 and the dressed-state
coupling constant g are simplified to 5=5+y, g = —

—,'g
in the resonant-pump case. Equations (4.2a) —(4.2c) plus
the complex conjugate of Eq. (4.2a) form a closed set of
equations. In contrast to Eqs. (3.3), this set of equations
goes beyond the secular approximation. Solving this set
of equations, we find the population difference in the
DAP to be

For given parameters I 2 Ip G „and y „both the laser
intensity Iss and the linear gain G(0) vary when the
dressed-state detuning 5 is changed. While the linear
gain G(0) peaks at 5= I 2, the maximum laser intensity

~max Jp
2G max —1

~C
(4.8)

occurs at a larger value, 5= I 2G,„/y, . In other words,
the smaller linear gain at 5=I 2G,„/y, produces a
larger laser intensity than the larger linear gain at 5=I 2
does. This is in contrast to the situation in the off-
resonantly —pumped dressed-state laser as well as to that
in an ordinary laser. The reason for this feature of the
resonantly pumped dressed-state laser can be understood
by noting Eq. (4.5) that, for given I, the maximum value
of G (I) as a function of the detuning 5 occurs at
5=I 2(1+I/Io)' . This curve on the I 5plane in-ter-
sects another curve (4.7) also on the I 5plane a-t

5= I 2G,„/y„as obtained above.
In steady state, one has /=0. The phase equation of

motion (4.4) predicts mode pushing in steady state, since
v, )co, when 5&0 (i.e., v, )coL —cos„). In other words,
the oscillation frequency v, is no longer bounded between
the passive cavity frequency co, and the atomic transition
frequency coL

—
coBA in the DAP. These are also in con-

trast to the situation in the off-resonantly —pumped
dressed-state laser as well as to that in an ordinary laser.
It is of practical importance to know how to set the pas-
sive cavity frequency according to a required oscillation
frequency and a detuning, etc. It follows from Eqs. (4.4)
and (4.7) that we should set the passive cavity frequency
to be

co, =v, + —,'y, (5/r~) —G (4.9)

Gmax
& Ig I'(&Pps )

2I 2
(4.6)

~ss =~o
2G,x5

x, I 2
(4.7)

is the maximum value of the linear gain G(0) as a function
of the detuning 5. As in Sec. III, the nonlinear gain G (I)
contains saturation effects to all orders in the field
strength. The quantity G,x is also the maximum value
of the nonlinear gain G (I) as a function of the mean pho-
ton number I and the detuning 5. When the transition is
exactly resonant in the DAP (5=0), there is no gain
G(I)=0. However, as the cavity frequency is turned
away from exact resonance in the DAP such that 5)0,
we have linear gain, G(0) & 0. The threshold condition is
G(0) =y, . Above threshold G(0) & y„ the cavity field
will build up from vacuum and start lasing. Since the
population difference —8" ' between the upper transi-
tion level

~

AJ) and the lower one )BJ) is not positive
when 5)0, the gain is due to the dressed-state atomic
coherence p„s [comparing Eq. (4.6) with Eq. (3.10b)].
The steady-state laser intensity is determined by
G (Iss ) =y„which leads to

From Eq. (4.9) we find that the oscillation frequency v,
can still be expressed in the form of a weighted average,

y2(co, +G,„)+—,
' y, (coL —cps~ )

I z+-,'X, (4.10)

In comparison with Eq. (3.13), we see that the passive
cavity frequency co, is replaced by co, +G,„. This is
another noteworthy feature of the resonantly pumped
dressed-state laser.

Finally, we point out one more difference between the
resonantly pumped and the off-resonantly —pumped
dressed-state lasers. In the resonant-pump case, lasing
can also occur around the other (i.e., the upper) Rabi
sideband with the linear gain peaks at 5=y —I 2. In fact,
the properties of the cavity field are symmetric about the
detuning 5 in the resonant-pump case. This result as well
as the overall gain characteristics are not surprising in
light of the probe absorption curve for a strong resonant-
pump field [13]. This curve is symmetric about 5=0, ex-
hibits dispersionlike structures near 5=+y, and arises
solely from nonsecular terms in a dressed-atom picture
[16].
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V. DISCUSSION

Experimentally, the one-photon lasing in the off-
resonant —pump case has been observed by Lezama, Zhu,
and Mossberg [8]. The linear one-photon gain in the
resonant —pump case is small compared with that in the
off-resonant —pump case, since G,„/ac- 0 ( y 2/g).
However, it is of the same order of magnitude compared
with the maximum two-photon gain in the off-
resonant —pump case, which has recently been calculated
by Lewenstein, Zhu, and Mossberg [9]. Experimentally,
it would be easier to observe one-photon lasing from reso-
nantly driven two-level atoms than to observe two-
photon lasing from off-resonantly driven two-level atoms.
The reason is simply that the linear two-photon gain
(which, in fact, is far-detuned one-photon linear gain) is
much smaller than maximum two-phonon gain and thus
the realization of two-photon lasing needs triggering [21].

In summary, we have studied the operation of dressed-
state lasers pumped by an off-resonant and a resonant
external field separately. Lasing without inversion be-
tween bare atomic states can occur in both cases. In the
off-resonant —pump case, lasing occurs at one of the Rabi

sidebands, for which there exists population inversion be-
tween dressed-atom —field states; the gain is due to the
population inversion between the dressed states [22]. In
the resonant-pump case, lasing can occur near either of
two Rabi sidebands, for which there is no population in-
version between the dressed states. By going beyond the
secular approximation, we showed that the gain comes
from the atomic coherence between the dressed states.
While the operation of the off-resonantly —pumped
dressed-state laser is quite similar to that of an ordinary
laser (provided appropriate quantities in the DAP are
used), the resonantly pumped dressed-state laser exhibits
some interesting features, such as (1) mode pushing and
(2) larger laser intensity coming from smaller linear gain
as the cavity-field detuning is changed.
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