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Field™induced resonances in H2 dressed by an intense laser field are calculated in the electric-field

gauge (length gauge) in a fully coupled adiabatic electronic-field representation. Distinctions between di-

abatic and adiabatic resonance states are made. Adiabatic resonances are characterized in terms of
shape and Feshbach resonances.
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I. INTRODUCTION

The dynamics of molecules in intense fields (I~ 10'
W/cm ) must be described using nonperturbative
methods [1—5]. The dressed-molecule coupled-equation
method is such a nonperturbative approach that has been
used to describe molecular photodissociation [6—8] as
well as other multiphoton processes [9—11]. This ap-
proach consists of considering the molecule and quan-
tized radiation field together as a single conservative
dressed system [3,4]. An often-invoked electronic-field
basis for dressed systems is constructed from the direct
product of field-free electronic states and photon-number
states, defining the so-called diabatic electronic-field rep-
resentation [5—8]. The coupled equations derived using
this representation are of the same form as those obtained
from the application of the Floquet theorem to the time
evolution of a molecular system driven by a classical,
periodic laser field [8,12,13]. Since radiative interactions
are not included in the diabatic basis states and these in-
teractions become stronger with increasing field intensity,
a large number of coupled diabatic channels may be need-
ed to obtain converged results even for a simple two-
electronic-state problem such as the photodissociation of
H2+ [8,13].

The diabatic basis can be subjected to a unitary trans-
formation, dependent on nuclear coordinates, selected
such that the dressed electronic Hamiltonian, which in-
cludes radiative couplings, is diagonalized. This results
in the so-called adiabatic electronic-field basis, which
constitutes an alternate representation for the dressed
molecular system. In contrast with the diabatic coupled-
equation scheme, the adiabatic channels become more
decoupled with increasing field strength, suggesting that
a reduced number of channels may be sufhcient to obtain
the same degree of convergence in the results. No full
adiabatic coupled-equation calculations of photodissocia-
tion rates have been reported previously, even for Hz+,
because the field-induced nonadiabatic couplings were a
major computational difficulty [14—16]. An attempt to
exploit the decoupling that is characteristic of any adia-

batic representation has recently been made in a so-called
semiadiabatic treatment of H2+ [17]. In this approach,
two semiadiabatic potentials, each obtained from a par-
tial diagonalization of the full diabatic Hamiltonian ma-

trix, are used in an effective diabatic coupled-equation
scheme that was integrated using standard techniques.
Residual nonadiabatic couplings resulting from the par-
tial diagonalizations have simply been neglected. In a
more qualitative vein, the adiabatic electronic-field repre-
sentation has only been invoked to rationalize results ob-

tained in diabatic calculations [8,13,17,18]. Finally, re-
cent experimental observations of the dissociation of H2+
prepared in an intense laser field have also been analyzed
in terms of dressed molecular potential-energy surfaces
associated with the adiabatic representation [19,20] and
have motivated new extensive diabatic calculations of the
above-threshold ionization and dissociation of H2 [21].

In the present work, full adiabatic coupled-equation
calculations of laser-induced resonances in the photodis-
sociation of H2+ are performed using a generalized
Numerov integration algorithm recently developed to ex-
plicitly take into account nonadiabatic couplings [15,16].
For this ionic system, the transition dipole moment per-
sists even at infinite separation, and hence scattering
theory cannot be used to describe the photodissociation
as a half-collision process in the diabatic representation.
Thus, diabatic resonances reported by Chu [13] and He,
Atabek, and Cxiusti-Suzor [8] were located as the complex
eigenvalues of the complex dilatated Floquet Hamiltoni-
an. In contrast, in the adiabatic representation, the nona-
diabatic interactions vanish asymptotically and photodis-
sociation can be viewed as a half-collision process. Hence
adiabatic resonances reported in this work are obtained
from the scattering matrix resulting from adiabatic
coupled-equation integrations. The existence of funda-
mental differences between diabatic and adiabatic reso-
nances is demonstrated. Adiabatic resonances are ana-
lyzed in terms of shape and Feshbach resonances. At
high field intensities, overlap between these two types of
resonances is found to be responsible for the formation of
long-lived laser-induced adiabatic bound states.
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H„(R)=E,(R)l 1~, && l~, l +E„(R)l1~„&&io„l, (2)

where the states
I
lo & and llo. „& vary parametrically

with internuclear distance R,

II. DRESSED-MOLECULE MODEL
FOR THE PHOTODISSOCIATION OF H2+

A. Diabatic and adiabatic
electronic-field representations

The total Hamiltonian for a molecular system interact-
ing with a quantized radiation field is

&(R ) = f'~+8, i(R )+Sf+ V;„,(R ), (1)

where T~ is the nuclear kinetic-energy operator and 8f
is the Hamiltonian for the quantized radiation field. The
electronic Hamiltonian and the matter-field interaction
potential, H„(R) and V;„,(R), respectively, depend
parametrically on the internuclear distance R. In this
work, the photodissociation of H2 is studied as transi-
tions from bound states belonging to the X X+ ground
electronic manifold to dissociative ones of the A X„+

manifolds induced by a single-mode, monochromatic,
linearly polarized radiation field. Accordingly,

system. These are written as

I%'& = fdRQ [ys(R)l los &+y"„(R)llo „&]ln & IR&,

Iqj &
—=y [Iy"(R) & lcJ &+ I/"„(R) &llo„&]ln &, (8)

where n & are eigenstates of Hf with corresponding ei-
genvalue (n+ —,')fico. Using (7) or (8) in (6) gives the
infinite set of coupled equations for the nuclear ampli-
tudes y"„'(R)and y" (R):

[TN+E (R)+nh'co —E]ly"(R) &

= V, (R)[v'n +1 y„"+'(R)&+& Ig"„'(R)&], (9)

[T~+E„(R)+(n—1)Ace E]ly"„—'(R) &

V„s(R)[&n Ig g(R) & +&n —lip" (R) &] .

(10)

For the laser intensities under consideration in this work,
the square roots of the photon numbers in (9) and (10) are
all approximately equal to &n so that the radiative cou-
pling potential may be expressed using

Hf =fico(a a+ —,'),

V';„,(R)=[Vs„(R)lloyd && lo„l+H. c. ](a+a ),
with

(4)

V „(R)=
1/2

& lo-„Ip„(R)llo's & & .
2eoV

I=en%co/V,

Using the expression for the field intensity

(12)

V „(R)=
' 1/2

& lo„p,i(R)Ilo & e2' V
(5) V „(R)can be written in terms of intensity

expressed in SI units where eo is the permittivity constant
of a vacuum. The 8 and a are creation and annihilation
operators for the single-mode radiation field of frequency
co and polarization e in the quantized cavity of volume V,
and )u,,i(R) is the parametrically R-dependent transition
dipole moment operator. The solutions of the time-
independent Schrodinger equation

m(R)I+&=El' & (6)

determine the stationary states of the dressed molecular

Vg„(cm ') =5.85 x 10 [I(W/cm )]'~

The coupled equations (9) and (10) can be expressed in
matrix form:

[T +EI+ V«»(R)]Ldi»(R)=() (14)

where I is the identity matrix, V " (R) is the diabatic po-
tential matrix

Vdiab(R )

V „(R)

V~„(R)

V „(R)

V „(R)

V „(R)
F' "(R) Vs„(R )

(15)
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with

0 0

V„(R) 0 (16)
where

d
dR

+Q(R) + W' (R) X' (R)=0, (21)

(17)

I '~' is the two-dimensional matrix

Eg(R)+2ph'co V „(R)
F 'i'(R) =

Vz„(R ) E„(R) + (2p —1)iiicd

and the X d" (R) is a vector consisting of the diabatic nu-
clear states

Q(R) =2C(R)t C(R)d
dA

is the nonadiabatic coupling matrix and

MH d2

dR
W' (R)= fEI V' (R—)]+C(R)t C(R) .

(22)

(23)

X diab( R )—

IX""(R)&

Ixn+1(R ) &

lxs(R) &

Ix". '(R)&

Ix"„-'(R)&

IX,
"-'(R)

&

Ix"„-'(R)&

(18)

As the intensity increases, the nonadiabatic couplings in
the skew-symmetric matrix Q(R) and in the last term of
(23) decrease in magnitude and become less localized.
Thus, for a given sufficiently strong field intensity, the di-
mension of the matrix equation to be solved in the adia-
batic representation will be smaller than the dimension of
the corresponding diabatic matrix equation.

In the past, this adiabatic electronic-field representa-
tion has only been evoked in some discussions of molecu-
lar dynamics to qualitatively rationalize high-intensity re-
sults obtained by integration of diabatic coupled equa-
tions I8, 13,17,18]. The adiabatic-coupled-equation in-
tegrations were not done, or even attempted, because of

In principle, these matrices must be of infinite dimension.
The zeroth-order

I
1o s & I

n & and
I
1cr „& n —1 & states in

(9) and (10) are coupled by potential radiative couplings
and hence, they constitute a diabatic basis. The matrix
equations (14)—(18) have also been derived semiclassically
from considerations of the time-dependent Schrodinger
equation in a periodic field and the two-dimensional ma-
trix in (17) is exactly equivalent to a single Floquet block
in that formalism I8, 12,13]. As depicted by (15), the dia-
batic potential matrix consists of coupled Floquet blocks.
For weak fields, i.e., low intensities (I ~ 10' W/cm ) the
couplings between Floquet blocks can be neglected,
defining the rotating wave approximation (RWA), and a
single Floquet block will suffice to give converged results.
At higher intensities, an increased number of blocks is re-
quired to ensure convergence. This relationship between
intensity and the number of Floquet blocks is characteris-
tic of calculations in the diabatic electronic-field basis.

Alternatively, an electronic-field basis can be defined in
which the potential matrix is diagonal. This can be
achieved by subjecting X ""(R) to an orthogonal trans-
formation

500000

400000-

300000-

200000-

100000-

0-

-100000 .

-200000—

+ (n+1)%0&

+nrem

+ (n-1)4e

+ (n-2) W(o

+ (n-3) &(o

+ (n-4) &co

X' (R)=C(R)X "(R)
such that

V~d(R ) =C(R )t VdI»(R )C(R )

(19)

(20)

-300000-

-400000
0.0

I

1.0
I

2.0
I

3.0 4,0

+ (n-5) &co

„+(n-6)Wm

5.0 6.0

is diagonal. Figure 1 illustrates the adiabatic channel po-
tentials obtained from the diag onalization of a four-
Floquet-block diabatic potential matrix. In this figure,
and henceforth in this work, centrifugal terms obtained
from the angular expansion of the nuclear amplitudes are
implicitly included in the diabatic potentials. The result-
ing rotational state couplings are neglected and the radial
adiabatic matrix equation to be solved is

FICx. 1. Adiabatic potentials (in cm ') vs R (in a.u. ) obtained
from the diagonalization of an eight-channel diabatic potential
matrix constructed from the dressing of the X Xg and A X„2 2

states of H2+ by a field of wavelength A, equal to 1600 A and at
an intensity of 8.80X10' W/cm . The labels refer to the
dressed diabatic potentials.
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lim [E Ek(R)—]&0 .
g ~ DO

(24)

Conversely, channels that do not obey (24) are said to be
closed. In the dressed diabatic representation, all laser-
induced resonances are Feshbach resonances but in the
adiabatic representation not all resonances are Feshbach
type. Furthermore, adiabatic Feshbach resonances are
not generally the unitary equivalents of diabatic ones.

B. Diabatic and adiabatic Feshbach resonances

In Feshbach resonance theory, the partitioning of the
total state of the system l'p) into open- and closed-
channel components using orthogonal operators P and Q,
respectively [22,23],

le& =Pl+}+gle}, (25)

results in the coupled equations

[E P&(R )P ]P l
e &

—Pm(R )Qg I
~p &

=0,
[E—Q&(R)g]g le & Q&(R)PPl+ &

—=o .

(26)

(27)

The formal solution of (26) gives the open-channel wave
function

Ple) =l%')+G,',+gf]H, Ql+),
where henceforth

(28)

8pp =P&(R)P, Ape =P&(R)Q,
(29)

Age =QA(R)Q, Bgr, =Q&(R)P,
l% } is the solution of the uncoupled open channel equa-
tion

(E —H„)le'&=o,
and the Green's operator [24]

Gg~ [&]—= lim (E+ie Bp~)—
a~0+

(30)

(31)

is an energy-dependent functional of the Hamiltonian
&(R ). The corresponding closed-channel equation
defines the level operator

the lack of a straightforward algorithm for solving
differential equations coupled by kinetic terms such as
those represented in the matrix equation (21). The gen-
eralization of the Numerov integration formula reported
recently by Nguyen-Dang, Durocher, and Atabek [15],
henceforth called the NDDA algorithm, has been
developed for this purpose. With this method, the adia-
batic coupled equations (21) for the photodissociation of
H2+ have been integrated and the solutions have been
studied with emphasis placed on the analysis and
identification of laser-induced resonances. In the diabatic
and adiabatic representations, resonances arise from the
mixing of bound dressed states with those of the dissocia-
tive continua and are reflected by the strong asymptotic
energy dependence of the amplitudes associated with the
so-called open channels. In either representation, a given
channel is said to be open at an energy E if the channel
potential E„(R) obeys

Egg [A' ]:—Bgg +Pgp Gpp [&]Hpg,
which has eigenstates and eigenvalues

1'«[w] x, &=~,(E)lx, &,

&~ (E)=QJ.(E) ,'i—1—(E)

(32)

(33)

In general, the uncoupled open-channel wave function
l%' ) is assumed to be mildly energy dependent. Further-
more, if the coupling between the open- and closed-
channel wave functions is small, the resonance states and
their corresponding eigenvalues are also mildly energy
dependent. Hence the major energy variation of the
open-channel wave function about the position of a given
resonance is due to the denominator of the corresponding
term in the summation of (35); as the energy E ap-
proaches the position of the kth resonance, the lXk ) res-
onance state becomes the major component of the open-
channel wave function. In this isolated resonance ap-
proximation the open-channel wave function can be writ-
ten [22,23]

Pl+&=l4'&+ " ~ G,',+[&]B,~lx„)
(x„*lA'~,fe')

E ek

in a given neighborhood of the kth isolated resonance.
The energetically slowly varying j&k terms of the sum-
mation of (35) have been included in 4 ). According to
(36), in a given energy range, the abrupt variation of
Pl'p) signals the presence of a Feshbach resonance. This
assumes lt ) does not intrinsically exhibit such a reso-
nant behavior in that same energy range, which is the
case in the diabatic basis because the uncoupled open-
channel potentials are purely repulsive and cannot sup-
port resonance states; resonance states are created strictly
as a consequence of coupling between the open- and
closed-channel wave functions. Hence diabatic reso-
nances are purely Feshbach resonances. On the other
hand, in the adiabatic basis, the adiabatic uncoupled
open-channel wave function, the adiabatic counterpart of
lt ) in (36), is a mixture of diabatic open- and closed-
channel amplitudes induced by the radiative coupling.
Consequently, the adiabatic uncoupled open-channel po-
tential may support resonances of the type shape. As the
intensity increases, overlap between Feshbach and shape
resonances will occur in addition to overlap between pure
Feshbach resonances [this requires that, in the sum of
(35), more than a single term be taken into account].
Only overlap between pure Feshbach resonances can

that are parametrically energy dependent. Eigenstates of
E&&[&] are defined as Feshbach resonance states and the
real and imaginary parts of each eigenvalue define the po-
sition and width of the corresponding resonance, respec-
tively [22]. The open-channel wave function can be ex-
pressed in terms of a linear combination of these reso-
nance states as

(x,* B,le')
Pl%) =le')+g ' G,',+gf]P,~lx, ) .

j j
(35)
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occur in the diabatic basis. The onset of Feshbach reso-
nance overlap is also expected to occur differently in the
two bases because the adiabatic and diabatic non-
Hermitian level operators are not unitary equivalents, un-
like Hermitipn operators representing a given physical
observable in the two representations.

As an illustration, consider the two-channel problem
defined by the H2+ dressed-molecule Hamiltonian (1)
truncated to a single Floquet block so that the diabatic
electronic-field basis is restricted to the

I
1o s & I

n & and

I
1o „& I

n —1 & states, henceforth abbreviated as Ig, n & and
Iu, n —1&, respectively. The open- and closed-channel
projection operators are then

where

W+ (R)=—,'[Es(R)+E„(R)]
+—,'I [Es(R) E„—(R)] +4'„(R}]' (45)

[E—f'~ —W' (R)]Iy2 (R) &

d
2 B(R) + 8(R) Iy; (R) &,

2p dR dR
(46)

are the adiabatic potentials, the coupled equations (26}
and (27) become the adiabatic coupled equations

P=Iu, n —1&&u, n —1I, Q=Ig, n &&g, nI, (37)

and (26) and (27) yield the diabatic coupled equations (9)
and (10) identically provided the nuclear states are
defined by

2 8(R) + 8(R) Ig2 (R) &,
2p dR dR

Ig((p)(R) &
= &g n(u n 1)l+& (38) (47)

and the open- and closed-channel wave functions are
identified as

(39)

where

g2
Wy(R)= Wy (R)+ 8(R)

2p dR
(4g)

respectively. Therefore the open-channel solutions of the
diabatic coupled equations (9) and (10) are related to the
eigenstates of the diabatic level operator f&&[&]accord-
ing to (35). Hence the asymptotic behavior of these solu-
tions can be used to determine the eigenvalues of E&&Pf]
that correspond to the position and width of the diabatic
resonances.

In the adiabatic representation, the unitary transfor-
mation %,

% =cos8(R)(Q+P)

+sin8(R)(Iu, n —1&&g, n
I

—Ig, n &&u, n —1I),
(40)

where 8(R) is an angle of rotation, is implicitly associat-
ed with the rotation matrix C(R) of (19) and defines new
electronic-field basis vectors

I
1 & =A Ig, n & =cos8(R)Ig, n &+sin8(R)Iu, n —1&

(41)

I2&=AIu, n —1&=—sin6(R)Ig, n &+cosB(R)Iu, n —1& .

(42)

In this new basis, defining the open- and closed-channel
projection operators as

(43)

H„(R)+Sf+V,„,(R)= W' (R)P'+ W+d(R)Q', (44)

respectively, and selecting 8(R ) such that the
transformed dressed electronic-field Hamiltonian is diag-
onal,

and the adiabatic nuclear states are given by

Iy;(z)(R) &
= &g, n(u, n —1)IA tI+ &

=
& l(2)I'1'& . (49)

Just as the solutions of the diabatic coupled equations can
be expressed in terms of eigenstates of the level operator
I.&&[&] where &(R) is the Hamiltonian (1) with (2)—(5),
the solutions of the coupled equations (46) and (47) can be
expressed in terms of eigenstates of the level operator
L&.& [&]. The resonant behavior exhibited by these solu-
tions can be used to determine the position and width of
adiabatic Feshbach resonances.

The adiabatic level operator E«& [&] differs from
], which is the unitary transform of the diabatic

level operator X&&[Sf],&' being the image of gf' under
the unitary transformation represented by J7. Hence
there is no unitary relationship between the adiabatic and
diabatic level operators. Therefore, adiabatic and diabat-
ic Feshbach resonances are not unitary equivalents, al-
though physical observables such as branching ratios
must be invariant under the unitary transformation A.

III. COMPUTATIONAL ASPECTS

X [exp[ —a(R —R,q)] 2t;], i =g,u—(50)

where the subscripts g and u refer to the bound and disso-
ciative potentials, respectively. The values of the param-
eters are

A. Potentials and couplings

The electronic states X X+ and A X„+ involved in the
photodissociation of H2+ are represented by the model
potentials defined by Bunkin and Tugov [25]

Ei(R)=Doexp[ —a(R —R,q)]
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tg 1 0 t 1 1 1 Dp =2.7925 eV

a 0 72ap Req 2 Oap

The transition dipole moment in (13) is given by

(la, lp„(R)l los) e

(51)
dV' (R)=—,'[ V'd(R)Q(R) —Q(R) V' (R)]

+C~(R) "(R)C(R)
dR

(54)

is used to derive the off-diagonal elements of the Q matrix

p'(R, )
=p(R,q)+ [1—exp[ —ay(R —R, )]],

(52)

av"'b R
2 C~(R ) C(R )

dR
QV Vad Vad

JJ 11

(55)

where

p(R, )=1.07aoe, p'(R, )=0.396e,

y = —0.055 .
(53) dQ(R)-

d2
C(R) C(R) = —,'Q (R)+—

2 dR
(56)

Similarly, the second derivative of (20) gives the off-
diagonal elements of W' (R) as

The potentials (50) with parameters (51) and the dipole
moment (52) and (53) have been used by Chu [13]and He,
Atabek, and Giusti-Suzor [8] in their studies of the laser-
induced diabatic resonances of H2+.

The diabatic potential matrix V ""(R), constructed
from (15)—(17) using the potentials defined by (50) and
(51), is diagonalized to give the adiabatic potential matrix
(20). The rotation matrix C(R) can be used to calculate
the nonadiabatic couplings (22) and (23). However, in-

stead of differentiating C(R ) with respect to R numerical-

ly, the nonadiabatic coupling s have been calculated
semianalytically using Hellmann —Feynman-type expres-
sions. The R derivative of (20),

The nonadiabatic couplings calculated in this way are
more accurate and lead to better computational stability
and efficiency in the use of the NDDA algorithm than
those calculated from the numerical difFerentiation of
C(R).

B. Integration method

Using the NDDA algorithm to solve the adiabatic cou-
pled equations for the photodissociation of H2, the rna-
trix equation (21), along with (22) and (23), is transformed
into the three-point recurrence formula

—,'[D{R—h) '[I—
—,'hQ(R —h }]+D(R+h) ''[3I+ —76hQ(R +h)+ —,'h W' (R +h)]]X' {R+h)

—
—,
' [D(R h) '[3I——hQ(R —h) ,'h W' (—R—)+—,'h Q(R —h)W' (R)] .

+D(R +") [3I+hQ(R +h) ,'h W' (R) ——'h Q(R +h—) W—
' (R)]]X' (R)

+ '[D(R +h) '[—I+ ,'hQ(R +h)]+—D(R—h) '[3I——', hQ(R —h)+ —,'h W' (R —h)]]X' (R —h)=0,

(57)

where h is the integration step and

D(R +h ) =I+ —,'h Q(R )+—,
' hQ(R+h )

—
—,'h Q(R+h )Q(R) . (58)

The original three-point recurrence formula given in Ref.
[15] has been reformulated in this work for computation-
al efficiency to give (57) and (58). If the nonadiabatic cou-
pling Q(R) is zero, the NDDA integration formula (57)
reduces to the standard Numerov integration formula for
diabatic coupled equations. The error in the recurrence
relation is of sixth order with respect to the integration
stepsize h [15]. As noted in Ref. [15],care must be exer-
cised to properly cover regions where the nonadiabatic
couplings exhibit strong variations. Typically, these re-
gions are neighborhoods of avoided crossings whose

ranges increase with increasing diabatic coupling
strength, which, in the present context, corresponds to
increasing field intensity. Hence, in the neighborhood of
an avoided crossing, the stepsize h is reduced by a factor
of 2"d'" using the method described in Ref. [15]. The in-
tegration is more sensitive to this coverage than other pa-
rameters. The results presented in the next section have
converged with respect to all integration parameters.
Typical values for these parameters are given in Table I
for one-Floquet-block (two-channel) and two-Floquet-
block (four-channel) integrations with a laser wavelength
of 1600 A at an intermediate intensity of 1.3X10'
%'/cm .

The coupled equations were integrated starting from a
value of R close to zero, R b,g

=h, outward to a value of R
sufficiently large, R,„z, to ensure that the interchannel
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TABLE I. Sample integration parameters to be used in one- and two-Floquet-block calculations.
A, = 1600 A and I= 1.27 X 10' W/cm .

One block Two blocks

Number of channels
Number of open channels
Integration step —= h

Initial integration point = Rb g

Final integration point =—R,„d
Number of crossings
Crossing point—:R
Initial integration point

of crossing region—:R,
Final integration point

of crossing region R p

Value of ndiv (integration step
in crossing region is h/2" '")

Crossing point energy {above
minimum of bound state)

Crossing point = R
Initial integration point

of crossing region =—R„.
Final integration point

of cr ossing region: R p

Value of ndiv (integration step
in crossing region is h/2" '")

Crossing point energy (above
minimum of bound state)

2
1

2.5 X 10 a.u.
2.5 X 10 a.u.
5.8 a.u.
1

2.5822 a.u.

1.4722 a.u.

3.6472 a.u.

2676.8 cm

3
2.5X10 ' a.u.
2.5X10 ' a.u.
5.8 a.u.
2
2.5822 a.u.

1.4722 a.u.

3.6472 a.u.

2676.8 cm
1.0563 a.u.

1.0538 a.u.

1.0588 a.u.

21524.8 cm

couplings have attained values at least three orders of
magnitude smaller than their maxima at the avoided
crossings. Neglecting these small couplings in this
asymptotic region, the nuclear wave functions are fitted
to scattering boundary conditions. The resonance shifts
and widths reported in this work were obtained using
R,„d=5.8 a.u. They have been found to be stable with
respect to variations in R,„d, which, in certain test cases,
i.e., wavelengths of 1000 and 1600 A and an intensity of
1.41 X 10' W/cm, was varied up to 14 a.u. However,
calculations of branching ratios, which have not been at-
tempted in this work, will require the residual asymptotic
nonadiabatic couplings to be properly taken into account,
as these ratios are much more sensitive to the value of
R,„d than resonance positions and widths. The asymp-
totic analysis of the nuclear wave functions gives an
energy-dependent S matrix S(E) for the coupled adiabat-
ic problem. The determinant of S(E) can be expressed in
terms of a phase

trix S(E) to identify Feshbach resonances by the same

type of phase analysis using

det[S, (E)]=exp[2i[5(E)—& (E)]] (61)

IV. RESULTS

A. Interblock coupling e8ects

where go(E) is the phase associated with the determinant

of S (E). At intensities where no overlap between pure

shape and Feshbach resonances occurs, S „d(E) and S(E)
should possess a common set of resonances that are
necessarily of the Feshbach type. According to (59) and

(61), a given pure shape resonance, associated with an

abrupt variation in 50(E) and hence detected through

S 0(E), could only be observed in either S „d(E) or S(E)
but not in both. Overlap of Feshbach and shape reso-

nances is signaled by the deviation of S(E) resonances

from those associated with S „d(E).

det [S(E)]=exp [2i5(E)], (59)

(E ) S —1/2S (E)S
—1/2 (60)

will also be used in conjunction with the unreduced S ma-

whose sharp variation with respect to energy E signals
the presence of a resonance. Furthermore, the S matrix
associated with the uncoupled open-channel wave func-
tions, S o is also calculated and phase analyzed in the
same manner to identify pure shape resonances. A re-
duced S matrix for the coupled problem, defined as

Table II shows the effects of interblock coupling on the
position and width of the first resonance obtained using
the reduced S matrix S „d(E) of (60) for field intensities
ranging from 10" to 10'" W/cm and for the wavelength
A, equal to 1000, 1200, 1400, and 1600 A. Henceforth the
position of a resonance is given as the energy shift b,E rel-
ative to the U =0, J=1 rovibrational energy level of the
electronic ground state of H2+. These effects are revealed
by comparing the results of integrations using one, two,
and three Floquet blocks. For these wavelengths and at
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TABLE II. Comparison of the shift b,E and width I (in cm ) of the first adiabatic resonance calculated from the reduced S ma-
trix S „d(E) using one, two, and three Floquet blocks for wavelengths 1000, 1200, 1400, and 1600 A and for intensities up to 10'
W/cm . The shift AE represents the resonance position relative to the rovibrational (U =0, J= 1) level of the electronic ground state
of Hz+. x [y ] represents x X 1(Y.

I (W/cm )

Two channels
I /2 hE

Four channels
I /2 hE

Six channels
I /2 AE

1000 A 1.41[11]
4.08[11]
8.80[11]
1.27[12]
2.85[12]
5.08[12]
6.88 [12]
9.00[12]
1.41[13]
2.03[13]
3.17[13]
4.08[13]
8.80[13]
1.27[14]
2.00[14]

3.43
9.93

21.60
31.23
71.24

128.23
175.32
228.63
345.31
452.28
533.36
517.80
351.33
297.02
259.93

1.40
6.11

14.48
21.33
49.38
88.62

120.89
157.84
243.68
336.38
425.44
388.68

—444.72
—11S4.60
—2298.42

3.44
10.00
21.73
31.38
71.39

128.36
175.47
228.84
345.58
452.14
S30.66
513.33
345.88
294.29
269.80

1.40
6.11

14.48
21.33
49.37
88.58

120.82
157.72
243.34
335.47
421.87
382.08

—453.13
—1148.47
—2231.52

3.39
9.90

21.09
31.22
71.47

128.56
175.39
228.88
345.68
452.04
530.4
513.2

1.40
6.11

14.48
21.33
49.37
88.59

120.83
157.72
243 ~ 35
335.49
421.9
382.1

1200 A

1600 A

1.41[11]
4.08[11]
8.80[11]
1.27[12]
2.85[12]
5.08[12]
6.88[12]
9.00[12]
1.41[13]
2.03 [13 ]
3.17[13]
4.08[13]
8.80[13]

1.41[11]
4.08[ 11 ]
8.80[ 11 ]
1.27[12]
2.85[12]
5.08[12]
6.88[12]
9.00[12]
1.41[13]
2.03[13]
3.17[13]
4.08[13]

4.97
14.37
30.99
44.41
95.69

151.32
180.77
199.80
210.52
203.08
184.39
172.08
139.13

0.705
2.05
4.42
6.31

12.66
17.20
18.61
19.36
19.78
19.66
19.50
19.72

—2.32
—4.65
—8.87

—12.38
—27.30
—50.13
—71.51

—100.18
—189.37
—328.67
—617.66
—848.99

—1948.94

—4.06
—9.67

—19.63
—27.78
—61.08

—108.30
—148.39
—195.96
—313.78
—461.04
—734.22
—948.60

4.93
14.29
30.86
44.25
95.44

150.99
180.38
199.31
209.78
202.04
183.02
170.59
139.11

0.705
2.05
4.42
6.30

12.63
17.12
18.54
19.20
19.54
19.33
19.02
19.13

—2.32
—4.66
—8.88

—12.39
—27.34
—50.24
—71.72

—100.54
—190.27
—330.46
—620.88
—853.05

—1947.87

—4.02
—9.63

—19.60
—27.74
—61.03

—108.21
—148.26
—195.75
—313.32
—460.12
—732.35
—946.17

5.00
14.51
31.02
44.49
96.50

151.86
181.00
199.75
209.97
202. 13
183.2
170.6

0.705
2.02
4.42
6.30

12.63
17.12
18.54
19.20
19.54
19.33
19.0
19.2

—2.32
—4.66
—8.88

—12.39
—27.34
—50.25
—71.73

—100.55
—190.29
—330.44
—620.8
—852.9

—4.02
—9.63

—19.60
—27.74
—61.03

—108.21
—148.26
—195.75
—313.32
—460.12
—732.3
—946.2

1400 A 1.41[11]
4.08[11]
8.80[11]
1.27[12]
2.85[12]
5.08[12]
6.88[12)
9.00[ 12]
1.41 [13 ]
2.03[13]
3.17[13]
4.08[13]

2.58
7.44

15.95
22.67
45.88
64.01
69.85
71.89
70.84
67.86
63.62
61.79

—4.51
—10.95
—22.31
—31.53
—68.74

—120.89
—165.65
—219.99
—358.79
—533.64
—850.74

—1092.20

2.57
7.41

15.88
22.57
45.72
63.79
69.60
71.55
70.33
67.19
62.57
60.37

—4.51
—10.95
—22.31
—31.53
—68.75

—120.94
—165.73
—220. 13
—359.10
—534.06
—851.21

—1092.55
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low intensities, the position and width of this resonance
are found to be practically invariant with respect to the
inclusion of interblock couplings. At higher intensities,
the results of multi-Floquet-block calculations still agree
very closely with those obtained from single-Floquet-
block, two-channel calculations. Overall, single-Floquet-
block calculations are sufhcient to ensure convergence for
intensities up to =10' W/cm . In contrast, the diabatic
results reported by He, Atabek, and Giusti-Suzor [8] in
the same intensity range indicate that the first diabatic
resonance is strongly affected by the interblock couplings
with the resonance positions being more sensitive than
their corresponding widths. At intensities approaching
10' W/cm, these authors reported convergence with a
single-block diabatic integration. However, closer exam-
ination of their results reveals that differences between
their single-block and multiblock results are more sub-
stantial than the corresponding differences in this work,
especially in the case of resonance energy shifts. For
wavelengths up to 1600 A, multiblock effect come into
play at those crossing points that correspond to multi-
photon processes and are located at much higher energies
on the repulsive limbs of the potentials belonging to the
main Floquet block: the shorter the wavelengths, the
higher the left-hand, C, crossing points are in energy
when compared to the energy of the rightmost crossing
point, and hence they do not contribute significantly to
the calculation of the resonance energy. Even at high in-
tensities the dynamics is governed mainly by the nonadia-
batic couplings between the two adiabatic channels of
the main Floquet block. Hence for wavelengths up to
1600 A, the diagonalization of a single Floquet block (a
pure two-channel case) is suScient to ensure converged
results that correspond to single-photon processes. This
conclusion is supported by the results presented in Table
III, which gives the position and width of the first adia-
batic resonance calculated for A, equal to 1000, 1200, and
1600 A using strictly a single Floquet block compared to
those obtained by truncating a multiblock adiabatic set of
coupled equations to the two uppermost adiabatic chan-
nels.

For longer wavelengths, 1800 and 2000 A in Table IV,
the resonance widths are relatively insensitive to in-
clusion of multiphoton Floquet blocks, while the reso-
nance energies are strongly affected even at low intensi-
ties where the RWA, corresponding to a single-block cal-

250000

200000-

150000-

1000A

(a) 300000

M 200000

C3 100000-
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0.4035 0.4040
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-50000 I 1 I I I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

200

100-
a

0 I

1.3 1.7 2.1 2.5
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200000-

150000-

7$100000-

2000A

60000

40000-
Al

C3 20000-
. I

1.365 1.375

50000-

0-

-50000 I I I I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

80
60-
40-
20
0 I

1.8 2.9 4.0

FIG. 2. One-photon and three-photon avoided-crossing re-
gions in the adiabatic potentials (in cm ) vs R (in a.u. ) for (a)
A, =1000 A and (b) A, =2000 A at an intensity of 1.41X10"
W/cm . The nonadiabatic couplings (in cm '

) associated
with the avoided crossings between the adiabatic channels
shown in boxes i and ii are given in the corresponding insets.

culation, is known to be valid. This effect is stronger the
longer the wavelength. This low-intensity divergence of
the single- from the multiple-Floquet-block adiabatic cal-
culations can be explained with the help of Fig. 2. At
these wavelengths, the C avoided crossing that corre-
sponds to a three-photon absorption is at an energy low
enough to affect the adiabatic nuclear amplitudes g(R).
At low intensities, the nonadiabatic coupling at this C
avoided crossing is a 5-function-like singularity that may

TABLE III. Comparison of the shift hE and width I (in cm ) of the first S „,d(E) adiabatic reso-
nance of a three-Floquet-block calculation with those of a truncated, three-Floquet-block calculation
and those of a one-Floquet-block calculation at an intensity of 4.08 X 10' W/cm .

Diagonalization

Integration

1000 A

1200 A

1600 A

I /2
hE

I /2
hE

I /2
hE

Three blocks

Three blocks

513.2
382.1

170.6
—853.0

19.2
—946.2

Three blocks

One block

513.69
382.11

170.81
—852.89

19.16
—96.16

One block

One block

517.80
388.68

172.08
—848.99

19.72
—98.60
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cause numerical instabilities because such a singular cou-
pling cannot be properly taken into account by any in-
tegration algorithm. At higher intensities, the calcula-
tions of the resonance positions and widths have fully
converged because the peaks of the nonadiabatic cou-
plings corresponding to the C crossings have broadened
and become more tractable for integration. The
differences obtained at higher intensities between the
two-channel (one-Floquet-block) and four-channel (two-
Floquet-block) calculations reflect a true multiblock, i.e.,
counter-RWA, effect. The observation that the reso-

nance positions are more sensitive to interblock couplings
than their widths has also been observed by He, Atabek,
and Cxiusti-Suzor [8] for diabatic resonances.

The results in Tables II and IV are summarized in the
plots of b,E/I and 1 /I versus logI, Fig. 3, b,E and I be-

ing the energy shift and the width, respectively, of the
first adiabatic resonance obtained using the reduced 5
matrix. For all wavelengths considered, the variation of
resonance positions and widths is linear with intensity up
to approximately 10' W/cm . The plots for the corre-
sponding first diabatic resonance over the same intensity

TABLE IV. Comparison of the shift hE and width I (in cm ) of the first adiabatic resonance cal-

culated from the reduced S matrix S „,d(E) using one and two Floquet blocks for wavelengths 1800 and
0

2000 A and for intensities up to 10' W/cm .

I (W/cm )

Two channels
I /2 hE

Four channels
I /2 AE

1800 A

2000 A

1.41[11]
2.03[11]
4.08[11]
8.80[11j
1.27[12]
2.03[12j
2.85[12]
3.95[12]
5.08[12]
6.88[12]
9.00[ 12]
1.14[13]
1.27[13]
1.41[13j
1.70[13]
2.03[13]
2.38[13]
2.76[13]
3.17[13]
3.60[13]
4.08[13]

1.41[11]
2.03[11]
4.08[11]
8.80[11]
1.27[ 12]
2.03[12]
2.85[12]
3.95 [12]
5.08[12]
6.88[12]
9.00[12]
1.14[13]
1.27 [13 ]
1.41[13]
1.70[13]
2.03[13]
2.38[13]
2.76[13]
3.17[13]
3.60[13]
4.08[13]

0.125
0.181
0.366
0.801
1 ~ 15
1.82
2.42
3.04
3.47
3.90
4.22
4.47
4.58
4.68
4.86
5.03
5.18
5.32
5.46
5.61
5.78

0.0161
0.0235
0.0477
0.106
0.155
0.254
0.3S6
0.479
0.581
0.704
0.805
0.896
0.940
0.983
1.07
1.16
1.25
1.35
1.45
1.55
1.66

—3.28
—4.24
—7.43

—14.81
—20.87
—32.90
—45.82
—63.38
—81.28

—111.15
—146.32
—187.02
—209.51
—233.45
—285.79
—344.26
—409.02
—480.24
—558.03
—642.43
—733.43

—2.82
—3 ~ 58
—6.10

—11.93
—16.72
—26.21
—36.39
—50.20
—64.21
—87.43

—114.56
—145.75
—162.92
—181.12
—221.03
—265.55
—314.98
—369.58
—429.60
—495 ~ 32
—566.95

0.126
0.181
0.367
0.803
1.16
1.82
2.42
3.03
3.45
3.88
4.17
4.41
4.51
4.60
4.76
4.90
5.03
5.15
5.26
5.38
5.51

0.0171
0.0237
0.0503
0.112
0.163
0.266
0.372
0.497
0.600
0.723
0.823
0.908
0.949
0.987
1.07
1.15
1.23
1.31
1.41
1.49
1.59

—1.84
—2.80
—5.99

—13.39
—19.45
—31.50
—44.43
—61.99
—79.89

—109.73
—144.85
—185.43
—207.84
—231.68
—283.76
—341.84
—406.09
—476.65
—553.61
—637.03
—726.89

14.41
13.63
11.08
S.15
0.290

—9.35
—19.68
—33.68
—47.89
—71.42
—98 ~ 88

—130.40
—147.74
—166.17
—206.34
—251, 12
—300.73
—355.40
—415.39
—480.89
—552.15
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range can be found in Ref. [8]. The relative ordering of
the curves with respect to wavelengths is the same as in
the diabatic case but the positions and widths of the reso-
nance differ; the diabatic and adiabatic resonances are
not unitary equivalents.

B. Adiabatic Feshbach and shape resonances

The results presented in the previous section were ob-
tained by analyzing the reduced S matrix S „d(E) and

4.0

have served to delineate multiblock effects in the adiabat-
ic representation. For field intensities ~ 10' W/cm, in-
tensities at which these effects are negligible, single-
Floquet-block integrations have been performed to iden-
tify higher adiabatic resonances in S „,d(E) as well as res-
onances in the unreduced S matrix S(E) and the uncou-
pled (open-channel) S matrix S o.

As discussed previously, in the adiabatic representation
So can support resonances of the type shape. It is to be
expected that these resonances will interfere with the adi-
abatic Feshbach resonances at high intensities. Because
of the possibility of overlap between the shape and Fesh-
bach resonances, care must be exercised when classifying
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FIG. 3. Variation of (a) I /2I and (b) AE/I (in 10 "cm~)
versus logI for A, equal to 1000 A ( ), 1200 A (E ), 1400 A (0),
1600 A ( X ), 1800 A (f), and 2000 A (+) calculated using two
Floquet blocks. In (a), the 1800-A results have been multiplied
by 10 and the 2000-A results have been multiplied by 100. In
(b) the two-channel results for 1800 A ( A ) and 2000 A (0) have
been included.
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FIG. 4. Plots of (a) I /2 and (b) AE (in cm ') vs logl for the
first (0) S „d(E) resonance, the second (4) S „d(E) resonance,
the first S 0 (0) resonance, and the first ( X ) S(E) resonance
calculated using a single Floquet block for k equal to 1200 A.



5852 T. T. NGUYEN-DANG AND S. MANOLI

TABLE V. Shifts b E and widths I (in cm ') of resonances calculated using one Floquet block and the unreduced S matrix S(E )

for the wavelengths 1000, 1200, 1400, and 1600 A and for intensities up to 10' W/cm .

S(E)
I (W/cm )

1.41[11]
2.03[11]
4.08[11]
8.80[11]
1.27[12]
2.03[12]
2.85[12]
3.95[12]
5.08[12]
6.88[12]
9.00[ 12]
1.14[ 13 ]
1.27[13]
1.41 [13 ]
1.70[13]
2.03[ j3]
2.38[13]
2.76[13]
3.17[13]
3.60[13]
4.08[ 13 ]

I /2

3.42
4.92
9.88

21.34
30.71
49.22
68.99
95.70

122.73
167.56
220.26
282.02
316.94
355.16
445.49

1000 A

1.40
2.50
6.11

14.48
21.33
34.89
49.38
68.93
88.65

121.00
158.17
199.97
222.50
246.05
295.83

I /2

4.95
7.12

14.21
30.34
43.25
68.06
93.56

126.52
158.25
207.58
260.92
317.80
347.54
378.19
442.52
511.89
588.54
677.39
800.03

1200 A

—2.32
—2.85
—4.65
—8.87

—12.38
—19.45
—27.18
—37.90
—48.97
—67.65
—89.77

—115.29
—129.30
—144.09
—175.92
—210.43
—247.22
—285.79
—325.67

I /2

2.57
3.70
7.39

15.87
22.71
36.02
49.94
68.30
86.42

115.47
148.17
184.51
204. 11
224.71
269.15
318.58
374.27
438.76
519.43

1400 A

—4.51
—6.01

—10.95
—22.31
—31.52
—49.53
—68.47
—93.56

—118.36
—158.06
—202.35
—250.76
—276.36
—302.81
—358.02
—415.92
—476.07
—538.01
—601.29

I /2

0.704
1.02
2.05
4.48
6.50

10.60
15.10
21.40
27.99
39.30
53.04
69.46
78.75
88.81

111.35
137.39
167.32
201.61
240.98
286.51
340.34

1600 A

—4.06
—5.36
—9.67

—19.63
—27.77
—43.84
—60.95
—83.93

—106.99
—144.59
—187.47
—235.36
—126.10
—287.96
—344.91
—405.84
—470.33
—537.99
—608.40
—681.14
—755.82

resonances obtained from adiabatic S-matrix analysis.
0

For wavelengths up to 1600 A, the results of two-channel
calculations of the first resonances in the unreduced S(E)
and the uncoupled S 0 are given in Tables V and VI, re-
spectively, and the resonances found at higher energies
through the phase analysis of S „d(E) are given in Table

VII for A, equal to 1000 A and in Table VIII for A, equal
to 1200, 1400, and 1600 A. At low intensities, the first
resonance in S(E) (Table V) coincides with the first reso-
nance in S „d(E) (Table II), while the first shape reso-
nance in S 0 is found at a much higher energy (Table VI).
This indicates that no overlap occurs at low intensities.

1600 A1400 ASo
I (W/cm ) I /2I'/2 I /2 I /2

TABLE VI. Shifts AE and widths I (in cm ') of resonances calculated using one Floquet block and the uncoupled S matrix S 0

for the wavelengths 1000, 1200, 1400, and 1600 A and for intensities up to 10' W/cm .

1000 A 1200 A

1.41[11]
2.03[11]
4.08[ 11 ]
8.80[ 11 ]
1.27[ 12]
2.03[12]
2.85[12]
3.95[12]
5.08[12]
6.88[12]
9.00[ 12]
1.14[13]
1.27[13]
1.41[ 13 ]
1.70[ 13 ]
2.03[13]
2.38[ 13 ]
2.76[ 13 ]
3.17[13]
3.60[ 13 ]
4.08[ 13 ]

17.29
24.30
45.74
88.88

119.66
172.72
221.61
279.21
330.66
405.52
482.06
560.71
601.04
642. 18
727.43
817.79
915.14

1022.54
1146.22
1309.72

3755.30
3723.91
3647.98
3534.06
3467.37
3367.17
3285.28
3197.28
3124.41
3025.83
2932.59
2843.70
2800.67
2758.50
2676.51
2597.47
2521.25
2447.81
2377.23
2309.62

10.62
14.83
27.59
52.94
70.97

102.19
131.31
166.21
197.98
245.34
295.14
347.69
375.14
403.48
463.18
527.77
598.78
678.78
773.50
914.23

1321.85
1303.04
1257.62
1189.06
1148.32
1085.71
1032.82
973.81
922.99
851.09
779.52
707.98
672.17
636.32
564.57
492.80
421.18
349.93
279.26
209.47

5.30
7.34

13.46
25.48
34.06
49.14
63.57
81.42
98.27

124.44
153.28
185.06
202. 15
220.10
258.77
301.60
349.30
402.96
464.42
537.71
642.99

415.57
405.60
381.31
343.65
320.40
282.95
249.44
209.85
173.83
119.89
62.92
2.96

—28.09
—59.82

—125.18
—192.81
—262.37
—333.49
—405.78
—478.84
—552.28

2.00
2.74
4.90
9.07

12.03
17.31
22.52
29.22
35.85
46.73
59.55
74.59
83.04
92.16

112.57
136.14
163.23
194.27
229.78
270.52
317.65

110.31
105.69
94.15
75.09
62.46
40.67
19.70

—6.70
—32.10
—73.23

—116.98
—166.32
—192.68
—220. 12
—278.18
—340.22
—405.90
—474.87
—546.72
—621.07
—697.52
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TABLE VII. Shifts AE and widths I (in cm ) of three upper adiabatic resonances calculated us-
0

ing one Floquet block and the reduced S matrix S „d(E) for X=1000 A and for intensities up to 10'
W/cm .

I(W/cm )

Second resonance
I"/2 bE

Third resonance
I /2 AE

Fourth resonance
I /2 AE

1.41 [ 11]
2.03[11]
4.08[11]
8.80[11]
1.27[12]
2.03[12]
2.85[12]
3.95[12]
5.08[12]
6.88[12]
9.00[12]
1.14[13]
1.27[13]
1.41[13]
1.70[13]
2.03[13]
2.38[13]
2.76[13]
3.17[13]
3.60[13]
4.08[13]

93.90
60.16
33.70
22.35
15.13
11.37
8.25
6.78
6.53
6.82
7.41
9.54

12.87
16.81
19.95
20.37
17.00
10.83

1365.70
1389.91
1418.08
1438.41
1459.49
1476.60
1498.75
1517.36
1531.61
1537.03
1541.38
1547.40
1550.98
1553.75
1557.87
1566.61
1584.38
1615.50

1.65
2.37
4.75

10.20
14.58
22.95
31.37
41.69
50.76
62.82
73.25
82.19
86.26
90.13
97.25

103.14
106.70
106.51
101.43
91.34
77.42

2234.91
2234.92
2234.96
2235.01
2235.00
2234.89
2234.61
2233.98
2233.07
2231.00
2227.89
2223.76
2221.40
2218.94
2214.13
2210.50
2209.88
2214.76
2227.97
2251.84
2287.68

17.38
24.48
46.36
91.07

123.32
178.75
227.53
276.74
306.74
320.23
303.59
273.97
259.42
246.46
226.41
212.75
202.98
194.19
183.43
168.57
149.45

3755.30
3723.91
3647.98
3534.06
3467.38
3367.28
3285.71
3198.96
3129.09
3042.29
2978.94
2948 ~ 13
2945.73
2951.26
2981.94
3032.04
3093.93
3160.87
3226.64
3285.51
3332.82

Hence at these intensities, the resonances presented and
discussed in the previous section, Tables II, III, and IV,
can be identified as true adiabatic Feshbach resonances.
At higher intensities, the position and width of the first
$(E) resonance deviates strongly from those of the first

S „d(E) resonance, indicating significant resonance over-
lap. Perusal of the first S 0 resonance data, Table VI, re-
veals a cornrnon trend for the four wavelengths under
consideration: at high intensities, the position of the
shape resonance is lowered and its width increases

TABLE VIII. Shifts AE and widths I (in cm ') of the adiabatic upper resonances calculated using
one Floquet block and the reduced S matrix S „d(E) for the wavelengths 1200, 1400, and 1600 A and
for intensities up to 10"W/cm .

I (W/cm )

1.41[11]
2.03[11]
4.08[11]
8.80[11]
1.27[ I2]
2.03[12]
2.85[12]
3.95[12]
5.08[12]
6.88[ 12]
9.00[12]
1.14[13]
1.27[13]
1.41[ 13 ]
1.70[13]
2.03[13]
2.38[13]
2.76[13]
3.17[13]
3.60[13]
4.08[13]

I /2

10.68
14.95
27.98
54.22
72.99

105.07
133.41
163.30
184.86
205.29
213.11
211.12
207.70
203.25
192.47
180.26
167.13
153.26
138~ 83
124.10
109.42

1200 A

1321.84
1303.04
1257.62
1189.06
1148.33
1085.77
1033.04
974.57
924.89
856.89
794.00
738.27
713.50
690.80
651.11
617~ 58
588.27
561.31
535.15
508.55
480.59

r/2

5.32
7.38

13.57
25.68
34.05
47.48
57.82
66.40
70.64
72.13
70.94
68.37
67.05
65.32
61.97
58.37
54.50
50.41
46.15
41.77
37.35

1400 A

415.57
405.60
381.31
343.66
320.42
283.08
249.91
211.37
177.43
129.59
83.48
39.24
17.65

—3.72
—46.14
—88.61

—131.59
—175.39
—220.24
—266.33
—313.79

I /2

2.00
2.75
4.91
8.99

11.69
15.74
18.41
20.12
20.60
20.40
19.92
19.44
19.21
18.99
18.51
17.99
17.39
16.69
15.88
14.94
13.89

1600 A

110.31
105.69
94.15
75.09
62.47
40.76
20.04

—5.62
—29.59
—65.89

—104.44
—145.34
—166.71
—188.71
—234.56
—282.82
—333.36
—386.03
—440.68
—497.17
—555.39
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significantly. These effects may become sufticiently
strong to create an effective overlap between the first
shape resonance and the lower-lying first Feshbach reso-
nance. Furthermore, a higher-energy resonance in
S „d(E), Tables VII and VIII, coincides with the first S 0
resonance at low intensities, indicating that this reso-
nance is initially a pure shape resonance. At higher in-
tensities it deviates from the pure S o shape resonance,
which again rejects overlap between the shape and Fesh-
bach resonances. The 1200-, 1400-, and 1600-A results in
Tables II and VIII indicate that the overlap involves only

the first Feshbach resonance. However, the results for A,

equal to 1000 A in Table VII suggest that two additional
Feshbach resonances, found at higher energies, strongly
overlap with the first shape resonance associated with S o,
while the first Feshbach resonance is only remotely
aff'ected by this shape resonance (Table II). Note the
presence of a minimum in the variation of the width of
the 1000-A second resonance with respect to intensity
(Table VII). This stabilization of the second adiabatic
Feshbach resonance denotes the formation of a long-
lived, quasi-bound adiabatic state as a consequence of res-
onance overlap. For other wavelengths (Table VIII), as

700
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400—

C4
300-

200—

100—

0
11.0

600

400—

1 1.5
I I I

12.0 12.5 13.0
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1400A

I

13.5 14.0

350

300—
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200—
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100—

50-

0 AcM=-
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i60OA

I I
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log„l
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I
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-600-
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-1000— -800—
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11.0

i

1 1.5
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12.0 12.5 13.0
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I

13.5 14.0 -1000
1 1.0

I

1 1.5
I I I

12.0 12.5 13.0

log~0 l

I

13.5 14.0

FIG. 5. Plots of (a) I /2 and (b) hE (in cm ') vs logI for the
first ( ) S „d(E) resonance, the second (0) S „d(E) resonance,
the first So (0) resonance, and the first ( X ) S(E) resonance
calculated using a single Floquet block for A, equal to 1400 A.

FIG. 6. Plots of (a) I /2 and (b) AE (in cm ') vs logI for the
first (0) S„,d(E) resonance, the second (A) S „d(E) resonance,
the first S o (Q) resonance, and the first ( X ) S(E) resonance
calculated using a single Floquet block for A, equal to 1600 A.



LASER-INDUCED RESONANCES AND PHOTODISSOCIATION. . . 5855

2p dR
(62)

1400

1200-

well as for the third and fourth 1000-A adiabatic reso-
nances in Table VII, the decrease in magnitude of the
width with respect to increasing intensity indicates that
similar stabilizations also occur at yet higher intensities.
The behavior of the shape and Feshbach resonances dis-
cussed above at high field intensities is summarized in
Figs. 4, 5, and 6 for A, equal to 1200, 1400, and 1600 A,
respectively, and in Fig. 7 for X equal to 1000 A. It is in-
teresting to note that for A, equal to 1000 A, the uncou-
pled open-channel wave function supports shape reso-
nances only because W' (R) of (45) contains a potential
well created by including the diagonal correction term

T 2

V. CONCLUSIONS

The distinction between diabatic and adiabatic reso-
nances has been demonstrated formally, i.e., the none-
quivalence of E& & [&] and E&&PF] shown in Sec. II.B.

100000

95000—

2.p3 x )0 V//cM

I'a)

90000—

[see (48)]. This effect is depicted in Fig. 8. The field-
induced tunneling barrier described by (62) varies in-
versely with field intensity I, and hence the first shape
resonance is expected to be lowered and to broaden as I
increases. This is observed in all cases.
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FICz. 7. Plots of (a) I /2 and (b) AE(in cm ') vs logI for the
first S 0( X ) resonance as well as the second ( ), third (4 ), and
fourth (0) S „d(E) resonances calculated using a single Floquet
block for A, equal to 1000 A.

FIG. 8. Plots of 8'+(R) (in cm ') vs R (in a.u. ) calculated
using a single Floquet block with A, equal to 1000 A for intensi-
ties of (a) 2.03X10"W/cm and (b) 4.08X10' W/cm showing
the variation of the height and shape of the nonadiabatic tunnel-

ing barrier at the avoided crossing with respect to intensity.
The horizontal line represents the position of the first S „d reso-
nance.
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Physically, this distinction is reAected by the role played
by the resonance width in the diabatic and adiabatic rep-
resentations in the low- and high-intensity regimes, re-
spectively. At low intensities, in the so-called Markovian
regime [26], the diabatic resonance width is a direct mea-
sure of the photodissociation rate. As the intensity is in-
creased, the resonance states should be properly inter-
preted as intermediates through which the system tran-
sits towards a final dissociative state [9]: no single diabat-
ic resonance width is a direct measure of the photodisso-
ciation rate. Hence the diabatic representation is ap-
propriate for the low-intensity regime. On the other
hand, the adiabatic resonances exhibit the opposite be-
havior with respect to intensity and represent physical
dressed states only at high intensities. At low intensities,
the strong nonadiabatic couplings prevent the direct asso-
ciation of an adiabatic resonance width with a photodis-
sociation rate via the usual perturbative arguments.

In spite of these formal and physical distinctions, nu-
merical coincidences of diabatic and adiabatic resonances
must occur when radiative coupling potentials in the dia-
batic representation vanish asymptotically. Such is not
the case in the present problem, where the diabatic radia-

tive interaction described in the so-called electric-field
gauge [27] involves an asymptotically divergent transition
dipole moment. Hence this explains the numerical
differences between the diabatic and adiabatic resonances
observed in Sec. IV. The same problem recast in the ra-
diation field gauge will involve radiative interactions that
vanish asymptotically as shown in Ref. [17]. Consequent-
ly, coincidences of diabatic and adiabatic resonances are
expected to occur in this gauge. This behavior is the ob-
ject of current investigations.
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