PHYSICAL REVIEW A

VOLUME 44, NUMBER 9

1 NOVEMBER 1991

Collisional broadening of Rydberg states by alkali-metal perturbers
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Collisional broadening of nS Rydberg states by K, Rb, and Cs atoms is studied using the adiabatic ap-
proach for the 3= quasimolecular state and impulse approximation for all other contributions to the col-
lisional width. The calculations are based on the use of the low-energy phase shifts for electron scatter-
ing by alkali metals obtained from ab initio close-coupling calculations and their extrapolation accord-
ing to the modified effective range theory. We obtain a good agreement for the magnitude of the width
with experimental data and satisfactory agreement for the oscillatory part of the width as a function of
the principal quantum number. We find that the theory overestimates the amplitude of the oscillations.
In the case of Cs as a perturber, the agreement with experimental data is good if we assume the existence

of the low-energy P resonance of Cs™.

However, recent ab initio bound-state and scattering calcula-

tions indicate the existence of the Cs (*P) bound state rather than the resonance.

PACS number(s): 32.70.Jz, 34.60.+z

I. INTRODUCTION

Studies of collisions of Rydberg atoms with other
atoms in the ground state is a very good tool for the in-
vestigation of low-energy scattering phase shifts for the
collisions of electrons with atoms [1]. For example, the
kinetic energy of a Rydberg electron in the state with the
principal quantum number n =25 is equal to 0.02 eV
which corresponds to the thermal energy region. This re-
gion is unavailable for beam experiments, and it causes
many uncertainties in data for low-energy electron
scattering by atoms, especially for alkali metals. For ex-
ample, data [2] on momentum-transfer cross sections for
the e-Cs scattering obtained from swarm measurements
are in very strong disagreement with theoretical calcula-
tions. Therefore, reliable theoretical calculations of Ryd-
berg atom-alkali-metal atom collisions and their com-
parison with experiments may provide a useful guide.
Experimental data [3,4] on collisional broadening of Ryd-
berg states by alkali-metal perturbers are of special in-
terest. In contrast to the data on the rare-gas atoms they
exhibit very large broadening cross sections and oscillato-
ry dependence of the broadening and shift on the princi-
pal quantum number in the region n =25-35. The first
attempts [5,6] to explain these oscillations were based on
the impulse approximation and existence of low-energy
3P resonance in electron-alkali-metal scattering as sug-
gested by Matsuzawa [7]. However, Fabrikant [8]
showed that this explanation implies that the position
and width of the resonance strongly disagree with the re-
sults of ab initio calculations of the scattering phase
shifts. On the other hand, ab initio phase shifts, substi-
tuted in the impulse approximation formula, give good
results for sufficiently high n (n >30). The conclusion
was that the impulse approximation cannot explain the
oscillatory dependence of broadening and shift on n.
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The physical conditions of the validity of the impulse
approximation were discussed elsewhere [7-9]. Here we
would like to stress one more point. The impulse approx-
imation is valid if the relative velocity of the Rydberg
atom (A)—perturber atom (B) collision is high enough to
have only one electron-perturber scattering during one
Rydberg-perturber collision. For this purpose we should
have

V>-—, (1)

where r, g is the effective radius of the electron-perturber
interaction and T'=~2wn3 is the period of motion of the
Rydberg electron. Therefore the approach fails for low V
or for low n. The impulse approximation is more justified
in the case of nonresonant scattering when the effective
radius is roughly equal to the Weiskopf radius [10] (atom-
ic units are used throughout the paper)

1/3

TTa , 2)

4v,

Y=

where v, =1/n is the velocity of the Rydberg electron,
and «a is the polarizability of the perturber B. However,
in the case of the low-energy 3P resonance r, 5 becomes
greater, and in this case another approach is necessary to
describe the collisions.

Recently Borodin and Kazansky [11] suggested the
adiabatic mechanism for the collisional broadening of
Rydberg states by alkali metals. In contrast to the im-
pulse approximation, this approach assumes the collision
velocity to be small enough and considers the multicol-
lisional interaction between the Rydberg electron and the
B atom. As a result of this interaction, adiabatic energy
curves are formed, and the theory of nonadiabatic transi-
tions can be applied. Using a model approach based on
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the Wigner parametrization of the P scattering phase
shift, Borodin and Kazansky [11] obtained a satisfactory
description of the oscillatory dependence of the broaden-
ing cross section of 7.

In the present paper we put these results on a firmer
theoretical basis. We calculate the collisional width using
the adiabatic approximation for the *P contribution and
the impulse approximation for all other waves. We use
numerical phase shifts obtained by extrapolation of the
close-coupling calculations using the modified effective
range theory of Fabrikant [8]. Our results have a more
quantitative character, although they are still limited by
the region of sufficiently high n, since the impulse ap-
proximation fails for low n, even in the case of non-
resonant scattering.

II. THEORY

We will start with our treatment of the 3P resonance of
the B~ ion. This state leads to the formation of two
quasimolecular states >3 and °II. These ion states are
mixed with the covalent quasimolecular states != and 33
generated by the n2S of the Rydberg A** atom and the
28 state of the B atom.

The triplet broadening cross section is given by the ex-
pression

or=2m [(1—ReS,,)pdp , 3)

where S, is the diagonal S-matrix element as a function
of the impact parameter p. The collisional width is relat-
ed to the broadening cross section through the equation

y=2NVo'. (4)

The approach of Borodin and Kazansky [11] considers
transitions between two states, one of which corresponds
to the 3P resonance state of the ion B~ and the other to
the Rydberg electron in the A atom. In the two-state ap-
proximation

Saa:(1__P(a))eZiS(“)+P(a)eZi8(d) , (5)

where P'® is the probability of the inelastic transitions
between the adiabatic states, 5% and 89 are phases of
the system evolution along the adiabatic and diabatic
paths.

The energies of the adiabatic states are given by the
solutions of the equation [11]

sin{m[uy+v(R)]}sin[7v(R)+8,(p(R))]=W*R), (6)

where v(R)=[ —2E 4(R)] "2, u, is the quantum defect
of the %S state, 8(p) is the e-B scattering phase shift as a
function of electron momentum, and

WAR)= ifT:;sirﬁF(R )sind(p(R))sinmieg , o
FR)=2v [ (r'=1D)Vdr—T (8)
R /2v 4

Equation (6) was obtained from the Lippman-Schwinger
equation for the electron wave function which contains
the Coulomb Green’s function in the semiclassical repre-

V. M. BORODIN, I. I. FABRIKANT, AND A. K. KAZANSKY

44

sentation. This representation describes the electron as a
free particle having the momentum

1/2
2 1

p(R)= R 2 9)
v

This assumption implies that the electron’s wavelength is
large compared to r, 3. This condition is not very well
satisfied in the case of the P resonance when r, ;=3 /p.
As we will see below, this deficiency of the approach
leads to some overestimation of the oscillatory structure
of collisional broadening.

Equation (6) yields the adiabatic energy curves which
take into account the interaction between the *P reso-
nance state and the whole system of the Rydberg levels.
For the solution of the problem it is convenient to intro-
duce the quasiadiabatic energy curves [11] which are
determined by the equations

Vi< T Ho v2=—%81(p(R)) . (10)

The first energy curve gives the nS state and is R in-
dependent, whereas the second curve represents the re-
sult of a strong interaction between the 3P resonant state
and the hydrogeniclike multiplet of the Rydberg atom.
These quasiadiabatic curves cross at the point R_(n*)
defined by the equation

1 *
,u=;81(p(n yRD) . (11)

The transition rate between the quasiadiabatic states is
determined by the mixing parameter

1
n*)3

A(R)= W(R) . (12)
ar(

For the calculation of the transition probability we use

the distorted-wave approximation

P(d):fo A(z2+p2)‘/2

xexp |i [ AE[(p2+z§)“2]%dz, %. (13)

The transition probability between the adiabatic states
may be obtained from P'? according to the Landau-
Zener approach

P =exp(—P¥) (14)

The principal contribution to integral (13) is determined
by the integration in the vicinity of the crossing point
R .. If the mixing parameter A is R independent, this ap-
proach results in the well-known Landau-Zener formula,
but in the present case the mixing parameter A(R) oscil-
lates as a function of R, and this oscillatory behavior pro-
duces the oscillations of the broadening cross section as a
function of n [11].

We simplified the calculation of integral (13) by keep-
ing only the linear contribution to AE in the vicinity of
the crossing point

~ dR
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This approximation allows us to take into account the
principal contribution and avoid unphysical behavior of
the mixing parameter at z— — oo.

For all quasimolecular terms other than 33 we used the
impulse approximation for the broadening

y=47N [w(g)Imf,(0)dg , (16)

where w (g) is the momentum distribution of the Rydberg
electron, and f,(0) is the forward amplitude for the
scattering of a free electron with the momentum ¢ by the
perturber averaged over the total spin. The scattering
amplitude was calculated using the modified effective
range theory as described by Fabrikant [8]. Since the 33
contribution has been included in the adiabatic approach,
we took only 2 of the *P contribution of f, 4(0).

III. RESULTS AND DISCUSSION

The previous calculations [8] of the collisional
broadening of Rydberg levels by alkali metals showed
that the impulse approximation gives good results for
n >30. The main purpose of the present paper is to sup-
plement these studies by calculations of the broadening in
the most interesting region of intermediate n
(15 <n <30) where the oscillations occur. Since the va-
lidity of both the impulse approximation for the non-
resonant scattering and our version of the adiabatic ap-
proximation for the resonant scattering are limited by
sufficiently high n, our approach does not lead us to ex-
pect good results for very low n.

We will start our discussion from the consideration of
the Rb atom as a perturber, since the ab initio phase
shifts and the scattering lengths for this case give very
good results [8] for both broadening and shift in the im-
pulse region. In Fig. 1 we compare our results with two

Rb(nS)+Rb

N
o

width (10-14 MHz cm3)
o

15 20 25 30 35 40

FIG. 1. The dependence of the width per unit number densi-
ty ¥ /N for the Rb(nS) Rydberg states perturbed by the Rb
atoms in the ground state on the principal quantum number n.
Open circles, experimental data of Heinke et al. [3]; diamonds,
experimental data of Stoicheff and co-workers [4]; dashed line,
present theory, contribution of all waves other than *Z calculat-
ed in the impulse approximation; solid circles, present theory,
the 33 contribution is added in the adiabatic approximation.
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experiments [3,4]. In order to put the results of both ex-
periments on the same scale we used the relation between
the pressure and the temperature p =Nk, T for T=530
K. We found that the results of the two experiments
disagree by a factor of 2. The calculated width is closer
to the results of Heinke et al. [3] for large n and to that
of the Thompson, Weinberger, and Stoicheff [4] for low
n. The phase of the oscillations of the theoretical width
is in good agreement with both experiments. However,
the amplitude of the theoretical oscillations exceeds the
experimental amplitudes. As we have suggested in Sec.
II, this phenomenon is caused by the quasiclassical repre-
sentation of the Coulomb Green’s function that implies
the point electron-perturber interaction. An averaging
over the effective range of the e-B interaction should
smooth the oscillations. It should be emphasized that the
assumption about the point e-B interaction is necessary in
our approach only for the calculation of the Green’s
function, but not for the inclusion of the e-B interaction
by itself. More details can be found in Refs. [12,13].

In Fig. 2 we compare our results for the broadening of
the K S levels by Rb with the experimental data of
Heinke et al. [3]. Again we find good agreement for the
magnitude of width, and reasonable agreement for the
phase of the oscillations, but the theoretical amplitude is
too large as compared with the experiment.

Let us turn now to the case of the K atom as a per-
turber. In Fig. 3 we present results for the broadening of
K by K. As in the case of Rb-Rb, the results of the two
experiments differ by a factor of 2, and the magnitude of
the theoretical cross sections is in very good agreement
with the results of Heinke et al. [3]. However, both the
phase and amplitude of the theoretical oscillations
disagree with the experiment. The simplest way to fit the
theoretical phase to the experimental one is to change the
parameters of the *P resonance. However, we did not at-
tempt to do that because our treatment of the resonant
scattering is too approximate, and there might be some
other reasons for the disagreement. In particular, the
averaging of the oscillations over the region of the e-B in-
teraction mentioned above might give a shift to the phase
of the oscillations.
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FIG. 2. The same as in Fig. 1 for the perturbation of K(nS)
states by Rb.
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FIG. 3. The same as in Fig. 1 for the perturbation of K(nS)
states by K.

In Fig. 4 we present the results for the broadening of
Rb by K. They demonstrate essentially the same features
as those in the case of the K-K interaction.

The case of the Cs atom as a perturber is of special in-
terest due to considerable uncertainties in the data for
thermal energy electron scattering by Cs. As shown by
Fabrikant [8,14], many results of swarm measurements
(see, e.g. Refs. [2,15]) of momentum-transfer cross sec-
tions for Cs are in a strong disagreement with the
theoretical calculations. The most realistic experimental
results could be explained [14] if we assume the existence
of the low-energy P resonance as in all other alkali met-
als. However, it has been suggested [16] that due to the
large polarizability of the Cs atom it can support the P
bound state instead of the resonance. Recent accurate
bound-state calculations [17,18] confirmed this assump-
tion and gave values for the energy of the bound state
that are quite close to the first estimate [16].

The existence of the Cs™(°P) bound state strongly
reduces the low-energy momentum-transfer cross section,
and does not allow for explanation of the results of
swarm measurements [2]. Moreover, the existence of the
3P bound state strongly reduces the collisional broaden-

25 T
Rb(nS)+K

20

width (10-14 MHz cm3)

15 20 25 30 35 40
n

FIG. 4. The same as in Fig. 1 for the perturbation of Rb(nS)
states by K.
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ing of the Rydberg states by Cs in the impulse approxi-
mation [8] and in this instance leads to strong disagree-
ment with the experiment. Therefore further investiga-
tions of the problem would be of great interest.

Our adiabatic treatment of the 32 scattering can also
be applied in the case of the *P bound state. However, in
this case the intersection between the quasiadiabatic po-
tential curves occurs in the classically forbidden region.
The Rydberg electron wave function does not oscillate in
this region and the oscillations of the width as a function
of n disappear. Therefore, if the experimental oscillations
in this case were to occur, our consideration would
confirm the existence of the 3P resonance rather than the
bound state.

The experimental data for S states in the case of Cs as
a perturber are more scarce than in the cases considered
above. They cover a more narrow range of n, and do not
permit definite conclusions about the existence of the os-
cillations in the broadening of S states. However, the os-
cillations are observed in the broadening of Cs(nD) states
by Cs. As with calculations in the impulse approxima-
tion [8], the magnitude of the width for S states is in very
good agreement with the theory if we assume the ex-
istence of the *P resonance. In Fig. 5 we present the re-
sult of calculations of the width of the Cs Rydberg states
perturbed by Cs with the scattering parameters found in
Ref. [8] (case C in Table 3). Apparently, the region
n <22 cannot be described by our theory, but in the re-
gion 22 <n <30 we have very good agreement with the
experiment. Additional experimental data for n > 30
would be highly desirable. On the other hand, since ex-
perimental data for higher n are available for the
broadening of nD states, an extension of the theory to the
case of nD states would be quite useful.

In Fig. 6 we present the data for the Rb atoms per-
turbed by Cs. Experimental data exist only for n <20,
which is apparently out of the range of the validity of our
theory. Again, experimental data exist for higher n for
broadening of the nD states.
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FIG. 5. The same as in Fig. 1 for the perturbation of Cs(nS)
states by Cs. Calculating the >3 contribution to the width we
assumed the existence of the Cs™(*P) resonance with the posi-
tion E =12.6 meV and width T =9.1 meV (see Ref. [8]).
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FIG. 6. The same as in Fig. 5 for the perturbation of Rb(nS)
states by Cs.

IV. CONCLUSIONS

The results obtained in the present paper improve our
understanding of the interaction of Rydberg atoms with
alkali metals. The combination of the impulse approxi-
mation approach for the nonresonant scattering, and the
adiabatic approach of Borodin and Kazansky [11] for the
resonant scattering, allows us to obtain a good descrip-
tion of the broadening of the nS Rydberg levels by alkali
metal perturbers at intermediate values of the principal
quantum number n (15<n <30 for Rb and K as per-
turbers and 20 <n <30 for Cs as a perturber). The best
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results were obtained for Rb as a perturber. However,
even in this case the amplitude of oscillation of the width
as a function of n is too large compared to the experimen-
tal data. The reason for that is the approximate treat-
ment of the Coulomb Green’s function entering the in-
tegral equation for the adiabatic energy of the quasi-
molecule AB. This approximation implies that the ra-
dius of the e-B interaction is small compared to the elec-
tron wavelength that is not very well justified for the res-
onant scattering. We expect that a more precise treat-
ment of the Green’s function will lead to smoothing of
the oscillations.

The Cs atom as a perturber still remains an interesting
and contradictory object. On the one hand, the early pre-
diction [16] and recent ab initio calculations [17-19] yield
a P bound state for Cs~. This is also supported by accu-
rate ab initio scattering calculations [19,20]. On the oth-
er hand, the swarm measurements [2] and large-n behav-
ior of the width of Rydberg levels perturbed by Cs cannot
be explained without an assumption about the existence
of the *P resonance. Present studies also confirm the ex-
istence of the 3P resonance. Further studies of both
transport phenomena in weakly ionized Cs vapors and
collisional broadening of Rydberg states by Cs atoms,
both experimental and theoretical, are necessary to
resolve this contradiction.
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