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The main goal of this paper is to analyze a two-photon degenerate four-wave-mixing process that
occurs in an isotropic media modeled by homogeneously broadened two-level systems having unequal
permanent dipole moments and subject to rotational diffusion. Our theoretical treatment is based upon a
third-order perturbative solution of the density-matrix equations and does not require the rotating-wave
approximation. The medium being excited by three stationary fields, we give an analytical expression of
the macroscopic polarization up to the third order, including permanent dipole moments, orientational
diffusion, and field polarizations. We apply these general results to the description of a degenerate four-
wave-mixing process by selecting, in the expressions, the contributions in the direction k —k~+k~,
k, k&, and k~ being, respectively, the wave vectors of the exciting fields. We show that the two-photon
degenerate four-wave mixing is dependent on the permanent dipole moments and is not present if these
dipole moments are equal or zero. We analyze the inAuence of rotational diffusion. Different cases of
field polarizations are also considered, and we discuss a comparison of the well-known one-photon de-

generate four-wave-mixing process and this two-photon process. This process is also discussed in the
particular case of phase conjugation.

PACS number(s): 42.65.Ma, 42.65.Hw

I. INTRODUCTION

Molecules whose states have permanent dipole mo-
ments have been the subject of many works in recent
years. These molecules can exhibit nonlinear-optical
properties that differ substantially from molecules having
parity symmetry. In particular, two-photon absorption
can occur in two-level systems having unequal permanent
dipoles [1,2]. The effect of permanent dipole moments on
the transient and steady-state transition probabilities of a
two-level system interacting with either a monochromatic
field, two optical fields of different frequencies, or an opti-
cal field in the presence of a static electric field, has been
the subject of many papers [3—5]. Recently Bavli and
co-workers [6,7] have calculated the transition rates, and
the linear- and nonlinear-optical properties of a homo-
geneously broadened two-level system with permanent di-
pole moments in the presence of two pump fields. They
have showed that even in the case of a two-level system
with permanent dipole moments, Raman scattering,
two-photon absorption, and wave mixing of arbitrary or-
der can be observed when the permanent dipole moments
of the two levels are not equal.

The purpose of this work is to analyze a degenerate
four-wave-mixing process in a medium modeled by two-
level systems having unequal permanent dipole moments.
As already mentioned, two-photon absorption can occur
in such systems. Therefore it is reasonable to think that
two-photon degenerate four-wave mixing can also appear
in these media. Optical phase conjugation by two-photon
degenerate four-wave mixing has been the subject of
different works [8,9], but usually the medium is described
by a three-level system that has nonpermanent dipole mo-
ments. In our model we consider that three optical fields

of the same frequency interact with homogeneously
broadened two-level systems having unequal permanent
dipole moments. We assume that the molecules in the
medium are subject to rotational diffusion. The medium
polarization is calculated by using the density-matrix
equations, which are solved to third order by perturba-
tional techniques. In these equations the orientational
effects are taken into account by a phenomenological
diffusion term. We shall assume a uniform distribution of
the dipole moment in the medium. This means that the
probability of finding the dipole moment of the molecules
in a given direction will be constant. This situation is
generally encountered with noninteracting molecules in a
nonpolar solvent and when no static field is present. Our
treatment does not make the rotating-wave approxima-
tion. This is of particular importance here because a
nonlinear effect is expected far from the resonance fre-
quency. Our theory enables us to evaluate the macro-
scopic third-order polarization of the medium. We show
that a two-photon degenerate four-wave mixing occurs
when the field frequencies are equal to half of the reso-
nance frequency. We discuss the inhuence of permanent
dipole moments on this process which does not exist
when the permanent dipole moments are equal or zero.
We analyze the effect of rotational diffusion and the role
of the field polarizations on this nonlinear optical pro-
cess.

II. THEORY

The nonlinear medium of interest here is modeled by
an ensemble of homogeneously broadened two-level sys-
tems. Each of them is characterized by a dipole moment
p, and longitudinal and transverse decay rates I i and I 2,
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respectively. Finally, the transition energy is denoted by
A~z, . We assume that the levels of the microscopic two-
level systems have permanent dipole moments so that p
can be written as

E(r, t)=QE (r, t), a=1,2, 3, (3)

where E (r, t) are the individual fields that are taken in
the form

Pi& P&z E (r, t)= ,'e—6' exp[i(co t —k r)]+c.c. . (4)

Pzi Pzz

with p»&pzz. To simplify our model, we consider that
the permanent dipole moment and the transition dipole
moment are parallel. This situation can be encountered
in different molecules [10]. Therefore, we can define a
unit vector e„(8,@) in the direction of p, where 8 and y
are the orientational coordinates of p defined with
respect to the laboratory frame. We have the relation

P!J pPlJ (2)

For the sake of simplicity, we omit, when possible, the
explicit dependence in the mathematical expressions. For
example, in relation (2), p and e„must be read as p(O, q&)

and e„(O,y), respectively.
The material system described above interacts with

three electric fields. Let us call E(r, t) the total field. It
can be expressed as

Here c.c. stands for the complex conjugate part and e is
a unit polarization vector. For the sake of convenience,
we will assume all along that the perturbational approach
is valid and use the third-order iterative solution for the
density matrix. This solution includes a possible orienta-
tional diffusion mechanism that will be relevant for our
purpose. It is also assumed that the orientation al
diffusion results from statistical processes that are in-
dependent of the applied fields. This process can be han-
dled by including a rotational diffusion term in the equa-
tion of motion of the density-matrix elements [11]. To
simplify, the diffusion constants D are chosen to be iden-
tical for the various states of the system and the trans-
verse decay rate I z is assumed to be very large compared
to D [12]. With this assumption in mind, the evolution of
the density-matrix elements for a given value of 0 and y
is given by the relations [12]

ap11 —l

Bt
' ' ' A'

(r, t, O, y)= (p»(r, &, O, g)[p»(O, y) E(r, t)]—[p»(O, y) E(r, t)]p»(r, t, O, y)]

+D As ~»(r, &, 8,y)+ I,P22(r, t, 8, q&),

~pzz i
(r, t, O, y) =—[p,z(r, t, 8,y)

[uzi�(8,

@) E(r, t) ]—[p,z(8, y) E(r, t) ]pz, (r, t, O, y) ]at

+Db& ~22(r, ~, O, y) —I &pzz(r, ~, O, y),
~p&z l

(r, t, O, y)= —(I z
—icoz, )P,z(r, t, O, y) —[d E—(r, t)]P,z(r, t, O, P)

Bt

(5)

+—„[p» E(r, t)][pzz(r, t, O, y) —p»(r, t, O, g )],
pzi(r ~ 8 m)=p)g(r, &, O, p),

where p»(r, t, O, y) and pzz(r, t, O, y) are the diagonal ele-
ments of the density matrix p. The nondiagonal elements
are given by p, z(r, t, O, p) and p (r2, t, O, y) and correspond
to the coherence between the excited state 2 and the
ground state 1. 6& „is the Laplace operator in the spher-
ical coordinates. The quantity d is the difference between
the permanent dipole moments of the ground and excited
states, that is to say,

d(O, V')=922(O, V') Pii(O, V') . —

It is important to note that the dephasing constant I z
'

includes pure dephasing effects and that our description
does not introduce the rotating-wave approximation.

As already mentioned, the set of equations (5)—(8) will
be solved by using a perturbative treatment. Therefore, at
this step of the calculation, we can first make a remark on
the inhuence of the permanent dipole moment. As no-

ticed by different authors [13], when d is zero, the itera-
tive solutions to optical Bloch equations for two-level
models reveal a very peculiar structure that is not valid
anymore for many-level systems. The contributions to the
populations and coherences are decoupled and depend on
the order of the perturbation. For instance, the even or-
ders give corrections to the populations only, while the
odd orders contribute to the coherence only. Equations
(5)—(8) show clearly that this peculiar structure will van-
ish when d will be nonzero.

Let us solve now Eqs. (5)—(8) up to the third order. In
the zeroth-order approximation, we have

(0)

at
(r, t, O, @)=I,pzz'(r, t, O, q&)+DER ~', ,'(r, t, 8,y),

(10)
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(O)

(r, t, O, p() = —I )p'zz'(r, t, O, cp)+Dbs ~zz'(r, t, O, y),
(I)

(r, t, O, g)= —I,p2'2'(r, t, O, cp)+Db() ~2&'(r, t, O, cp),

(p)
P12 . (p)(r, t, O, cp)= —(I ~

—ico2) )pi~ (r, t, O, cp) .
at

(12)
(&)

P12
(r, t, O, y) = —(I 2

—(~2) )p]2 (r, t, O, q )at

(16)

Solutions to these equations are straightforwardly ob-
tained if the initial conditions are weH defined. For the
purpose of this work, we will assume that, at t = —~,
the system is in equilibrium. This means pii( —ac )=1,
p22(

—~ ) =0, and pi2( —ac ) =0. Then by expanding
p))'(r, t, O, (p) and p22'(r, t, Op) over a spherical harmonics
basis, the zeroth-order approximation gives the result

——
[)M)2(O, y) E(r, t)] . (17)

p()", ( r, t, 8, @)= pz(z )( r, t, 8 y ) =0 . (18)

At the initial time there is no first-order correction. This
implies that for Eqs. (15) and (16) we have

p', )(r, t, O, (p)=p' )(r, t, O, y)=0,
p', , '( r, t, 8, cp) = 1 . (14)

The solution of Eq. (17) is

l
p12 (r t 8 m) =

I) 12(8 'I)
).«r ti ) j

Next we consider the first-order approximation. The
dynamical equations take the form

(&)

( r, t, 8,y ) = I )p(2'2)( r, t, 8, (p ) +D b () ~') I '( r, t, 8,cp),

(15)

X exp[ —(I z
—i co&) )(t t, ) ]dt,—.

(19)

Introducing the expression of E(r, t) given by relations (3)
and (4), the coherence to the first order takes the form

[e„(O,y) e ] [e„(O,y) e']
pI", (, , 8, pi)= — p»g "

( exp[i(co t —k r)] "
(

* exp[ i (co t——k r)]I 2+i co~ cop) 2 l &a ~2)

We consider now the second-order contributions to populations and coherences. The starting equations are

a (2)

(r t 8 y)= [pIz(r, t, 8@ )[uzi( Oy) E(r, t)]—[pi&(8 iIc) E(r, t)]p2i (r, t, O, p)]iat

+Dhe ~'))'(r, t, O, (p)+I,p22'(r, t, O, (p),

(2)

(r, t, O, (p)= —
Ip", 2(r, t, 8@)[ )(c2( Oy) E(r, t)]—[p,2(O, y) E(r, t)]p2')'(r, t, O, i)c ) jat

+ Dbea(22)(r, t, Oq) ri p(22)(r, t, Oq)

(20)

(21)

(22)

(2)

(r, t, O, (p)= —(I 2
—ico2))p)z'(r, t, O, (Ir) —[d E(r, t)] p"—, 2(r, t, Ogr) +—

[)M,2 E(r, t)][p z'(~r, t, O, cp) p", , '(r, t, O, cp)] . —
at

(23)

Introducing the first-order corrections previously determined, Eq. (23) is easily solved and the contribution to the
second-order coherences is given by

pI (r~, t, qO&)= — QIa t)[e„(O,cp) e ][a„(8,(p) gati]C ( tiexp[i(co +cut))t]exp[ —i(k +kt)) r]7 7 7 2 ~ P 7 ~ P

+b t)[Ep(8, (p) 6 ][I'p(8,+) tp]6 6t) exp[i(co cot))t]exp[ —i (k —kt)) r]—
+c g[e„(8,(p) e*][e„( , 8iIpe)t) ]@*At)exp[ i (co +co—p)t] exp[i(k +kp) r]], (24)

where a &, b &, and c & are defined by the relations

1a &= [r,+t (~.—~„)][r,+i(~.+~~—~„)] ' (25)
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b p= 1 1 1

[I 2+i(co c—o2))] [I 2
—i(cop+co2))] [I 2+i'(co —

cop
—co2))]

(26)

1
Cap— [I 2

—i(co +co~, )][12
—i(co +cop+co2))]

Expanding pz(2z)(r, t, 8, (p) over a spherical harmonics basis, and introducing this development into Eq. (22), p22'(r, t, g, p)
can be expressed as

p22'(r, t, g, y)= —g f dt, f dy, f dg, sing, {p',z'(r, ti, g„y))[p2)(g„y, ).E(r, t, )]
l, m

oo 0 0

[p)2(g) 0 i } E( ' i ) ]p&) (

X Y&* (8),y)) Y( (g, y) exp{ —[r,+Dl(l +1)](t t, )—],
where Y& (g, y) are the spherical harmonics. By carrying out the integrations in the previous relation, pz'z)(r, t, 8, (i))

takes the form

pzz'(r, t, g, cp)= z g( {d"p[@„(g,(p) e )[e„(g,cp) ep]+ 3d' p(e ep}J6 6pexp[i(co +cop}t]exp[ i(k —+kp). r]p ~ a p

+ {e p[+ (g p)'e ][+ (8 Ip)'ep]+ —,'e p(e ep)] 6' 6p exp[i(co cop)t] —exp[ —i(k —kp) r]

+ {f"p[e„(g,y) e~][e„(g,(p) ep]+ ,'f' p(e' e—p)j g*gp exp[ i (co +—cop)t] exp[i(k +kp) r]),

(28)

where we have de6ned the quantities

g(&)—
ap

1 1 1

I +i(co co, ) —I +i(co +co, ) I,+6D+i(co +cop)
(29)

d(2)
ap

1 1

r2+i (co —co2)) r2+i (co +co2))
1 1

I,+i (co +cop) I )+6D+i(co +cop)
(3O)

e(&)—
cap

1 1 1 1

r,+i(~.—~„) r, —i (~p+~„) r,—i (~p —~„) r, +i (~.+~„) r, +6D+t (~.—~p)
(31)

(2)—e p— 1 1 1 1

r~+i(co —co~)) I z
—i(cop+co2)) I 2

—i(cop co2, )
—I ~+i(co +co2))

1

I (+ i (co cop)

1

I', +6D+i (co —cop)
(32)

f(1)—
ap

1 1 1

I 2 i(co +—co2, ) I z
—i(co co2i) I")+6D— i(co +co—p)

(33)

f (2)
ap

1 1

I 2
—t(co +coqi) I q

—i(co co2()—1 1

I, i(co +co—p) I,+6D i(co +c—op)
(34)

Finally, the last relation is given by

pPi'(r t 8 V»= —p"'(r t 8 V» . (35)

It must be noted that the coefficients d' p, e' p, f '
p, are equal to zero if no rotational diffusion takes place in the medi-

um.
%'e are now ready to evaluate the third-order contribution, which is the main goal of the present calculation. The
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starting equations are

(3)

(r, t, O, y)= [pI2'(r, t, O, lp)[p2, (O, qr) E(r, t)]—[@12(Oy). E(r, t)]pz, '(r, t, Oy)]at

+Dbs ~'l1'(r, t, O, y)+I,p22'(r, t, O, cp),
(3)

(r, t, O, y)=
&

[pp2'(r, t, O, y)[p2, (O, qr) E(r, t)]—[@12(O,q&) E(r, t)]pal'(r, t, O, y)]at

+DE& ~zz (r, t, O, y) —I lp22 (r, t, O, y),

(36)

(37)

(3)

(r, t, O, y) = —(I 2
—im21)PI&'(r, t, O, y) ——[d E(r, t)]PI2'(r, t, O, q&) +—[P,2.E(r, t)][Phiz'(r, t, O, q&)

—PI1'(r, t, O, y)] .
Bt

As done previously, Eq. (38) is straightforwardly solved and pI2'(r, t, O, cp) can be written as

lP12
PI2'(r, t, 8,1P)= 3 g I(d a p+2IP, 2I d "p }[@„(O,y) e ][e„(O,y) ep][e„(O,gr) ey]+ —', IP,2I d' p(e ep)[e„(O,cP) ey]].

8A'
p y

X exp[i(co +cop+co )t] exp[ i (k +k—p+ky) r]12+i(~ +cop+coy
—

A@21

+ [(d'b.p+d'cl. y+211Ll 121'e."p +2llLc12I'd."y' )[e„(O,q } e.][e„(O,q } ep][&„(O,q } &y]

+ 3Ip, 2I e'p—(e ep)[e„(O,cp) ey]+ ', Ip»I d'y'—(e ey)[e (O, cp).ep]]

X exp[i(co cop+co )t—] exp[ i (k ——kp+ky) r]
2 l &a ~p ~y ~21

+ I(d c +d bp +2lp, 2I f'"+2lp, 2I e&" )[e„(O,qo).e'][@ (O, cp).ep][e„(O,cp) e']

+ ,'Ip»I'f"'(—e* e*)[e (O, cp).ep]+ ,'Ip»I'ep1" (e'—.ep)[e„(O,q&).e*]]

X . exp[ i (co cop+~—y)t] exp[i(—k —kp+k„) r]
2 l &a ~p+ ~y+ ~21

+ [(d'cap+2I p12I'f "p }I&l,(8 0» e."][&„(8v». ep][&„(8 v». e,"]

+-', Iv»l'f p(e.'.ep)[e„(O,q» ey]j

X . exp[ i (co +cop+—coy)t] exp[i(k +kp+k ).r]I 2 l CO +aha p+Ci) +yCO 21
(39)

From Eq. (37), p2'z'(r, t, O, y) takes the form

p (r22, t, O, p)=1—g f dt, f dq&, f dO, »nO, IpI2'(r, t„81,y1)[p2, (8„(p,) E(r, t1)]
0

I, m 0

—[p12(81,91) E(r, t, )]p (r2, 1t 81%11)]

X Yl* (O„gr, }Y& (8,1p) exp[ [I,+Dl(1+1—)](t t, )] . — (40)

Introducing the expressions of pI2'(r, t, O, y) and p21'(r, t, O, lp) previously determined, p22'(r, t, O, y) is given by the rela-
tion
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p' '(r, t, 8, q& ) =— G(e, e&, e ) 1

5 I,+2D+i(co +cotta+co )

H (6~& Ep& er )+ I,+12D +i (co +co&+co&)

1

I i+12D+i(co +cotta+co )

X@ 6'&6 exp[i(co +coti+cor)t] exp[ i—(k +kti+k~) r]+(b &+a —c* bt'3—)

G (E~&Ep& &r) 1X
5

1

I i+12D+i(co —cop+co )I,+2D + i ( co coti+—coy)

H(E~& 6p& 6r )+ I,+12D +i (co —co&+cor)

exp[i(co coti+—co )t] exp[ i (k——kti+kr) r]+(c r+bti b't3 ——a "r )

G(e",e&, sr*) 1X
5

1

I i+ 12D i (—co —cot|+co~)I,+2D i (co——co&+cor )

1

I i+2D i (co +co—ti+cor)

H ( e*,e&, e* )+ @*A'&8*exp[ i (co —co&+co )t—]exp[i (k —kti+k~). r]I,+ 12D i co ——co&+ co&
' G(e*,gati, e„*)

5

1

I,+ 12D i ( co +—co&+ cor )

H (E~& Ep& Er)'+ I,+12D i (co +—coti+cor)

X@*A'$8*exp[ i (co +—coti+co )t] exp[i(k +kp+kr) r] ', (41)

+(e e&)[e„(8,@) e ] (42)

and

H(e, hatt, e )=[@„(B,y).e ][@„(B,cp) e&][e„(B,cp) e ] .
(43)

III. MACROSCOPIC POLARIZATION

We are now able to calculate the macroscopic polariza-
tion of the medium. At this end, we have to average over
all possible orientations of the dipole moment. In the
present work, we shall consider that the probability to
find p(B,y) in a solid angle dQ=r dr d&pdBsinB is a

where G(e, hatt, e ) and H(c, et3, E ) represent the quanti-
ties

G ( e~& Ep& Ey ) ( Ephor )[Ep'( 8& &p ) E~ ]+ ( E~ Er )[E ( 8& p ) Et3]

l

constant equal to (1/4m. )d Q. In other words, we consid-
er a normalized uniform distribution of the dipole mo-
ment. This situation is generally encountered in many
experiments concerning molecules in a solvent at room
temperature. Let us note P"(r, t) the ith-order averaged
polarization term. P~'~(r, t) is expressed as

P"(r, t)= j dy J dBsinB[d(B, y)p~2'~(r, t, B,@)4m. 0 0

+p, 2( 8, cp)pz'i'( r, t, 8, cp)

+p2i(8 0') 'PA'(r, t, BV )] .
(44)

First, we calculate the first-order polarization. Introduc-
ing the expressions (18) and (20) in the expression (44),
P"'(r, t) takes the form

1

I 2+i (co +co~, )

1
e 6 exp[i(co —k r)]I &+i (co —co2i

1

I 2 i (co —co~—i )
e*e*exp[ —i (co —k r)]I 2+ i ( co +co2, )

(45)
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Introducing the relations (24) and (28) in the expression (44), we are able to determine the second-order polarization
P' '(r, t). Then, P' '(r, t) is zero, which is what could be expected from our model. This is due to the fact that we have
considered a uniform distribution of the dipole moments. We are now ready to evaluate the third-order nonlinear po-
larization. This constitutes the main result of the present work. Starting with the relations (39) and (41) and introduc-
ing them into expression (44), P' ~(r, t) can be written as

P' '(r, t)= g I A py6' 8p6'y exp[i(co +cop+co )t]exp[ i (—k +kp+k ) r]
a, p, y

XB p
6' 6p6' exp[i(co cop—+coy)t] exp[ i (—k —kp+ky) r]+c.c.], (46)

where A p and B p& are defined by the relations

ilp, 21 d a p+2lp, 2, 1
d "p —d c*p—2lp, ,2 f"p*

8A I 2+i(co +cop+coy —
co&, )

2 +ap C ap—d I,+2D +i (co +cop+toy)

and

A(e, ep, ey) 2 lp, ~l'(d' p f"p* )(«— p)&y

15 9 I 2+i (co +cop+coy co~, )— (47)

B py= 3 [(d b p+d a +2lpi2I e "p+2lpi2 d"')
—,', A(e, ep, e )

SA

+ 9 Ipi2I e p(e Ep)6y+ 9 Ipi2I d y(E Ey)Ep]
2 ~a ~p ~y ~21

[(d c* +d bp +2lpi21 f y +2 p, 21 ~p )~~ A(&, &p, &y)

+-', Ipip 'f y'*(«y)ep+ ,'Ipi2l'ep-'. "(~.ep)ey]
2 l Ma ~p ~y ~21

d(b p+—a —c* bp ) —,', A(—e, ep, ey) I
~
+2D + l ( cuba cOp+ COy )

(48)

with

A(E~&Ep&ey)=(ep ey)E~+(e~'Ey)ep+'(E~ Ep)ey . ' (49)

Relation (46) combined with the definitions (47)—(49)
gives a general expression of the third-order nonlinear
polarization for an isotropic medium with permanent di-
pole moments and subject to rotational diffusion.

the medium (i.e., D =0). If we represent the imaginary
part and the real part of B pz as a function of the field
frequency co for different values of d (d =pz2 —p»), we
first recover the well-known resonant degenerate four-
wave-mixing process when co is equal to the resonance
frequency. This process is not very sensitive to the pres-

IV. DISCUSSION

The expression of the nonlinear polarization previously
obtained is general and can be applied to describe
different nonlinear optical processes. Our purpose is to
consider only degenerate four-wave mixing. Other pro-
cesses will be discussed elsewhere. Therefore, we retain
only the term B p, which gives the contributions to non-
linear processes in the direction k —kp+k&. We assume
that all fields have the same frequency. It must be noted
that in our numerical simulations, we shall consider a sit-
uation corresponding to organic materials. This implies
that the resonance frequency is chosen in the optical
domain. The lifetime is assumed to be of the order of the
nanosecond and we have taken a large pure dephasing
rate as observed in these media. For the sake of simplici-
ty, we have normalized all numerical results.

First we shall consider that all fields have parallel po-
larizations and that no rotational diffusion takes place in

c

EO

CQI
lK

FIG. 1. Real part of the one-photon degenerate four-wave-
mixing nonlinear response. The values of the parameters are
p, b

= 1, I ~= 10', I l
= 1, D =0, and co» =10 . No variations are

observed as d varies.
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FIG. 2. Imaginary part of the one-photon degenerate four-
wave-mixing nonlinear response. The value of the parameters
are p,&=1, I 2=10', I &=1, D =0, and co»=10 . No variations
are observed as d varies.

FIG. 4. Imaginary part of the two-photon degenerate four-
wave-mixing nonlinear response. The values of the parameters
are p g=1 I 2=10 I &=1 D =0 c0»=10 and (a) d =0 (b)
d =2, (c) d =5, and (d) d = 10.

ence of permanent dipole moments as shown in Figs. 1

and 2. On the other hand, we observe that a new process
occurs when ~ is equal to half of the resonance frequen-
cy. This process can be described as two-photon degen-
erate four-wave mixing and is dependent on the value of
d. If d is equal to zero, this process does not exist (Figs. 3
and 4). We observe that the imaginary part is negative.
These points are consistent with results previously pub-

I

lished on two-photon phase conjugation [7,8, 13] or by
comparison between such two-photon processes due to
the presence of the permanent dipole moments and the
Raman process [14,15]. It is interesting to analyze the
term 8 p . It can be written into the form

&spy
=Capy+ Dapy

where

C»=
3 [(d b p+d a ~+ 2lp, I2e"p'+2 p, 21 d"~~) —,', A(e, ep, er)

8A

+ 2
I p„I'e."~(e. ep)e, + ',

Ip„I'd.",—'(e.e, )ep]
co~ cop coy

—[(d'c*r +d'b p +2lp„l'f."y'+2lp„l'e p".
'*

) —,', A(e. , ep, ey)

+ ,'Ip„l'f' '*(e e )op+ —,'Ip„l'ep"*( e ep)e~] I 2+i (co —cop+cor+co2&)

and

M

2

CO

lQ
Q

lK

FIG. 3. Real part of the two-photon degenerate four-wave-
mixing nonlinear response. The values of the parameters are
p,&

= 1, I 2= 10, I I
= 1, D =0, co» = 10, and (a) d =0, (b) d =2,

(c) d =5, and (d) d = 10.

Dp= d(b p+a y cr bp )

X —'A e,e, e

(&) ' (2) '

P2i P2i
(O)Pii ~ (i) ~ (2)

P&2 Pi2

(3)
P22

(3)
pii

C p~ is different and can be represented by the associa-
tion of two perturbation chains,

C pz is due to the third-order coherence of the medium
while D~pz is due to the third-order population. This last
quantity results from second-order coherences which are
generated by a two-photon process. D pz can be schema-
tized by the perturbation chain
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FIG. 5. InAuence of the rotational diffusion on the real part
of the two-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p,b=1, I 2=10',
I,=1, d =5, co»=10, and {a)D =0, {b) D =0.1, {c)D =1, and
{d)D =10.

The first chain does not include the creation of popula-
tion. It is a pure coherent two-photon process. The
second chain includes the creation of population. We
have numerically tested the contributions of each chain.
This can be easily done by taking e' &, e' &, O'II, d' &, f '

&,
and f'& equal to zero in the expression of C &r. In this
case, we consider only the coherent two-photon process.
We observed that numerical results are not modified. In
other words, Figs. 3 and 4 are identical in this case to the
one where we consider all processes. This shows clearly
that the contributions of the second chain previously de-
scribed do not contribute significantly to the general pro-
cess. Therefore, we can neglect all processes involving
the creation of second-order population. We recover
here a situation similar to the one observed in two-
photon degenerate four-wave mixing in three-level sys-
tems.

Figures 5 and 6 show the inhuence of the rotational
diffusion. We see that the effects of orientational averag-
ing are completely different from those observed in the
usual one-photon degenerate four-wave mixing, as the
one obtained when the field frequencies are equal to the
resonance frequency. This situation is illustrated in Figs.
7 and 8. In this case, the consequence of orientational
averaging is to weaken the nonlinear effect. This results
from the fact that third-order density-matrix terms are
generated by second-order populations that depend on
the rotational diffusion. If we consider the two-photon
degenerate four-wave mixing, the third-order density-
matrix terms are coming from second-order coherences
that do not depend on the rotational diffusion because in
organic materials the dephasing rate I 2 is much greater

CO

A5

Q3

E

-UNO

0.490
I

08$

FIG. 6. Inhuence of the rotational diffusion on the imaginary
part of the two-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p, b =1, I 2=10,
I

&

= 1, d =5, and co» = 10 . No dependence with respect to D is
observed.

than D. Because of this realistic assumption rotational
diffusion will have no effect in the case of the two-photon
degenerate four-wave-mixing process. This situation is
observed in Figs. 5 and 6. The small variations corre-
sponding to the D dependence and observed on the real
part result from contributions due to the real part of the
one-photon degenerate four-wave mixing, which still per-
sist in this spectral range in the case of our numerical
simulation. These variations do not appear on the imagi-
nary part because the imaginary part of the one-photon
degenerate four-wave mixing decreases more rapidly than
the real part and its inhuence is less important. This is
confirmed by the fact that if we take the quantities e "&,
e'&, d'II, d'&, f '

p, and f '& equal to zero, we no longer
observe a D dependence in the two-photon degenerate
four-wave-mixing process.

Finally, Figs. 9 and 10 show the nonlinear response for
different types of field polarizations. We have considered
two different situations where either all fields have paral-
lel polarizations or the fields having the wave vectors k
and k have parallel polarizations but are cross polarized
with respect to the field having the wave vector k&. This
last situation is generally encountered in phase-
conjugation experiments or in forward degenerate four-
wave-mixing experiments when the pump fields are cross
polarized with respect to the probe field. The evolution
of the nonlinear response between these two situations is
quite similar to the one observed in the well-known reso-
nant degenerate four-wave mixing. The vertical transla-
tion observed in Fig. 10 as a function of D still results
from the contribution of the one-photon degenerate
four-wave-mixing process.

Bavli and Band [16] have calculated the third-order
nonlinear absorption and dispersion of a homogeneously
broadened two-level system with permanent dipole mo-
ments. They analyzed the nonlinear susceptibilities
y' '( —co;co, —co, co) and y' '( —co, ;co@,—co&, co, ). They
show that the y' '( —co;co, —co, co) spectrum has two
features, one at frequency cob, dominated by contribu-
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FIG. 7. Influence of the rotational diffusion on the real part
of the one-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p,b=1, I 2=10,
I

&

= 1 d =5 c0» = 10, and (a) D =0, (b) D =0.1, (c) D = 1, and
(d) D =10.

FIG. 9. Influence of the field polarization on the real part of
the two-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p,b=1, I 2=10,
I

&
=1, d =5, co» =10, and D =0: (a) parallel polarizations; (b)

perpendicular polarizations.

tions proportional to pb„where pb, is the transition di-
pole moment of the two levels with transition frequency
cob„and the other at frequency cob, /2 dominated by con-
tributions proportional to (bp) pz, where bp is the
difference between the permanent dipole moments of the
levels. They also demonstrate that sharp features in

( —~~', co2, —co2, co&) appear when co2 is near cob„co„(3)

co&+co&„and ~co,
—cob, ~. These results are consistent

with ours, but their theoretical model does not take into
account orientational diffusion processes and field polar-
izations that have been introduced here.

V. CONCLUSION

We have presented a general expression of the third-
order nonlinear polarization for an isotropic medium

modeled by homogeneously broadened two-level systems
having unequal permanent dipole moments and subject to
rotational diffusion. This theoretical mode1 has been used
to study a two-photon degenerate four-wave-mixing pro-
cess that is a consequence of the existence of the per-
manent dipole moments. The inhuence of these per-
manent dipole moments, as well as the ones of the rota-
tional diffusion and field polarizations, have been ana-
lyzed. This nonlinear process seems interesting for two
reasons. First, it must be possible to determine the value
of d by a four-wave-mixing experiment since the two-
photon degenerate four-wave-mixing process does not ex-
ist if the permanent dipole moments are equal or zero. If
we consider a phase-conjugation experiment with fields
having frequencies equal to half of the resonance frequen-
cy of the medium, the intensity of the conjugated wave

CO
~~
C

X7

(g

Kl

th

2

lg

Ql

E

FIG. 8. Influence of the rotational diffusion on the imaginary
part of the one-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p,b=1, I 2=10',
r ] = 1 d =5 ct)» = 10, and (a) D =0, (b) D =0.1, (c) D = 1, and
(d) D =10.

I

M00

CO/CgP»

FIG. 10. Influence of the field polarization on the imaginary
part of the two-photon degenerate four-wave-mixing nonlinear
response. The values of the parameters are p,b=1, I &=10',
I

&

= 1 d = 5 co» = 10, and D =0: (a) parallel polarizations; {b)
perpendicular polarizations.
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will be depending on the magnitude of d. The second
point of interest is the fact that this process occurs in a
spectral domain where the medium is transparent. This
can be very useful in phase-conjugation experiments
where it will be possible to take different thicknesses of
media. On the other hand, no thermal grating will ap-
pear in this process. The theoretical treatment which has
been developed in this paper can be used to study other
nonlinear processes. The analytical expressions show
clearly that the permanent dipole moment also has an
inhuence on the generation of the third harmonic and in

nondegenerate four-wave-mixing processes. These effects
are planned to be discussed elsewhere.
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