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Satellite intensities in the K-shell photoionization of CO
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A recently proposed scheme for calculating E-shell ionization cross sections in atoms and molecules
using the relaxed-core Hartree-Pock (RCHF) approximation is extended to the treatment of shakeup
processes. As an example, this scheme is applied to the m-~* satellites in the C ls photoelectron spec-
trum of CO. These results for the (SO, S1) pair of ~-~* satellite states reveal strong interference effects
between the "direct" (bound-free dipole integral) and "conjugate" (bound-free overlap integral) contribu-
tions in the transition moment at near-threshold energies. These effects are particularly dominant in the
kyar subchannel and, for the triplet-coupled satellite (S1), lead to a drastically increasing cross section
with decreasing photon energy. For the singlet-coupled satellite (SO) destructive interference leads to a
comparatively small cross section near threshold. While these findings may explain the strikingly
different behavior of the SO and S1 satellite intensities in recent experiments, the present results also
show distinct o.-type shape resonances in both satellite channels at about 10 eV photoelectron energy
that are apparently at variance with the experimental evidence. An analysis of the RCHF transition mo-

ment via perturbation theory shows that already in first order some potentially important dynmical con-
tributions are missing. In these studies a direct method based on the Schwinger variational principle and
single-center expansion techniques is used to obtain the photoelectron orbitals.

PACS number(s): 33.60.Fy, 33.80.Eh

I. INTRODUCTION

K-shell photoelectron spectra of atoms and molecules
exhibit, in addition to the 1s-hole main peak, an intense
satellite structure associated with shakeup and shakeout'

processes, i.e., valence-electron excitation and ionization,
respectively accompanying the ls-electron ejection [1,2].
For large photoelectron energies (sudden limit), e.g. , real-
ized in Al Ka excitation of second-row elements, the rela-
tive satellite intensities with respect to the 1s main peak
are to a good approximation determined by spectroscopic
factors reAecting solely bound-state properties of the neu-
tral system and the ion [3,4]. Under such conditions typi-
cally 30—40%%uo of the ls cross section is diverted to the
shakeup and shakeout' spectrum. Single shake-up peaks
with up to 10% of the ls-hole main peak intensity have
been observed for unsaturated molecules like CO and N2
where excitations to low-lying valence-type o.* and m.* or-
bitals are possible [1,2].

At low photoelectron energies, in particular, near reso-
nances and ionization thresholds, deviations from the
"asymptotic" spectral profile can be expected. The
dynamical aspects of K-shell ionization in atoms and mol-
ecules have been the subject of recent experimental stud-
ies using tunable synchrotron radiation [5—8]. Surprising
intensity variations have been observed at near-threshold
energies for the pair of ~-~* satellites in the C 1s and N
ls photoelectron spectra of CO and N2, respectively [8].
The first satellite, characterized as a m-sr* triplet excita-
tion and having only a small relative intensity in the
high-energy limit, becomes drastically enhanced (up to
10% relative to the ls main state) at low photon energies.

In contrast, the relative intensity of the second, singlet-
coupled, ~-~* satellite decreases steadily from a large
value at high photon energy to a rather small value at
threshold. The strong enhancement of the first ~-~* sa-
tellite in the C 1s spectrum of CO was previously inferred
by Ungier and Thomas [9] from coincidence measure-
ments combining electron-impact ionization and Auger
electron spectroscopy. More recent evidence was found
by Medhurst et al. [10] studying the C ls ionization of
CO by zero-kinetic-energy (ZEKE) spectroscopy.

Previous theoretical studies of photoionization cross
sections have been mainly confined to single-hole main
states. Among the few examples where satellite intensi-
ties have been considered are studies by Ishihara,
Mizuno, and Watanabe [11]and by Wijesundra and Kelly
[12] on Ne ls and Ar 3s satellites, respectively, using
methods based on many-body perturbation theory. For

0
molecules we are aware only of a recent study by Argen
and Carravetta [13]. Using a Stieltjes moment theory ap-
proach these authors calculate satellite intensities in the
0 1s shakeup spectrum of water, though only for photon
energies in the 1300—1500 eV region. At a less rigorous
theoretical level some attempts have been made to under-
stand the near-threshold satellite intensities by means of
simple models ("adiabatic limit" ) based on time-
dependent perturbation theory [14—16]. In view of the
approximate nature of these models, a more reliable
theoretical description based on a proper quantum-
mechanical treatment would be highly desirable.

The familiar frozen-core Hartree-Fock (FCHF) ap-
proximation, widely used in studies of single-hole ioniza-
tion [17], cannot be applied to the case of photoelectron
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satellites since the corresponding ¹ lectron transition
moments (photoionization amplitudes) vanish. A more
appropriate approach, which maintains the simplicity of
the single-particle description, is the relaxed-core
Hartree-Fock (RCHF) model. Here, instead of "frozen"
ground-state HF orbitals, the "relaxed" orbitals generat-
ed by a HF calculation for the ion are used to represent
the ionic state and its respective static-exchange poten-
tial. Such a description is especially useful in the treat-
ment of K-shell ionization since the dominant effect of
valence electron relaxation is properly taken into ac-
count. In a previous paper [18],henceforth referred to as
I, we have discussed in some detail the RCHF approxi-
mation and its application to K-shell single-hole ioniza-
tion. In continuation of this study we will here be con-
cerned with RCHF calculations of K-shell satellite cross
sections. As an exemplary application we shall consider
the ~-~* satellites in the C 1s photoelectron spectrum of
CO.

The formulation given in I for evaluating the ¹

electron transition amplitude allows one to distinguish
between so-called direct and conjugate contributions
[19,20]. The latter part arises due to the nonorthogonali-
ty between the relaxed continuum orbital and the occu-
pied frozen orbitals and is rejected in the occurrence of
bound-free overlap integrals. On the other hand, the
direct part, containing the usual bound-free dipole in-
tegrals, determines the spectral intensities at large photon
energies (sudden limit) since the overlap integrals vanish
much more rapidly with photoelectron energy than the
dipole integrals. For low photoelectron energies, particu-
larly near ionization thresholds, the conjugate part may,
however, become significant. More interestingly, the
different selection rules of the conjugate part may allow
satellite states to appear near threshold that are forbid-
den in the high-energy limit due to the monopole selec-
tion rules of the direct part. There has been much specu-
lation about the importance of this conjugate shakeup
"mechanism" near threshold [5,9,11,19,20]. Here we will
give a quantitative study of the direct and conjugate con-
tributions in the near-threshold cross section of molecu-
lar photoelectron satellites.

An outline of this paper is as follows. Section II re-
views the RCHF formulation of the K-shell satellite
states and transition amplitudes. In Sec. III an analysis of
the RCHF description is given via a comparison with the
exact amplitude through first-order perturbation theory.
Details of the calculations are given in Sec. IV, while Sec.
V contains the discussion of our results. A summary of
our findings and some conclusions are given in Sec. VI.

II. THEORY

A. Transition moments for K-shell photoelectron satellites
in the relaxed-core Hartree-Fock approximation

In the following we will brieAy review the essential
features of the relaxed-core Hartree-Fock (RCHF) ap-
proximation and then discuss its specific application to
the case of core-hole satellite states. A more detailed dis-
cussion of this approach has been given in our previous

The normalization properties of the continuum orbitals
can be transferred to the ¹ lectron final states provided
that the orthogonality constraints

l

ip)v —i ) () (2)

are fulfilled.
Using the product approximation (1) for the final state,

the ¹ lectron transition amplitudes

g (ttt)
&
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can be written in the more explicit form [20—22]
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In Eqs. (3) and (4), l(I(o ) denotes the initial ¹lectron
ground state, and

D (p) ~ d ()M)
l

is an ¹ lectron transition operator, e.g. , the pth com-
ponent ot the dipole operator. In Eq. tqt a representation
in terms of "frozen" ground state HF orbitals

~ „) and
the associated second-quantized operators o, (c„) is as-
sumed. According to Eq. (4) we may distinguish two con-
tributions to the transition amplitude. The first sum on
the right-hand side of Eq. (4), referred to as the direct
part ( A '), combines the bound-free dipole integrals
& f'k 'ld lP„) and the (N —1)-particle overlap or spectro-
scopic amplitudes x„". The second sum (A") contains
products of the bound-free overlap integrals &f(k 'liI)„)
and the (N —1)-particle transition moments y„'"'. This
contribution, arising from the nonorthogonality of the
continuum and the (frozen) HF orbitals, is called the con-
jugate part [19,20]. For large photoelectron energies the
overlap integrals &P'k 'lP„) vanish much more rapidly
than the dipole integrals & P(„)ld lP„). Thus, in the limit
of high photon energy (sudden limit) the photoelectron
intensities are solely determined by the direct part [3].
Near photoionization thresholds, however, the conjugate
part may play an important role. In particular, different
selection rules for the conjugate part may allow ionic

article I. The basic assumption in a single-particle
description of photoionization such as the frozen- and
relaxed-core HF model, is the representation of the ¹

electron final state as the (antisymmetrized) product of
the ionic state lgII„') and the photoelectron continuum
orbital i/I, ') (with incoming-wave boundary condition).
Using the second-quantized notation ck for the creation
operator associated with the continuum orbital lg'k ') we

may write

lq)v &=ctly)v ')
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states forbidden by the selection rules of the direct part.
In addition to the product approximation (1) the fol-

lowing three approximations are introduced in the
RCHF model.

(i) The ground-state HF representation

is used for the initial state
l Vo &.

(ii) The ionic state is represented in terms of "relaxed"
orbitals generated by a HF calculation for the ion. Let
le„& denote the relaxed orbitals and c„(c„)the associated
creation (removal) operators of second quantization.
Then, an ionic single-hole state may be written as

'&=c„lc, &

where the "relaxed" N-particle state

C'o &
=

I gig2. . . &iv I

is defined analogously to l4&0 & of Eq. (6) as the Slater
determinant of the lowest relaxed orbitals g„&. Similar-
ly, we may represent a two-hole —one-particle (2h —lp)
satellite state describing a hole in the occupied orbitals h
and l (ni, =ni = 1) and an electron in the unoccupied or-
bital j (n =1 n=—1) by

&..,.=( —«g' 'idly, »«g, lg »

+«q, idly, »«@', 'lg &&)&@o"I+o"& . (12a)

—&&@;lp,&(s ')„„,&q„,ldll, & . (12c)

Here S denotes the matrix of relaxed-frozen overlap in-

tegrals

(13)

for occupied orbitals (n =n =1); the summations in
Eqs. (12b) and (12c) run over occupied orbitals only.
The overlap matrix element &&bo l@0 & of the frozen and
relaxed Slater determinants in Eq. (12a) is given by the
determinant of S:

This result has the form of the simplified expressions
given previously for shakeup amplitudes [19,20]. In Eq.
(12a), however, the simple overlap and dipole integrals
have to be replaced by efFective quantities defined as fol-
lows:

(12b)

l+,„, '&=etc„c,lc, & .
& =det(s) . (14)

&q„ly, &=0, roc, (10)

Using these relations the general expressions derived in I
for the RCHF transition moments simplify considerably.
Moreover, all artificial contributions to the RCHF ampli-
tude arising from the lack of strict orthogonality of the
initial and final N-electron states vanish. The final result
for the K-shell satellite transition amplitude in the RCHF
and CVS approximations can be written as

The construction of symmetry adapted satellite states is
addressed in Sec. II B.

(iii) The scattering orbitals lP'k '& are determined by
solving the single-particle scattering equation using the
static-exchange (HF) potential of the relaxed ion under
appropriate boundary, normalization, and orthogonality
conditions. Explicit RCHF satellite potentials will be
given in Sec. II C.

As discussed in I, complications arise in the RCHF ap-
proximation due to nonorthogonality between the frozen
and the relaxed orbitals used in representing the initial
and final N-electron state, respectively. In the case of K-
shell ionization, however, these problems can be eliminat-
ed in a well-defined manner, namely by using the core-
valence separation (CVS) approximation which can be
justified by the large energy gap between core and valence
levels and the small coupling integrals for states with
difFerent core orbital occupations. Within this approxi-
mation the relaxed and frozen 1s orbital, henceforth
denoted by l itj, & and lP, &, respectively, become identical
and the following orthogonality relations hold:

By comparing Eqs. (12a)—(12c) with the form given for
the transition amplitude in Eqs. (4a) and (4b) we can easi-

ly specify the bound-state amplitudes x' " and y„'~" in

the RCHF approximation. The result for the spectro-
scopic amplitude x„' "' is

(15)

Thus, the direct part of the transition moment may be
written as

=&y'„-'ld"ly, &
""

Comparison of the direct part of the full amplitude of Eq.
(12) shows more clearly the effect of the conjugate contri-
butions. First, the dipole integral in the direct part (Eq.
16) is modified essentially by removing the occupied
frozen orbital admixtures in lg'k '&. This leads to an
"effective" direct part Ifirst contribution on the right-
hand side of Eq. (12a)]. Second, this part is augmented
by another contribution referred to as the eft'ective conju-
gate shakeup part in which the role of the orbitals k and j
is exchanged. According to the usual interpretation the
(effective) direct amplitude corresponds to a "direct pro-
cess" in which a bound-free (dipole) transition c~k is
accompanied by a bound-bound (monopole shakeup l ~j;
the (effective) conjugate shakeup amplitude, on the other
hand, arises due to a "conjugate shakeup process, " i.e.,
the bound-bound dipole transition c~j plus the bound-
free monopole shakeup (off) 1 —+k. The transition ampli-
tude Aj, i k of Eq. (12a) may be complemented by the con-
tribution
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&,'„=(«q' 'Idly »«q, ly, »
—«@,Idly, »«y' 'IP, »)&@olc'o &,

which is formally obtained from —A, I k by exchanging c
and I. Obviously these additional direct and conjugate
amplitudes do not play a role for K-shell satellites since
the effective overlaps « i/r. lP, » and « i/rI, 'lP, » vanish
in the CVS approximation.

The expressions given above for the satellite ampli-
tudes correspond to "primitive" product states
ckc~c, cil@o & where k, j, c, and l denote spin orbitals.
Spin-free expressions applying to final states of proper
spin and spatial symmetry are easily obtained by ap-
propriate linear combinations of the primitive amplitudes
and by evaluating the spin degrees of freedom. In the en-
suing Secs. IIB and IIC we shall brieAy discuss the
choice of the symmetry adapted satellite states and their
static-exchange potentials. Examples of spin-free expres-
sions for the satellite cross sections are given in Sec. V.

B. K-shell hole satellite states

Symmetry-adapted ionic states can straightforwardly
be constructed in the FCHF or RCHF approximation as
linear combinations of primitive states. The case of 2h-1p
satellites, however, requires some comment since here
two independent doublet states can be formed, the choice
of which is not unique. For simplicity, let us consider the
case of the satellite configuration (j 'c '/ ') with spatial-
ly nondegenerate orbitals j, c, and I. For the moment we
shall split the general one-particle quantum numbers j
into a spatial quantum number j and a (magnetic) spin
quantum number y =a, /3( =+—,

' ). The eight primitive
spin states

associated with the specific spatial configuration can be
combined to form a set of quartet states (S=—', ) and two
independent sets of doublet states (S =

—,'). One way to
choose the two doublet states (M = —

—,
'

) is as follows:

l 'P,,i(0) &
= —[(Pa/3)+(aaa)],1

2

''p), i(1) &
=

~—[ —(pap)+2(ppa)+(aaa)] .
1

v'6

(17a)

(17b)

Note that a particle-hole notation [see Eq. (9)] is assumed
here. This corresponds to a coupling scheme in which
the valence electrons in orbital j and I form an intermedi-
ate singlet (S'=0) and triplet (S'=1), respectively. In
general, this particular coupling scheme is not dis-
tinguished from other possibilities. However, for the case
of IC-shell satellites with j being a valence-type (rr* or cr*)
orbital, the states according to Eq. (17) are an optimal
zeroth-order representation of the actual eigenstates of
the Hamiltonian. As discussed in Ref. [23] the coupling
matrix element for the two doublet states (17) contains
only core-valence exchange integrals and its absolute
value is hence small; the (first-order) energy separation,
on the other hand, is essentially given by twice the
valence exchange integral K.l which can assume consid-
erably larger values.

Doublet satellite states with intermediate spin S'=0
and 1, respectively, can likewise be constructed if the or-
bitals involved are spatially degenerate, e.g. , for the m-~*
K-shell satellites in CO considered below. The latter sa-
tellite configuration gives rise to two (monopole-allowed)
doublet states X+(S') and moreover similar pairs of X
and 6 states. In Table I we have specified for these
states (choosing M, =

—,') the normalization constants and
the expansion coe%cients with respect to the primitive
states, where, e.g. , [7r*P, 1sa, sr„P] is a shorthand nota-
tion for the state lP, ', & as defined by Eq. (9).

x 7 x

TABLE I. Normalization constants and expansion coefficients for the symmetry-adapted RCHF states corresponding to the satel-
lite configuration (~ )'(1s) '(~)

'r. +(0) 2y+( 1 ) X (0) 6 (0)

Normalization coefficients

1/2 1/+12 1/2 1/&12

Expansion coefficients

[7r„*P,1sa, rr„P]
[~*P,1sP, rr, a ]
[rr„*a,1sa, rr, a]
[7ry P, isa, vryP]
[vry*p, lsp, ~ a]
[m.r*a, 1sa, ~~ a]
[rr„*p, 1sa, my p]
[vr,*P, 1sP, rr a]
[n*a, 1 nsaa]

[rrr*P, 1sa, rr„P]
[rrr*p, lsp, m, a]
[rr*a, isa, rr a]

—1

2
1

—1

2
1

—1

0
—1

—1

2
1

—1

0
—1

—1

2
1

1
—2
—1



J. SCHIRMER, M. BRAUNSTEIN, AND V. McKOY

C. Static-exchange potentials for satellite states

(t+u —
—,k') Iq'„-'& =o (18)

for the continuum in the static-exchange field associated
with the ionic 2h —lp satellite state. In Eq. (18) the
operator t contains the kinetic energy and the Coulomb
interaction with the nuclei, while v is associated with the
electron-electron interaction. To obtain the appropriate
potential the variational principle [24]

(fiq',",
i, k I

9 EI +,"—
/, k )

is applied to the ¹electron final state

(19)

Similar to the case of single-hole main states (see the
discussion in I) one may derive single-particle scattering
equations of the form

III. ANALYSIS OF THE RCHF SATELLITE
CROSS SECTION

The potential and limitations of the RCHF approxima-
tion can be seen more clearly by comparing the exact
transition amplitude with the RCHF result through first
order of perturbation theory. Such an analysis has been
presented in I for the single-hole main states. Here we
discuss the case of 2h-1p E-shell satellite states.

In zeroth order, i.e., in the FCHF representation, the
corresponding ¹ lectron final state is given by

I+gj j ) a/&~,'a, ~ilc'0 & . (22)

Here ak is associated with the HF continuum orbital
'); for simplicity, we restrict ourselves to primitive

states, i.e., k, j, c, and l denote spin orbitals. Obviously
the transition amplitude vanishes in zeroth order:

Ie„,„&=c„'c,'c, c, Ie, & (20) a, o, '„—&e~„IDIO~) =o

The first-order contributions are

(23)

constructed from the fixed "target" state
I 4,i

' ) and the
continuum orbital If'k '). Only the continuum orbital is
varied in I5'P~, i k ). The variational principle yields Eq.
(18) readily if orthogonality is assumed between the (spa-
tial) continuum orbital Ig'k ') and both the doubly and
singly occupied (spatial) orbitals in I@,i '). Without
this orthogonality constraint the equations are much
more complicated. For the two doublet states specified in
Eqs. (17a) and (17b), respectively, and assuming a final
X-electron singlet state the potentials v(S') become [23],
for singlet states,

(24)

Here I+'k",i) and I+o~") denote the first-order final and
initial states, respectively. For I%''k~,'i ) in the first term on
the right-hand side of Eq. (24) the np nh excitat-ions with
n ~ 2 do not contribute; accordingly we obtain

(25)

u(0)= g (2J; —K;)n;+J, +K, +Ji ,'K&+J —,'K———
i&c, l

and for triplet states,

u(1) =u(0) —2K, +Ki+K

(21a)

(21b)

Here the. first term is explicitly given by

+ g & jldlc')
c

(p-hlale &=+ (kldlc)
~c' cl &cc ~k kl

I E E, l

~c 'k [cl]+~cc ' ~kj [ 1jj

u('&+(0) ) =
i & 1s, vr„, m.

x

(2J; —K;)+J„+K„+3J

——'e +J .—-'SC . (21c)

Here J; and E; denote Coulomb and exchange operators,
respectively, associated with the relaxed orbitals I1t;).
The two potentials differ only with respect to the sign of
the exchange operators for the open-shell orbitals j, c,
and l. The orthogonality properties imposed on the con-
tinuum orbitals do not follow automatically from solving
Eq. (18) but have to be imposed as additional constraints.
The potentials used for the X+(S') states of the rr m* sa--
tellite manifold (as specified in Sec.II 8) are

— y &k dlc&
Ek +Fj Cl E, k~

(26)

For simplicity, the CVS approximation has been used
here; c' is allowed to differ from c only in the spin quan-
tum number. The three terms on the right-hand side of
Eq. (26) arise from the admixture of the single excitations
(k'c '), (j'c '), and (k'c ') in the final ¹lectron
state.

The second term in Eq. (25) can be combined with the
third term arising from ground-state correlation. The re-
sulting part is denoted A, &

k(1) and is

~j /k(1)=& y„,

i&kid

lr�
&n, + g yk„i & jldls &n,

and

v( X+(1))=u( X+(0))—2K„+K„+K g, (21d)

—g y„,„(uld Il ) n, —g yk, „i ( u ld lc )n„.

(27)

Here the abbreviationwhere J = —,'(J +J ) and K = ,'(K +k ). —
x y x
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~r+~s ~u &U

(28)

is used; the summations are restricted by the HF occupa-
tion numbers (n; =1 n—; =1,0). In the CVS approxima-
tion only the last term in Eq. (27) survives, and the
ground-state correlation contribution in the first-order
amplitude becomes

the polarization and correlation contributions depend
strongly on the photoelectron energy and may play an
essential role near threshold. This means that the conju-
gate shakeup amplitude included in the RCHF model is
not the only dynamically important part of the full satel-
lite transition amplitude. The neglect of the other two
dynamical first-order contributions may seriously affect
the quality of the RCHF description.

Ek +Cj Cl C„
(29) IV. CALCULATIONS

A „„(1)=—&k Idle &&@,'"ll &+ &j Idle &&g'k" ll &

where

&fj"lI &=(E,—st) '( —I;,i, +1'iv,'.t)

(31a)

(31b)

& fk ll & (sk el) ( Vkclc+) 2~ lkcc

+ VkjlJ+1 3~kjjl) ' (31c)

The coe%cients y, , y2, and y3 of the exchange integrals
in Eq. (31) depend on the details of the methods used to
determine the relaxed bound and continuum orbitals and
are not of interest here. In deriving the expressions Eqs.
(31a) and (31b) the RCHF potentials Eq. (21) and the
orthogonality conditions (alp& & =0 and (g'k 'lf& & =0
have been assumed.

Comparison of the exact and the RCHF amplitude
shows discrepancies already in first order of perturbation
theory. Apart from the "nondiagonal" third term in Eq.
(26) and exchange integrals, there is a "polarization" con-
tribution

A „„(1)=—(kldl
Vk '

jcl, k
E E,j l

(32)

in the exact amplitude that has no counterpart in the
RCHF result. The quantity

(Ej El ) ~kj[kl)

can be viewed as a nonorthogonality contribution to
(Pj'."lP& & induced by the continuum electron in the state
k. In the RCHF model, of course, such a polarization
effect is not accounted for. Another shortcoming of the
RCHF approximation is the neglect of the ground-state
correlation contribution Aj, & k(1) given by Eq. (29). Both

Obviously this contribution arises from admixtures of
double excitations (k'j 'l 'u ') in the ground state

l
AN&

The perturbation expansion of the RCHF amplitude
[Eqs. (14)—(16),(20)] is easily obtained. Again, there is no
zeroth-order contribution,

A, ( k(0)=0 (30)

since the zeroth-order overlaps (p'k 'lp& & and (pjlp~ &

vanish. In first-order the RCHF and CVS approxima-
tions lead to the following result:

The RCHF model described above was applied to the
pair of (2ir)'(2cr) '(lm) '( X+) satellites in the C ls
photoelectron spectrum of CO. The computational pro-
cedures were essentially the same as in our previous cal-
culations of the 1s single-hole ionization and we refer the
reader to the description given in I for more details.
Hartree-Fock (HF) calculations of good quality (as
defined in I) were performed for the neutral CO molecule
and the C 1s single-hole state of CO+. The relaxed orbit-
als generated by the latter HF calculation were chosen to
represent both the ~ ~* triple-t (S1 ) and singlet (SO) sa-
tellite state, respectively, with the first virtual (unoccu-
pied) m orbital used as the sr* orbital. The explicit ex-
pressions for the satellite wave functions and the associat-
ed static-exchange potentials are as specified by Table I
and Eqs. (21), respectively.

The one-electron Schrodinger equation for the photo-
electron orbitals was solved using an iterative method
based on the Schwinger variational principle and single-
center expansion technique [25,26]. Details of these cal-
culations are discussed in I. Single-center expansions and
numerical radial integrations were also used to calculate
the overlap and dipole integrals for bound and continuum
orbitals. The size of the various expansions and the grid
parameters for the numerical integrations have been
given in I.

The total photoionization cross section averaged over
molecular orientations is given by the expression (in
atomic units)

4 2

cok g fI, „l'.
lm JM

(33)

I, „(0)=&2[x„(0)((g[k&'lr„lP„»

Here m is the photon energy, k is the magnitude of the
photoelectron momentum, and Il „denote spin-free tran-
sition amplitudes defined with respect to the partial
waves g'k& '(r) in the partial-wave expansion

1/2
~ I

P'k '(r)= — g—g'k, '(r)Y; (k) (34)
lm

of the continuum orbital. The asymmetry parameter /3 of
the photoelectron angular distribution is calculated ac-
cording to Eq. (94) of I. For the singlet-coupled satellite
SO the amplitude Il „is given by
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In Eq. (35a), x„(0) denotes the spin-free spectroscopic
amplitude [Eq. (15)] in the RCHF approximation,

(35b)

Similarly to Eq. (35a), the spin-free amplitude II „(1)for
the triplet-coupled satellite S1 is

I „(1)=i 2[x„(1)«q„', 'Ir„ly„»
+ ( &3/2) & +o I @0 & « P * I»„ I y „»

x « yk-, 'Iy.„»] . (36)

In the strict RCHF model the spectroscopic amplitude
xi, (1) for Sl vanishes and the (effective) direct part does
not contribute at all. Obviously, this is an
oversimplification and disagrees with the experimental
relative intensity of S1 in the high-energy limit. Deviat-
ing from the RCHF prescription we here use the more
realistic value of x &,

=0.123 obtained from a recent
Green's function study [27]. For consistency we have
also replaced the RCHF result of x „(0)= —0.227 for SO

by the corresponding Green's function value —0. 185.
This choice reduces the SO cross section by about 40% at
high photon energy and leads to good agreement between
the theoretical and observed relative satellite intensities
in the high-energy limit.

The numerical values of the relaxed-frozen overlap and
dipole integrals for the occupied orbitals have been listed
in Table I in I. The additional integrals required here are
& itj*IP„&=0.1256 and & Q„*I»& IP&, &

= —0.0581 a.u.
(where is =2cr and m.*=2m.).

V. RESULTS AND DISCUSSION

Here the dipole operator components refer to the spheri-
cal components

r

+(x+ty)&2 for p=+1,
z for p=O,

and p=+ for p=+1. The effective overlap and dipole
integrals are defined as in Eqs. (12b) and (12c), respective-
ly, with spin-free orbitals used throughout. Since CO has
only one occupied ~ orbital some of these quantities sim-
plify considerably, e.g. ,

tions. The satellite intensities in the high-energy (Al ICa)
spectrum [1,28] are 2.3% for S 1 and 4.8% for SO relative
to the C ls main peak. Theoretical intensity ratios (2.2%
for Sl and 5.0% for SO) in very good agreement with the
experimental values were obtained by Angonoa, Walter,
and Schirmer [27] using Green's function (GF) methods.
Both the CI and the GF studies show that the higher ly-
ing satellite state SO has already substantial admixtures
of ~-~' double excitations.

Figure 1 shows the calculated S1 and SO satellite cross
sections from the respective experimental thresholds
(304.5 and 311.1 eV) up to 400 eV photon energy. Both
curves exhibit broad shape-resonance structures centered
10—11 eV above threshold. While for the triplet satellite
S1 the resonance peak appears to be growing out of a dis-
tinctly rising (towards threshold) background, the reso-
nance in the SO channel is superimposed on the declining
wing of a broad structure with a maximum at 350 eV. At
threshold the S1 cross section is about there times larger
than that for SO. The two curves cross each other be-
tween the S1 and SO resonance positions. Without the
resonance enhancements the crossing point would be con-
siderably higher, namely around 330 eV. Above this
point the satellite intensities approach the theoretical
high-energy ratio of 2.2/5. 0.

Figures 2 and 3 show for SO and S1, respectively, the
decomposition of the cross section into the separate con-
tributions of the ko. and k~ subchannels. Also plotted
(broken line) are the "direct" cross sections obtained by
omitting the conjugate contributions in the amplitudes
(35) and (36). We see that the resonant behavior is
specific to the ko. channel, while the k~ cross sections
are nonresonant. Similar to the case of C 1s single-hole
ionization, we may identify the resonances in the satellite
channels as o.* shape resonances, here associated with
quasibound double excitations of the type
( is) '( 1 sr ) '(2'�) '( o * )', where o.* is the unoccupied
valence-type o. orbital derived from the 2p atomic orbit-
als. Distinct differences can be observed with respect to
the height, width, and shape of the resonances for SO and
S1. The effect of the conjugate contributions in the ko.

0.05—

W 0.04—

~ 0.03—
U

0.02—
K
K0
~ 0.0a—

The first two shakeup satellites in the C 1s photoelec-
tron spectrum of CO are found 8.3 and 14.9 eV, respec-
tively, above the single-hole main line at 296.2 eV binding
energy [1,28]. The assignment of these peaks to a triplet
(S1) and singlet (SO)~-sr* excitation in addition to the C
ls hole has been confirmed by Guest et al [29] on the.
basis of large-scale configuration-interaction (CI) calcula-

300 320 340 360 380 400
Photon Energy (eV)

FIG. 1. Calculated photoionization cross sections (RCHF
approximation and length form) for the X+(m.-m*) satellites (S1
and SO) of CO+ (C 1s ').
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0.035—

0.030—

~0.025—

.~ 0.020

cn 0.015

interference, respectively, in the transition amplitude,
where the different sign of the spectroscopic amplitudes
x „and the larger (by &3) effective conjugate part for S 1

play an essential role.
To see the effect of interference more clearly we have

p 0lotted in Fig. 4 the "effective conjugate" cross section
P0 for SO obtained by using in Eq. (34) the spin-free am-
plitude

0.005—

I

300 320 340 360 380 400
Photon Energy (eV)

FIG. 2. Partial channel photoionization cross sections for the
SO satellite of CO+ (C 1s '):,direct plus conjugate cross
sections as per Eq. (35); ———,only direct cross sections ac-
cording to Eq. (16).

channel is a moderate enhancement of the direct cross
section. Note that in the ko. channel the effective conju-
gaepate part vanishes and the only conjugate contributions
are those included in the effective direct part.

The nonresonant k~ channels show a strikingly
different behavior for the two satellites. For SO we find a
very small km cross section at threshold, followed by a
steady increase to a shallow maximum 40 eV above, arid
a slow decline for higher energy. The conjugate contribu-
tions here lead to a substantial lowering of the direct k~
cross section, amounting to 40% at threshold. For Sl,
on the other hand, the conjugate contributions induce a
drastic enhancement of the k~ cross section and lead to a
steeply rising curve for decreasing photon energy. At
threshold the entire km. cross section is about five times
larger than the direct value. Note that even at 100 eV
above threshold the enhancement by the conjugate con-
tributions still amounts to 30%. Obviously, the different
impact of the conjugate contributions to the SO and
Slk~ cross sections is an effect of negative and positive

(37)

where the effective direct part of the full amplitude (35)
has been omitted. The corresponding quantity for S1 is
simply o. =30. . The effective conjugate cross sectionss1mp y cr&—
cr and o. for the m-m. shakeup satellites are, to within
constants, equal to the quantity s& (k) that has been in-
troduced in I IEq. (95)] as a measure of the overlap be-
tween the lvr orbital and the m continuum. As one would
expect, the "squared overlap" s, (k) is largest at thresh-
old (k~O) and drops rapidly with increasing energy.
The importance of interference effects for the magnitude
of the cross sections is seen most strikingly at threshold
where the full km cross section for S1 is three times as
large as the effective conjugate cross section, and six
times larger than the separate direct contribution.

How do the RCHF results agree with the experimental
findings? Figure 5 shows the relative satellite intensities
(branching ratios) as observed in recent synchrotron radi-
ation studies [30]. Although to some extent these data
may still reAect some experimental di%cultic s, there
seems to be firm evidence for the major trends: the sub-
stantial increase of the S1 intensity, in contrast to the
vanishing of the SO satellite, for low photon energies. A
near-threshold branching ratio of over 10% for Sl was
deduced from these synchrotron studies. The SO satel-
lite, on the other hand, could only be traced down to
about 350 eV, since for lower energy its intensity became
too small and could no longer be separated from the
background signal. Figure 5 also shows our calculated
branching ratios. The C 1s single-hole cross section was

0.030—
0.0030—

~0.025—

0.020—
0
& 0.015—
Q

M

~~ 0.010

0.005

~0.0025—

~ 0.0020—
0

~ M

& 0.0015—
M

~ 0.0010—
0

0.0005—

300 320 340 360 380 400
Photon Energy (eV)

FIG. 3. Sam.e as Fig. 2 for the S1 satellite of CO (C 1s ').

300 320 340 360 380 400
Photon Energy (eV)

FIG. 4. Effective conjugate cross section o of Eq. (37) for the
SO satellite.
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FIG. 5. Branching ratios (intensities relative to the C 1s
hole main peak) for the S1 and SO satellites: and———,present results for S1 and SO, respectively; o
and ———K ———,experimental results of Ref. [30] for Sl
and SO, respectively. The horizontal lines show the high-energy
(Al Ka) branching ratios for these satellites (Refs. [1]and [29]).

taken from the RCHF calculation described in I, using,
hot@ever, the spectroscopic factor x„=0.68 from the
Green's function calculation [27] instead of the slightly
larger RCHF value of 0.79. One should note that the o.

shape resonance in the theoretical C 1s single-hole chan-
nel, and hence the corresponding modulation of satellite
branching ratios, is about 2 —3 eV too high.

An obvious disagreement with experiment is the strong
resonance enhancement in the RCHF cross section for
SO, suggesting that the S1 resonance may also be spuri-
ous. The nonresonant background, on the other hand,
seems to give a qualitatively correct description of the ex-
perimental intensities. The increase of the theoretical S1
branching ratio with decreasing energy is correctly pre-
dicted; though less pronounced than in the experimental
curve, the theoretical near-threshold values are 6%%uo or
4% with and without consideration of the o' resonance,
respectively. Disregarding the resonance in the SO chan-
nel, extrapolation would predict a very small cross sec-
tion and branching ratio at threshold. Towards higher
energy the SO curve rises to a maximum at 340 eV and
approaches its asymptotic value slowly from above. The
experimental SO branching ratios lie somewhat below the
theoretical curve and seem to yield the asymptotic value
from below. While in some respects the picture drawn by
the present calculation is quite satisfactory the question
remains of how to explain the spurious resonance struc-
tures. The answer must be sought in specific shortcom-
ings of the present theoretical treatment, such as the
neglect of the target polarization induced by the continu-
um electron (in the cr* orbital) and the use of scattering
potentials constructed from nonoptirnized relaxed orbit-
als. Probably the o.* double-excitation resonances have
to be expected at distinctly lower energies, possibly even
below the respective thresholds.

Figure 6 shows the calculated photoelectron asym-
metry parameters P. The resonance in the SO channel is
refiected in the P curve by a sharp rise from a minimum

—1.0
300 320 340 360 380 400

Photon Energy (eV)

FIG. 6. Photoelectron asymmetry parameters for photoion-
ization leading to the S1 and SO satellites of CO+ (C 1s '), re-
spectively.

(P=O) below the resonance position and a plateaulike be-
havior (P=1.7) above 340 eV. The /3 curve shows a dis-
tinct dip centered at 330 eV, coinciding with the local
minimum in the SO cross section. The /3 curve for Sl
seems to be somewhat unusual: a small step around the
calculated resonance is followed by a plateaulike shape
with /3 around 0.

Finally, we will

briefly

consider the monopole™
forbidden satellite states associated with the
configuration (2m)'(ls) '(lm) '. According to the re-
sults of Ref. [27] there are four states in the order
X, 6, and X at energies 9.7, 9.8, 11.1, and 11.4 eV,

respectively, relative to the C 1s single-hole state. The
energy separation between the states of the same symme-
try is much smaller than for the pair of X+ states and
their characterization as triplet and singlet ~-~ excita-
tions is much less justified than in the latter case. Assum-
ing the latter coupling scheme nevertheless, the cross sec-
tions for the states X (0), X (1), b, (0), and b, (1) are
simply given by o'0 30 p 2o 0 and 6o 0, respectively,
where o.

0 is the effective conjugate cross section as
specified for SO in Eq. (37). Note that these expressions
reAect the statistical ratios of the respective satellite mul-
tiplets. Apart from slight differences due to the specific
target potentials, the o. curves for the monopole-
forbidden satellites will be similar to the curve shown in
Fig. 4. Since the o.

0 value at threshold is an order of
magnitude smaller than the S1 cross section and drops
sharply toward higher energy it will be diKcult to detect
these examples of pure conjugate shakeup in the experi-
mental spectrum.

VI. SUMMARY AND CONCLUSIONS

The relaxed-core Hartree-Fock (RCHF) approximation
has been used to calculate energy-dependent intensities of
shakeup satellites in the E-shell photoionization of atoms
and molecules. As an example we have considered the
m.-~* satellites in the C 1s photoelectron spectrum of CQ.
The formulation given in I for X-electron transition mo-
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ments involving determinants with mutually nonorthogo-
nal orbitals has been adapted to the treatment of X-shell
shakeup satellites. As in I, use has been made of the
care-valence separation (CVS) approximation which is
justified here by the large energy difference and the small
coupling matrix elements of states with different K-shell
occupations. The CVS approximation leads to a consid-
erable simplification of the RCHF transition moments
and eliminates the problems of nonorthogonality between
the initial and final ¹ lectron state. As a further
modification of the RCHF scheme, we have adjusted the
static (energy-independent) spectroscopic amplitudes x ',", '

to values obtained from large-scale ab initio calculations,
thereby matching the relative satellite intensities to their
theoretical (and experimental) branching ratios in the
limit of high photon energy.

The essential finding of the present calculations for the
pair (SO,Sl) of C ls ir-m. * satellite states in CO are
strong interference effects between the direct (bound-free
dipole integral) and conjugate (bound-free overlap in-
tegral) contributions in the transition moment at near-
threshold energies. These effects are particularly dom-
inant in the k~ subchannel and, for the triplet-coupled
satellite Sl, lead to a drastically increasing cross section
with decreasing photon energy. For the singlet-coupled
satellite SO, on the other hand, we find destructive in-
terference resulting in comparatively small values of the
cross section near threshold.

These interference effects seem to provide an explana-
tion for the strikingly different behavior of the experi-
mentally observed satellite intensities. It should, howev-
er, be recalled that the near-threshold enhancement of
the S1 branching ratio, deduced from the experiments of
Ungier and Thomas [9] and of Reimer et al. [8], is even
more pronounced than in the present description. Vngier
and Thomas [9] have rationalized the enhanced Sl cross
section as an effect of conjugate shakeup. The role of the
different target potentials for SO and S1, which is dis-
cussed by Reimer et aI. [8] as a possible reason for the
different satellite intensities near threshold, seem to be of

minor relevance [9]. The importance of direct-conjugate
interference is underlined by the fact that pure conjugate
shakeup, observable, e.g., in the monopole-forbidden
m-m* satellites, is not effective except perhaps at energies
very close to threshold.

In both satellite channels the RCHF results show dis-
tinct o. shape resonances about 10 eV above threshold.
The position and even the occurrence of these resonances
are questionable, and they may well be artifacts of our
calculation. At least for SO, the experimental results
clearly discard any resonance enhancement down to 2—3
eV above threshold. This apparent discrepancy suggests
possible shortcomings of the present theoretical treat-
ment. We have already mentioned that the RCHF repre-
sentation of the target states could possibly be improved
by state-specific relaxed orbitals. Also the neglect of dou-
ble excitations, which are substantially admixed in the
optimized SO satellite state, may play a role. A more
severe shortcoming also becomes apparent in our
perturbation-theoretical analysis of the RCHF transition
moment: already in first-order dynamically important
contributions are missing, namely a correlation contribu-
tion arising from initial-state correlations and a polariza-
tion contribution due to the response of the target to the
photoelectron. Thus the RCHF description of shakeup
satellites is inferior to that of the single-hole main state
where the RCHF transition moment is complete through
first order (in the CVS approximation). One must be
aware that upon inclusion of these energy-dependent con-
tributions the picture given here may yet change consid-
erably.
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