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Methods are presented that allow numerical calculations of the friction and momentum diffusion
coefficients for atomic motion in laser fields with periodicity in one, two, and three dimensions. Polar-
ization gradients in the fields lead to increased friction on atoms with a Zeeman sublevel structure, and
new features arising in the cases of motion in two and three dimensions are discussed. There is a marked
position dependence of the calculated quantities, and the consequence for the forces on atoms following
specified trajectories is studied. Temperatures determined from the position-averaged friction and
diffusion coefficients scale with the laser power divided by the frequency detuning, except in some special
configurations. Of relevance for experiments on cooling, the relative merits of four different laser

configurations in three dimensions are studied.

PACS number(s): 32.80.Pj, 42.50. —p, 42.60.—v

I. INTRODUCTION

The modification of atomic motion through interaction
with a laser field has been an active field of research dur-
ing the recent years [1]. One of the main interests is
directed towards atomic momentum spread reduction,
laser cooling, which has become a powerful tool in the
preparation and the maintenance of improved conditions
for atomic physics experiments.

The initial proposal for laser cooling [2] was based on
the Doppler effect. For a moving two-level atom, this
effect implies a difference between photoabsorption rates
from different plane-traveling-wave fields with the same
frequency in the laboratory. With lasers tuned below the
atomic transition frequency, the atom absorbs more pho-
tons from laser beams propagating opposite to its motion
than from the others and a net force results, linear in ve-
locity at low velocities. The friction coefficient is propor-
tional to laser power in not-too-strong fields, and so is the
diffusion coefficient, characteristic of heating caused by
the stochastic nature of spontaneous emission processes.
Steady-state velocity distributions not far from thermal
ones result from the competition between friction and
diffusion, and the lowest achievable temperatures are lim-
ited by the natural width of the excited atomic state (the
Doppler limit) and are independent of the light intensity.

After experiments reported in 1988 [3], it has now
several times been demonstrated that the Doppler limit is
not the lower limit of laser cooling. The theoretical ex-
planation was given by Dalibard et al. [4] and Ungar
et al. [5], who presented detailed studies of two one-
dimensional cases. Although the behavior of the friction
coefficients and the diffusion coefficients is very different
in the two situations, the resulting temperatures turn out
to have the same dependence on field parameters, i.e.,
proportional to laser power divided by detuning. This is
also the field dependence observed in experiments [17].
The experimental results are for cooling in three dimen-
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sions, and in analogy to the simple one-dimensional cases
studied, the low temperatures observed are ascribed to
effects of polarization gradients in the field and the ex-
istence of several Zeeman sublevels in the lower atomic
state. It is the purpose of this paper to demonstrate
quantitatively that such effects are present also in two
and three dimensions, and to identify the critical parame-
ters in the cooling process.

In Sec. II, the one-dimensional cases are briefly
presented, since they become useful in the interpretation
of the numerical results in two and in three dimensions.
The methods for calculation of the friction and diffusion
coefficients for two-level atoms with general Zeeman sub-
level structures (transition j,-j, ), moving in general field
configurations, are presented in Sec. III. The step from
one to several dimensions introduces new properties, and
some of these are discussed in Sec. IV in relation to a
laser field varying in two dimensions. Some of the
features were investigated recently in connection with the
velocity-dependent force on a two-state atom in a partic-
ularly simple field [6]. Even more pronounced effects ap-
pear here, when cooling in fields with polarization gra-
dients is considered. Finally, in Sec. V, numerical results
of relevance for three-dimensional optical molasses are
given. Friction and diffusion coefficients for atoms with a
J¢=1 to j,=2 transition interacting with four charac-
teristic laser configurations are calculated.

II. POLARIZATION-GRADIENT
COOLING MECHANISMS

The limiting temperature obtainable by laser cooling
appears as the ratio between the diffusion and the friction
coefficients, and this ratio is by the fluctuation-dissipation
theorem proportional to the internal relaxation rate of
the atom [7]. For two-state atoms the rate is the decay
rate of the laser excited state I', and one arrives at
kinetic-energy distributions with widths on the order of
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the natural linewidth of the atomic transition. In the ex-
periments mentioned above, however, the atoms have
several Zeeman sublevels in the lower state (which we for
simplicity shall call the ground state, although it may be
an excited metastable state of the atom), and in weak
fields lower internal-relaxation rates are found for redis-
tribution of population among these states. Such a redis-
tribution is important if the field possesses a position-
dependent polarization, and in cooling experiments in
three dimensions polarization gradients are unavoidable.

The role of a low relaxation rate is to give the state of a
moving atom a significant delay or “lag” compared to
that of an atom at rest at the same position, and thereby
to increase the sensitivity of the internal state to atomic
motion. Changes in the ground state can only occur
through interactions with the laser, and the lag therefore
becomes inversely proportional to light intensity in weak
fields. Since the position-dependent mean force for a
given population of the ground states is proportional to
light intensity, an intensity-independent contribution is
obtained for moving atoms. Unlike in the case of
Doppler cooling, we thus get a friction coefficient in-
dependent of light intensity. As the intensity goes to
zero, however, the velocity range over which the friction
force applies diminishes. Two one-dimensional cases
have been investigated in detail [4,5], in which the physi-
cal mechanisms responsible for the friction have been
pointed out. These mechanisms will now be briefly re-
viewed.

A. Unbalanced radiation pressure, the o *-o ~ configuration

The first mechanism is one in which a very low atomic
velocity causes a difference between the rates of photoab-
sorption from different plane waves which, in contrast to
the Doppler mechanism, is not infinitesimal in field inten-
sity. Such a selectivity has been suggested only for one
particular laser configuration with two counterpropagat-
ing plane waves of opposite circular polarization o -0 ~,
and it only works for atoms with a transition with
Je=Jgt1, jy=1. The laser field is linearly polarized at
all points in space, but with a position-dependent direc-
tion, and even a very low atomic velocity leads to an
atomic orientation with respect to the axis of light propa-
gation in the ground state, i.e., as a result of atomic
motion, the ground-state population is transferred to-
wards the m=j, or the m =—j, state. The oriented
atom has a finite difference between the rates of absorp-
tion from the two waves; cf. the Clebsch-Gordan
coefficients appearing in the coupling of different
ground-excited state pairs. In the case of the j§=1 to
Jj. =2 transition, the rates for absorption of a o™ and a
o~ photon by an atom nearly at rest in the m=1 ground
state differ by a factor of 6. A treatment including the
ground-state coherences gives the friction coefficient in
the 1—2 transition at low field strengths [4]

_120 T% K
17 572+482

Here, & is the frequency detuning of the field, T is the
natural width, and k is the wavenumber of the transition.

(1)
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Note that the expression does not involve the strength of
the fields.

Momentum diffusion in this configuration presents
some interesting features discussed elsewhere [8]; the re-
sult for atoms at rest is independent of position and in
weak fields reads [4,8]
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which, together with the friction coefficient, leads to the
expression for the temperature
i

. (3)
18]
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In Egs. (2) and (3) we have introduced the saturation pa-
rameter s and the Rabi frequency « for one of the travel-
ing waves interacting with the atom for convenient pa-
rametrization of the field strength. The definitions of
these quantities will be given in Sec. III. The result (3)
favors weak fields and large detunings, for which the
term in parentheses reduces to its initial constant.

Full quantum calculations on this configuration have
shown distributions far from thermal ones [9], in agree-
ment with calculated velocity dependences of the force
and the diffusion coefficient D [8]. We shall come back to
these complications in the concluding remarks.

B. Multipotential motion, the Sisyphus effect

A completely different cooling mechanism is the
Sisyphus effect, analogous to the one occurring in stimu-
lated molasses [10]. In weak fields, a spatial modulation
of the light shifts in the ground state constitutes poten-
tials for the atomic motion that depend upon the internal
atomic state. Now, due to population transfer between
ground states an atom mainly undergoes potential rises
during passage of a period of the field, and there is a net
transfer of kinetic into potential (atom plus field) energy.
The variations of the potentials, the light shifts, are pro-
portional to the detuning times the saturation parameter,
but the weakness of the associated dipole force is com-
pensated by the redistribution times, which are inversely
proportional to saturation, and a finite friction appears.
The friction depends crucially upon the mechanism of
population transfer among the ground states. The fol-
lowing mechanisms can be identified: optical pumping,
decay into uncoupled states and ‘“nonadiabatic transi-
tions.”

1. Pumping into states
with large light-induced energy shifts

The simplest example obtains in one dimension for two
counterpropagating waves with perpendicular linear po-
larizations [the linear perpendicular to linear (LPL)
configuration] [4,5]. The field changes between linear and
circular polarization along the axis of light propagation,
with alternating direction of the linear polarization and
sense of rotation of the circular polarization. The two
ground states of the j, = to j, =3 transition experience
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harmonically varying light shifts with maxima at posi-
tions with circular polarization. In points with o * polar-
ization, say, population is pumped from the m =—1
ground state which has a potential maximum into the
m =1 ground state with a potential-energy minimum,
when the frequency detuning is negative. As a result, a
moving atom experiences a loss of kinetic energy. The
friction coefficient at infinitesimal field intensity is given
by a very simple expression
202
a=3 Fﬁk . (4)
A diffusion coefficient representing fluctuations in the di-
pole force on the atom has been derived [4] and reads for
large detunings

2
(k2 (s)

D~ I“s

3
4

For high detunings, the temperatures derived from Egs.
(4) and (5) are comparable to the ones derived in the o * -
o case, in spite of the large differences between the fric-
tion and diffusion coefficients,
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For general j, to j,=j,+1 transitions the effects of
coherences between ground states lead to a more compli-
cated dependence of the friction coefficient on detuning,
as shown in Fig. 1 for the 12 transition. However, in
the limit of large detuning the result approaches Eq. (4);
with higher angular momenta the proportionality with
detuning remains, but with an increased coefficient. The
curves were calculated by the methods to be presented in
Sec. IIT A and III C.
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FIG. 1. Friction coefficient a for cooling in a 1D LPL
configuration as a function of laser frequency detuning. The
lower curve is the linear result, Eq. (4) for a j,=1/2 to j,=3/2
transition. The upper curve is the result for a j,=1 to j, =2
transition, calculated by the methods in Secs. III A and IIIC.
The friction coefficient is an odd function of detuning.
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2. Pumping into states
with smaller or no light-induced energy shifts

The picture changes when j, =j,. With j, an integer,
the atom has a nonabsorbing ground state everywhere,
and the friction coefficient vanishes. If j, is a half in-
teger, a nonabsorbing ground state only exists at points
with circular light polarization. At positions of o® po-
larization the m ==j, ground state is not coupled to the
field, and the population is transferred to this state,
which in the case of negative detuning has the smallest
(zero) light shift. The picture from above is therefore re-
versed, and the friction coefficient changes sign. For the
1/2—1/2 transition

a=—3%ﬁk2. (7

Also here the asymptotic proportionality with 8 remains
for larger j, values, and with larger negative coefficients.

Outside the capture range of the polarization-gradient
mechanism, the force must change sign and turn into the
usual Doppler-cooling force, and interesting velocity dis-
tributions with narrow holes at zero velocity could be ex-
pected with this scheme.

3. “Nonadiabatic transitions”
among light-shifted ground states

Since a lack of adiabaticity is germane to friction, we
cannot separate a specific set of configurations with this
as the physical mechanism. Rather, we point out that in
more complex situations a contribution to the Sisyphus-
effect cooling may originate in population transfer among
the light shifted ground states with a more complicated
interpretation. In the preceding discussion, the m ==+
ground states were always eigenstates and the mechanism
was simple population transfer among them. In the gen-
eral case, the diagonalization of the light shifts becomes
position dependent, and a moving atom undergoes nona-
diabatic transitions between the eigenstates. As experi-
enced by the atom, the change in polarization may be so
rapid that its slowly varying orientation and alignment at
one moment minimizes, and at another moment maxim-
izes, the atom-field interaction.

Cooling in the o *-0~ configuration can be described
by such a nonadiabaticity, but does not fall within the
Sisyphus-effect cooling schemes, because the energies of
the light-shifted atom-laser eigenstates do not vary with
position.

III. CALCULATIONS OF FRICTION
AND DIFFUSION COEFFICIENTS

The force exerted on an atom by a laser field is dis-
cussed within a semiclassical picture with the atomic po-
sition being well specified within a wavelength of the
field. The corresponding quantum-mechanical uncertain-
ty in momentum exceeds #k. For an atom of mass M we
are thus only able to treat atomic motion classically at ki-
netic energies above the recoil energy

E,.=(#K)2/2M | (8)
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which represents a natural limit for laser cooling [11].
Equations (3) and (6) do not show this lower limit. Ex-
periments and more detailed investigations of the LPL
cooling scheme have shown that the temperatures ob-
tained only depend on the ratio x*/8, and the dependence
is linear down to a value below which a rapid increase
sets in. The minimum value corresponds to kinetic ener-
gies one order of magnitude above the recoil energy [12].

A. Force and friction

Within the semiclassical treatment, an ensemble of
atoms located at position R in a laser field experiences an
average force given by the expression

f(R)=Tr[F(R)p] . )

Here p is the density matrix describing the internal atom-
ic state of the atoms and F(R) equals minus one times the
gradient of the position-dependent atom-laser interaction
potential. The trace is taken within the internal atomic-
state basis.

1. The atomic density matrix

We are interested in general monochromatic laser
fields with spatial periodicity, and separate the classical
electric field into positive and negative frequency parts

E(R,t)=E(R)e ‘“'+E*(R)e'" . (10)

The vector E(R) is resolved in components E €, with
linear (¢=0) and circular (¢ ==x1) polarization with
respect to a fixed axis, which also defines the quantization
of atomic angular momentum in the ground and excited
states |g,m ),|e,m’). In the electric dipole and rotating-
wave approximation the position-dependent atom-laser
interaction reads

H(R)=—d3 3

m q=0,%1

(jgmlglj,m +q)

X[E,(R)e "“|e,m +q)
X{g,m|+H.c.]. (1

Here, d is the reduced atomic dipole, related to the atom-
ic transition frequency ®, and linewidth #I,
Al =40’ d?/c?, (j,m1qlj,m +q) is a Clebsch-Gordan
coefficient and H.c. is the Hermitian conjugate. The
internal atomic part of the Hamiltonian reads

HA=Eg+ﬁa)AE|e,m’)(e,m'| , (12)
o

and the atomic density matrix is found from the optical
Bloch equations

40 — 1, +H,p]+5(p) (13)
where S (p) represents terms accounting for spontaneous
emission. At this point it is useful to redefine density-
matrix elements between lower and upper states with a
factor exp —iwt, introducing then in the equations for the
time evolution of these elements the detuning =0 —w 4
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of the laser with respect to the atomic transition frequen-
cy. Equation (13) is linear in the density-matrix elements
and for convenience these are arranged as elements of a
vector. We use the same symbol p for this vector, and
rewrite Eq. (13) as a matrix equation

gﬂ=B(R)p ,

dt (139

referring to the matrix B as the Bloch operator. In the
Appendix, the equations for the density-matrix elements
are written out explicitly.

In this paper, all laser configurations appear as super-
positions of plane traveling waves propagating along the
coordinate axes, with the same field strength and the
same type of polarization. We define then the Rabi fre-
quency per wave

k=2d|E|/# , (14)

where E is the positive-frequency part of the electric field
in one of these traveling waves, controlled in experiments
through the intensity of the laser beams. Another useful
quantity is the saturation parameter
2
s = SZKT/lZfG . (15)
ry

In the steady state, a two-state atom interacting with a
weak plane traveling wave has an excited-state popula-
tion 7, =15 /(1+s)=1s, and fluoresces at a rate ~1sT.
These figures change only little in cases of more complex
fields and atomic transitions. We use « and s to charac-
terize the field intensity. This unifies the description of
laser cooling of all atoms with similar sublevel structure,
but it should be kept in mind that the reduced dipole d,
which is an atomic parameter, appears in Eq. (14).

2. Forces on slowly moving atoms

With the interaction potential in Eq. (11), the force be-
comes an operator in the internal state basis with matrix
elements

(e,m +q|F(R)|g,m)=d(jgmlq|jem +q )VEq(R)e_i“".
(16)

Consider first an atom at rest. After the occurrence of a
few spontaneous-emission processes the internal-state
density matrix reaches a stationary state determined by
Eq. (13') with a zero on the left-hand side. We find this
stationary state by introducing the additional require-
ment of unit trace of the density matrix in Eq. (13'). If
the pth element of p represents a population in the densi-
ty matrix, this amounts to a substitution of the pth row in
B(R) by numbers unity multiplying populations and zero
multiplying coherences in p, and to replacing the pth zero
element on the left-hand side of Eq. (13’) by unity. The
equation for one of the populations in p has been re-
moved, but this population is equally well derived from
the value of the other populations and the normalization
condition. We denote the matrix, modified in the
prescribed way, by B,(R), and the left-hand side unit
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vector by e,, and obtain the equation for the stationary
density matrix,

B,(R)p™(R)=¢, ,

(17)
Bp( R) is invertible, and its inverse B;‘(R) will be used
several times. The position-dependent force on atoms at

rest now reads
f(R)=Tr[F(R)p*(R)]=Tr[F(R)B, '(R)e,] . (18)

We use the same symbol, whether the density-matrix ele-
ments are considered as arranged in a matrix or in a vec-
tor.

Next, we consider an ensemble of very slowly moving
atoms with position R=R(¢). The deviation of the densi-
ty matrix from p*(R) appears as a lag of the internal
state and to first order it is linear in velocity. This veloci-
ty dependence then also applies to the correction to the
mean force. To obtain this result, we replace dp/dt in
Eq. (13') by (v-V)p(R), where v is the atomic velocity.
Since B(R)ps‘(R) vanishes, we can subtract this term on
the right-hand side of Eq. (13’) and obtain the equation

(v-V)p(R)=B (R)[p(R)—p™(R)] . (19)

To find the matrix p(R) to first order in v, we may be re-
place it by its stationary value on the left-hand side, and
we obtain the invertible equation
S, -a—pSt(R)
; 7] ax;

=B,(R)[p(R)—p*(R)] .  (20)
p

The sum extends over the spatial coordinates, and the in-
dex p indicates that the pth element has been put equal to
zero to comply with the vanishing trace of p(R)—p*(R).
The average force at low velocities may now be written in
the form

f(R)=FR)+aR)v, (21)
where a(R) is a matrix with elements
— - S
a;(R)=Tr |F;(R)B, (R) laxjp‘(R) ,,] .2

The velocity-dependent force is now averaged over the
periodicity of the field. If all traveling plane waves ap-
pear in counterpropagating pairs of the same type and in-
tensity, or in some other symmetric configuration, the
first term in Eq. (21) averages to zero and we are left with
the friction force

f=av, (23)

where a denotes the spatial average of a(R) defined in
Eq. (22). In our numerical calculations below, Eq. (17) is
solved on a grid covering a spatial period of the field in
all directions. The gradient of the stationary density ma-
trix at a given point is now most easily calculated from
differences in p*(R) in neighboring grid points [13], and
the second matrix equation is solved for each spatial
derivative. The results are multiplied by the components
of the force operator, and the trace is determined as indi-
cated in Eq. (22).

KLAUS MOLMER

IR

B. The diffusion coefficient

The momentum diffusion coefficient is a sum of two
terms D and D, resulting from the fluctuations in the
force and the angular distribution of spontaneous emis-
sion. In two and three dimensions the diffusion
coefficient is a tensor, but we shall only need its diagonal
elements, which we calculate under the assumption of
atoms at rest. For the first part, we use an expression in-
volving two time averages of the force operator in the
Heisenberg picture [7,14],

Dg(R)= [ “dr[Re(F(R,7)F(R,0)) = (F,(R))’],

E=x,y,z . (24)

( ) denotes an ensemble average with the atom described
by the stationary internal state density matrix with the
vacuum modes of the field all empty. We represent the
force operator by the dyads formed by atomic states, om-
itting for brevity the coordinate index &,

F(R)=3 F;(R)|j )i, 25)
ij
and define the Heisenberg operator
@, (R,7)=(j)iD([F(R,00—(F(R))], (26)
with the average value
(P,-j(R,T)=(¢’ij(R,T)> . (27)
The diffusion coefficient then rewrites

D(R)=Re 3 Fy(R) [ “drgy(R,7) . (28)
ij

The quantities ¢,;(R, 7) are useful because their time evo-
lution, according to the quantum-regression theorem
[7,14], is governed by the same equations as the expecta-
tion values of the dyads (|j){i|)(r), i.e., as the internal
state density matrix elements p;;. This set of equations
has already been put on a matrix form, and we arrange
@,; as elements of a vector @ to obtain

¢(R,7)=B(R)p(R,T), (29)

with the same B(R) as in Eq. (13’). The integral of the
vector f o d7 (R, T) obeys the simple equation

B(R) [ “dr(R,7)=¢(R, %)= @(R,0) . (30)

The atomic operators are not correlated over infinite
times and the first term on the right-hand side vanishes,
leaving the second one to be calculated as an expectation
value in the stationary state. Equation (30) is then easily
inverted with the additional constraint that ¢, and there-
fore the integral of ¢, has zero trace according to Egs.
(26) and (27),
fo“’dnp(R,T):—B,,—1<R)<p(R,0)p : 31)
BP(R) is the same as in Sec. IITI A, and the index p on
@(R,0) indicates again here the replacement of the pth
element by zero. The diffusion coefficient is now immedi-
ately given.
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To D(R) in Eq. (28) we have to add the contribution
from recoil in the spontaneous-emission processes. The
distribution of photon momentum along a specific axis
depends on the change of m value in the spontaneous-
decay process, and the part of the diffusion coefficient is
found from the excited-state population in the stationary
state

Dspon(R)Z%I‘E’ (e,m'|p*(R)|e,m")
> ((ﬁkg)z)q'ujgm'—qlquem’)l2 .
q

(32)

The variances of the projections #ik . of fluorescence pho-
ton momentum are given for example in a paper by
Javanainen and Stenholm [15]. If £ denotes a direction
perpendicular to the quantization axis, {(#k;)*), equals
2(#ik )? for g=0, and % (#k )* for g =+1.

10

C. The friction coefficient

Another derivation of the friction coefficient than the
one described in Sec. IIT A can be performed [7]. For di-
agonal elements of the friction tensor, for example, one
has

agg(R)=—%fodeTIm(Fg(R,T)Fg(R,O)) . (33)

Since the expectation value of the Hermitian force opera-
tor is real, we can rewrite this expression as

g (R)= _llmgp,.,(k)fowdrw,.j(n,r) D)
ij

#
We now apply the matrix B (R) to the integral
B(R)fo dTT(p(R,T):fO drTp(R,T)
=[r¢R, D¢~ [ “dr (R, 7)
:-—fowdrzp(R,‘r) .

The last term has just been calculated in Eq. (31), and we
can again use the zero trace of (R, 7) to provide an in-
vertible equation so that

[TarreR,n==B,"R®) [ “dreR,D| . (9
and the friction coefficient comes immediately from Eq.
(34). Slowly moving atoms, passing through all points in
space, can now be described by a friction coefficient
which is the position average of Eq. (34).

The calculation of the friction coefficient just outlined
might seem more accurate than the one discussed in Sec.
IIT A, since it does not require the calculation of spatial
derivatives. These can, however, be obtained to any
desired accuracy through an increase in the number of
points covering the spatial periodicity of the field. Also,
it might be a bit misleading that the same symbol B,(R)
was used throughout. For the calculations in Sec. IIT A
the Hermiticity of the density operator, p;; =p};, implies
a reduction in the number of equations to be considered
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by a factor of 2. No such reduction is found for the ¢;;’s,
the steady-state mean values of the non-Hermitian opera-
tors ®;;, and for the transition j, =1 to j, =2 the size of
the matrix BP(R) is 128 X28 in a real representation, as
compared to 64X 64 in Sec. III A. Since the computing
time for solving linear equations scales as the number of
unknowns cubed, the formulation in Sec. III C is only
useful when also the diffusion coefficient is required.
Then the friction coefficient follows almost without addi-
tional work.

IV. FORCE, FRICTION, AND DIFFUSION
IN TWO DIMENSIONS

We shall now study some of the additional effects ap-
pearing in two and three dimensions, and for that pur-
pose we consider a laser configuration of two plane stand-
ing waves intersecting at right angles and with perpendic-
ular linear polarizations. The positive-frequency part of
the electric field vector is taken on the form

E(R)=2E][cos(kx)e, +e'®cos(ky)e, ] , (36)

where €, and €, are unit vectors in the y and z directions,
and ¢ is a phase which, according to Eq. (10), causes a
time lag ¢ /w between maxima in the real field amplitudes
along €, and €,. We shall in the following discuss diver-
gences in the friction coefficient, the velocity dependence
of the force, and the relevance of controlling the phase
difference ¢, which has not yet been done in experimental
investigations. For this particular configuration changes
in ¢ have tremendous effect on the values of the friction
and diffusion coefficients.

A. a(R) diverges in the vicinity of field nodes

The largest contributions to the mean friction matrix
come from positions with large field variations, i.e., from
the field nodes. If we put ¢=m/2 in Eq. (36), we get a
field which is o * polarized with respect to the x axis, o : .
along the line kx =ky, and o, polarized along the line
ky =m—kx. These two lines intersect in kx =ky =7/2,
which is a node for the total electric field. On the line
ky =m/2 the field is linearly polarized along €,,7,, and
on the line kx = /2 the polarization is 7,; see Fig. 2(a).
For motion along any one of these lines, the atoms ex-
perience no polarization gradient and hence a vanishing
force at very low field strengths. As an example, the fric-
tion matrix element a,,(R) also vanishes on these lines
except on the one with kx =7 /2. Here, it reaches very
large values in the vicinity of a field node. The reason is
that near the node the atom moving parallel to the x axis
experiences a rapid change of field polarization between
oy and 0. The spatial derivative of p™ and, according
to Eq. (22), a,, diverge as one divided by the distance to
the node. This is illustrated in Fig. 2(b), where —a,, is
plotted as a function of position within the dashed
frame in part (a) of the figure for the atomic transition
Jg=1 to j,=2. The field parameters are 6= —2I,
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k=2d|E|/#=T. This is not exactly the weak-field limit,
but in the vicinity of the field node the position-
dependent Rabi frequency becomes very small. The
rather arbitrary peak values in the figure are
la,, | ~1.5X10%*k? at a distance kAy ~0.02 from the
field node. With a finer grid, larger values are obtained.

The convergence properties of the mean friction matrix
are not affected by the local divergences, but in the nu-
merical calculations extra attention must be paid to these
regions. In the evaluations presented below, a finer grid
is therefore defined near field nodes. To ensure the nu-
merical stability of the matrix inversions, we are allowed
to increase the Rabi frequency in the calculations provid-
ed we scale the resulting stationary position-dependent
force and the diffusion coefficient with the same factor
squared. These quantities are both well behaved every-
where. The friction coefficient is independent of k. The
range in velocities over which the force is linear dimin-
ishes with the increase in a, and the force on a moving
atom remains finite.

k
i
(a)
ky=Tt-kx kx=TU/2 kx=ky
(0%) (TT,) (o3)
// \\
/ N ky =Tt/
w2k 4 > y=T/2
AN S (1y)
\\ //
0 | | kx
0 /2 T
(b)
ky
3n/8 51!‘/8/,
/l T kX
3n/8 51!/8\‘

FIG. 2. (a) Lines in the xy plane with constant polarization;
see text. The field is given in Eq. (36) with ¢==/2. (b) The
component —a,, of the friction matrix as a function of position
within the dashed frame in (a). The atomic transition is j, =1 to
Je =2, the detuning is —2T", and the Rabi frequency equals T'.
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B. Force on a moving atom

For an atomic ensemble following a given trajectory
R(z), the instantaneous mean force can be calculated
from Eq. (9) if p has been found by integration of Eq.
(13"). After the occurrence of a few spontaneous decays,
p(t) becomes independent of the initial state, and if the
trajectory is such that the atom experiences a periodic in-
teraction Hamiltonian, the density matrix evolves into a
steady state with the same periodicity. This situation
prevails for rectilinear motion at constant speed in direc-
tions characterized by integer coordinates, and the fact
that any direction is arbitrarily close to such a direction
was used recently in the development of a method for cal-
culating forces on atoms moving with arbitrary velocities
in general field configurations [6]. A mean force was then
introduced as the average of Eq. (9) over one period of
the atom-field interaction. In Fig. 3 are plotted the com-
ponents of this force perpendicular to (upper curve) and
parallel with (lower curve) the trajectory which passes in
the direction (2,1) through the origin where both standing
waves have an antinode. A positive perpendicular force
component implies a counterclockwise deflection of the
atomic velocity. The field configuration and parameters
are as in Fig. 2. The position-averaged friction is isotro-
pic, i.e., a is proportional to the identity matrix, and has
the value a=—12.7#%k?. The inset of Fig. 3 shows the
low-velocity region with the isotropic result (only com-
ponent parallel to velocity) indicated by a dashed line.
The force corresponding to the trajectory x =2y is clear-
ly not in agreement with this result, and the reason is that
a is determined as an average over all points in space. If
we average a(R) over the trajectory x =2y only, we find
(F,F),-,,=v(—5.8,0.75)%k?> The expressions for
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-0.204 1 2 3
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FIG. 3. The force as a function of velocity along the line
x =2yp. All parameters are the same as in Fig. 2. The figure
shows the components of the force perpendicular to (upper
curve) and parallel with (lower curve) the particle velocity. In-
set: A comparison of the force components in the low-velocity
domain and the friction result. The dashed line is the position
averaged isotropic result for the force (only longitudinal com-
ponent), the solid lines are results based on calculations along
the line x =2y only.
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the parallel and perpendicular components are illustrated
in the inset by solid lines, and are in much better agree-
ment with the calculated force.

In an experiment it may be more realistic to assume a
uniform spatial distribution of atoms moving in a
specified direction, i.e., on a set of parallel trajectories.
The relevant friction then becomes the average of a(R).
In symmetric field configurations this quantity is propor-
tional to the identity matrix, and there is no risk of an ac-
cumulation of particles along special directions where a
localization on preferred trajectories could invalidate the
mean results. The use of the averaged friction matrix
here may therefore be even better justified than the use of
the position averaged force in Ref. [6].

C. Importance of phase difference between waves

1. The friction coefficient

After the spatial average over parallel trajectories,
there is no force perpendicular to the motion when this is
along the axis directions. This result, which is valid for
all field configurations of the type studied in this paper,
follows from the observation that a change of sign of x or
y causes a change of sign of the x or y component of the
force without modification of the density matrix. Since
the vectors (v,0) and (0,v) are eigenvectors, the matrix o
is diagonal. Note that this does not exclude transverse
force components; for motion at an angle © to the x axis,
we get from Eq. (23) the force components parallel and
perpendicular to the velocity

F= [cos’Oa,, +(sin26)ayy v,
(37)
F,=(cosO)(sinO)(a,, —a,, v .

If a,, and a, are different, the atomic motion is
deflected towards one of the coordinate axes. In highly
symmetric field configurations a,, and «, have no
reason to differ, and they do not. This is the situation for
the field configurations studied in Sec. V.

As observed in Ref. [6], the phase relation between the
different field components plays a decisive role for the
forces on atoms moving in the laser field. In Fig. 4(a) the
two components a,, and a,, are shown as functions of
the phase ¢ for atoms with a j,=1 to j, =2 transition.
The Rabi frequency is 0.1T" and the detuning is 2T". A
change of sign of the detuning and of the phase difference
leads to a change of sign of @,, and a,,. The two com-
ponents are identical when ¢ is a multiple of 7/2 since
there is a trivial exchange symmetry between x and y or
(m/k —y) in these cases. Otherwise the two fields do not
interact with the atoms with the same efficiency, and the
symmetry is broken, as we observe from the difference be-
tween the two curves in the figure. For some values of ¢
and a smaller detuning, even a,, and «, of opposite
signs were obtained.

More prominent in Fig. 4(a) is the effect of the phase
variation on the absolute value of the friction coefficient.
The order-of-magnitude reduction of the friction as ¢
changes from 7/2 to O or 7 can be explained in terms of a
complete change in the cooling mechanism. When
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FIG. 4. (a) The position-averaged components «a,, (solid
curve) and a,, (dashed curve) of the (diagonal) friction matrix as
function of phase ¢. The transition is Je=1to j, =2, §=2T,
and x=0.1T". (b) Detuning dependence of a,, =a,, for ¢=1m/2.
«=0.1I" and the atomic transitions are Jg=1to j,=2 (solid
curve) and j,=1/2 to j,=3/2 (dashed curve). (c) Detuning
dependence of a,, =a,, for $=0. k=0.1T and the atomic tran-
sition is j;=1 to j, =2. The friction coefficient is proportional
to intensity (negligible) for the j, =1/2 to j, =3/2 transition.
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¢=m/2, the two linearly polarized fields are out of phase,
and as we have seen, the resulting field is circularly polar-
ized at some points in space. We thus obtain a Sisyphus-
effect mechanism similar to the one described in Sec.
IIB 1. When the fields are in phase, E(R) in Eq. (36) is
real everywhere and the total field is linearly polarized
but with a position-dependent direction and magnitude.
For a j, =1 to j,=3 transition there is in this case no
difference between the light-shifted ground-state energies,
and at low field strengths the stationary density matrix
becomes independent of position. There is then no lag of
the internal state at low velocities and the friction be-
comes proportional to intensity. In contrast, with a
jg=1 to j,=2 transition, atoms experience a
polarization-gradient force of which part might be of the
same origin as in the one-dimensional (ID) o*-o~
configuration of Sec. II A, but the main contribution
remains of the Sisyphus-effect type (‘‘nonadiabatic transi-
tions””). The repopulation mechanism is not nearly as
effective as for circularly polarized light and the force be-
comes much weaker than for ¢=mu/2. In Figs. 4(b) and
4(c) the detuning dependence of a,, =a,, is shown for
the j, =1 to j, =2 case, with ¢ =7/2 and 0. Indeed, the
difference between the two graphs points to completely
different mechanisms. The results for ¢=7/2 have the
asymptotic proportionality to detuning, but the
coefficients have changed as compared to Fig. 1. The
dashed curve in Fig. 4(b) is for the j, =1 to j,=3 case.
The detuning dependence is more complicated when
¢=0.

The strong variation with the temporal phase is not
general for all laser configurations. It is observed also
with o *-0~ configurations along the two axes, where the
field is linearly polarized everywhere when the relative
phase is a multiple of 7. In the other fields studied, posi-
tions with elliptic or circular polarization components
cannot be avoided and the variation of a with ¢ is less
dramatic.

Also at higher field strengths and at finite velocities the
phase difference is important [6] and it should be possible
to perform experiments, where the phase ¢ is controlled,
to confirm this. Beam deflection may be a better probe
than laser cooling, since as we shall see below the effect
on the cooling force also shows up in the diffusion
coefficient in a way that makes the final distributions of
cooled samples less sensitive to ¢.

2. Diffusion coefficient and temperature

The average diffusion coefficients D,, and D,, have
been calculated in the symmetric cases ¢ =0,7/2 where
they are identical, and they also show characteristics of
different cooling mechanisms. We take also here the
value k=0.1T" for the Rabi frequency and plot in Fig. 5
the dependence of D, on detuning for the j, =1 to j, =2
atomic transition. When ¢=m/2, we expect D, to be
proportional to 8% ««? at large detunings as in Eq. (5),
i.e., not to vary with detuning, and this is indeed ob-
served to be the case. When ¢ =0, the mechanism differs
from the one in Sec. II B 1, and the reduced friction is ac-
companied by a reduction in the diffusion coefficient.
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FIG. 5. Diffusion coefficient (including Dy, ) as a function of
detuning. The transition is j, =1 to j, =2, «=0.1I". The upper
curve is for ¢ =m/2, the lower one is for ¢=0. The diffusion
coefficient is an even function of detuning.

A temperature characterizing stationary cooled distri-
butions may now be obtained under the assumption that
the distributions stay within the velocity range where the
linear friction result (23) applies, and where the diffusion
coefficient does not differ significantly from its value at
zero velocity. In symmetric configurations the same tem-
perature may be assigned to each velocity component

kyT=kyT ., =D, /la,.l| . (38)

From the quantities calculated above, we obtain the tem-
perature as a function of the field parameters. In the 1D
examples, temperatures scale with «2/8, the dependence
on Rabi frequency coming from the diffusion coefficient,
and in Fig. 6 we study kT /(#x?/|8]) as a function of the
negative detuning for both choices of the phase ¢=1m/2
and 0. A constant is only obtained for ¢ =1/2.

In cooling experiments fast compared to the time scale
on which ¢ varies (mechanical vibrations can impose fluc-
tuations in the value of ¢ on a msec time scale), the mea-
sured temperatures are expected to scatter between the
two curves. If the phase varies significantly during the
experiment, e.g., because the cooling effect is too weak to
be applied over shorter times, some mean value would re-
sult. It is an appealing possibility to actually control the
phase in the experiment; in the configuration studied, this
could change the result by a factor of X 2.

Apart from the requirements of a linear force and a
constant diffusion coefficient, the results rely on the valid-
ity of our semiclassical description, i.e., that the width of
the calculated distribution corresponds to energies larger
than the recoil energy in Eq. (8). Cooling to temperatures
in the vicinity of E .. /kp should be described in a com-
plete quantum manner as in Refs. [9] and [12]. The
heavier the atomic species, the better a semiclassical
treatment is.
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V. NUMERICAL RESULTS FOR 3D MOLASSES

The relative merits of four different laser
configurations with all of the waves in phase are studied.
The configurations are obtained as superpositions of
waves propagating along all three coordinate axes, and
they are all symmetric with respect to permutations of
the position coordinates. The field configurations are the
following.

(a) Linearly polarized plane standing waves

E(R)=2E [cos(kx )€, +-cos(ky)e, +-cos(kz)e, ] , (39a)
(b) ot-0~ configuration along all axes
E(R)=E (e™€ ) +e "X +e e
+e el +e* D +e TR X)), (39b)

(c) circularly polarized plane standing waves

E(R)=2E[cos(kx)e'¥,+cos(ky)e¥ +cos(kz)e'?| ] ,

(39¢)
(d) LPL configuration along all axes
E(R)=E(e*¢, +e Tikxe +eihve,
+e e, +e*e, +e %, . (394)

The unit vectors of circular polarization with respect to
the x and y axes can be obtained by cyclic permutation of
the coordinate indices of the conventional vectors
€, =€) =TF(1/V2)(e, Li€)).

In the configurations (a) and (b), the polarization is
linear everywhere but the electric vector varies in magni-
tude and direction. In the configurations (c) and (d), cir-
cular polarization with respect to different directions is
present at different positions in the field. Qualitatively,
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we therefore expect the results to show the same two
types of behavior as obtained in Sec. IV with ¢=0 and
7/2.

The calculations were performed on a 28X28X28
mesh covering a cube of wavelength size, and with the re-
placement of grid points in field nodes by a small 6 X6X 6
mesh on the corresponding volume element. A further
increase in the density of grid points modifies the results
on the percent level only.

The results of the numerical calculations are presented
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FIG. 7. Friction coefficients as functions of detuning. The
two first configurations (labeled a and b) are represented in (a),
the other two (c and d) in (b). The transition is j, =1 to j, =2,
«k=0.1T.
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as functions of the frequency detuning. The Rabi fre-
quency per traveling plane wave equals 0.1T", and the
transition is j,=1 to j,=2. Figure 7 shows friction
coefficients in qualitative agreement with Figs. 4(b) and
4(c). The diffusion coefficients are shown in Fig. 8. The
curves are practically indistinguishable for configurations
(a) and (b). In general, the laser configuration with the
stronger friction also shows the larger diffusion
coeflicients.

The temperatures defined as the ratio between D and
|a| are presented in Fig. 9. The results for configurations
(a) and (b) on the one hand and (c) and (d) on the other
show for large detunings an asymptotic proportionality
to #x?/T" and #x’/|8|, respectively. Phase variations in
configurations (a) and (b) change the result completely.
In Sec. IV C it was demonstrated how sensitive the fric-
tion and diffusion coefficients are to the relative phase of
the fields. The results presented for the configurations (a)
and (b) in this section are only valid if the mutual phases
of the fields are controlled in the experiments, otherwise
an average of the results over those phases should be
made. In Fig. 4(a) we observe that such an average will
be dominated by the results obtained with a nonzero
phase difference, which are shown in Figs. 4(b), 5, and 6
to behave qualitatively like the 1D results with tempera-
tures proportional to #k?/|8|. In the configurations (c)
and (d) D and a change also, but the resulting tempera-
ture is only weakly affected. If the fields propagating
along the z axis are in quadrature with the others in
configuration (c), we obtain at = — 9T the result indicat-
ed by an open circle in Fig. 9. Experiments have been
performed on Cs by Salomon et al. [17]. With
configurations (a) and (d), but without controlling the rel-
ative phases of the six incoming laser beams, these au-
thors obtained temperatures proportional to #k?/|8].
This agrees with our expectations. Our results for
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FIG. 8. Diffusion coefficients as functions of detuning. The
letters beside the curves refer to the four different configurations
studied. The transition is j, =1 to j, =2, k=0.1T.
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configuration (d) are about a factor of 1.5 lower than
those obtained in the experiments on Cs atoms by Salo-
mon et al. [17]. However, theoretical temperatures ob-
tained with the actual j, =4 to j, =5 transition in Cs may
deviate from the j, =1 to j, =2 results presented in this

paper.
VI. DISCUSSION

A semiclassical treatment of atomic motion in laser
fields with multidimensional periodicity has been given.
Means have been presented for numerical calculations of
the position-dependent force to first order in velocity, and
of the position-dependent diffusion coefficient. Instead of
solving a Fokker-Planck equation on the position-
momentum phase space, we averaged the calculated
quantities over position and disregarded localization
effects. New aspects appearing in two and three dimen-
sions were discussed.

It has been demonstrated that polarization gradients
imply intensity-independent friction coefficients for mul-
tisublevel atoms, and that laser cooling in three dimen-
sions can lead to temperatures below the Doppler limit.
This was expected from one-dimensional studies [4,5],
and the dependence of temperature on the field parame-
ters was found to agree with experiments [17] and with
these 1D calculations, except in some cases where a
different cooling mechanism was suggested as an explana-
tion of the deviations. Only for special configurations,
and only with special values of the relative phase of the
laser beams are these deviations important, and they may
be relevant only in experiments specially aimed at study-
ing them. As a two-dimensional example, collimation of
a thermal beam may be considered. An effect on the
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transverse width and shape of the beam after the interac-
tion with the lasers should be observable with the tech-
nique developed in depth, e.g., in Ref. [18].

A temperature can only be unambiguously defined
when the cooled velocity distribution is Gaussian. The
temperature is then given by the ratio of the diffusion and
friction coefficients, and the heavier the atom the nar-
rower the velocity distribution, and the better justified is
our assumption of a force linear in velocity and a con-
stant diffusion coefficient. In Ref. [12] it was shown that
the velocity dependence of the force and diffusion
coefficient can deviate from these assumptions and still
lead to thermal distributions, but here we do not enter a
discussion of velocity-dependent diffusion coefficients.

The temperatures given in this paper are proportional
to the intensity of the laser beams. Consistency of our
treatment, however, imposes two lower limits.

(i) Velocity distributions with {v?) proportional to in-
tensity are assumed to stay within the range where the
polarization gradient force is linear in velocity. The ex-
tent of this range is proportional to intensity [4], and
therefore a lower intensity limit exists.

(ii) We have used a semiclassical treatment that is valid
for kinetic energies sufficiently above the recoil energy,
Eq. (8). Full quantum calculations should be performed
in order to examine polarization gradient cooling when
this limit is approached, and they will probably lead to

distributions with atomic momenta of the order of a few
times the photon momentum as in the 1D examples
[9,12].

Finally, we mention also that cooling of atoms in uni-
form magnetic fields, and of three-level atoms interacting
with two different laser frequencies, can be treated with
the formalism presented. These are two recent additional
suggestions for cooling to temperatures below the
Doppler limit [19,20].
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Note added in proof. In two dimensions a nonlinear
and anisotropic dependence of the position-averaged
force on low velocities, which is not revealed by the pro-
cedures in Sec. III for calculating the friction matrix,
may result from the reduction in velocity capture range
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prior to the publication of their analytical work on a spe-
cial configuration.

APPENDIX: THE OPTICAL BLOCH EQUATIONS

The density matrix equations (13) in the paper are the following [16]:

dE
#i

d N
dt<g,mlp|g,m>— tqzz_l

1
+T 3 (jymlgljom +q)(jm'lglj,m +q){e,m +qlple,m'+q) ,

L(jgm'1qlj,m’'+q){g,mlple,m’'+q)—

*
9

#i

(jgm1glj,m +q){e,m +qlplg,m")

(A1)
g=-—1
d N < 9E; . ,
2 lemlplemdy=i 3 —L((jym—qlglj.m){g,m —qlplg,m")
g=-—1
—(jgm'lquem’+q)(e,m|p|e,m’+q))+(—%F+i8)(e,m|p|g,m’) , (A2)
L (gmlple,m'y=2(e,m'lplg,m)* , (a3
d & |9, . . ,
—(emlplem)=i 3 —ﬁq—hgm—qquJem><‘g,m—q|p|e,m>
g=-—1
dE; . ,
—T(jgm'—qlquem’)(e,mIplg,m’) —I'(e,mlple,m’) . (A4)

With Egs. (A1)—-(A4) it is possible to write down the (sparse) matrix B (R) used throughout the paper.
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