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A Monte Carlo technique for modeling spectra with many resolved lines of ions in intermediate cou-
pling was presented in the preceding paper [Phys. Rev. A 44, 5707 (1991)]. We use the same concept
here with a modification for the near-LS-coupling case. Rosseland and Planck means of transition ar-
rays of Fe v and Fe v1 are evaluated. Comparison with “exact” computations shows much better agree-
ment than is found using the simple unresolved-transition-array approximation.
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I. INTRODUCTION

Line-rich, partially resolved bound-bound atomic-
transition arrays contribute significantly to opacities, but
there is currently no totally satisfactory method for cal-
culating that contribution. Although exact calculations
of these spectra (and their opacities) are not hard in prin-
ciple, the number of lines involved makes them time-
consuming and often impractical. Opacities can also be
calculated using the unresolved-transition array (UTA)
approach [1] in which each transition array—all the lines
between two specified electronic configurations—is treat-
ed as a single, broad, unresolved spectral feature, often
approximated as a Gaussian. When the lines are un-
resolved, this is often a very good approximation. When
spectra are wholly or partly resolved into lines, however,
the UTA approach is not wuseful for calculating
wavelength-averaged opacities, as we shall see below.

In a preceding paper [2], referred to below as I, we
presented a concept for random simulation of line-rich
partially resolved arrays, which allowed for much quicker
computations than “exact” models without losing much
precision. This model is based on the idea that
wavelength-averaged opacities do not depend much on
the strengths or positions of individual lines in a complex
spectrum. That is, if there are enough lines in the spec-
trum, calculated opacities will be approximately right as
long as certain statistical properties of the spectrum are
correct. This approach allows opacities to be found very
quickly because it does not require calculating real line
strengths or energies.

There are other models which calculate both line ener-
gies and amplitudes randomly, although not from realis-
tic distributions (see I for references and discussion). In
the present paper, we apply the concept and we show re-
sults for Rosseland and Planck mean opacities for a case
of astrophysical interest, namely, a near-LS-coupling
spectrum of Fe v and Fe VI.
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The idea in I is demonstrated with intermediate cou-
pling spectra. The arrays are assumed to be symmetrical,
and the correlation is found in the following way: the ex-
act energies are distributed into consecutive ranges of
equal widths on both sides of the average energy e,,. The
symmetrical arrays are then folded in such a way that
two ranges symmetrical with respect to e,, can be com-
bined into one for purposes of statistics. Then for each
energy range, the variance v, of the line amplitudes is
computed for some typical examples.

It turns out that to a good approximation v, is nearly a
decreasing exponential function of |e'—e,,|, where e is
the mean of the range boundaries e =(e; +e,)/2:

Inv,=a+pBle—e,,| . (1)

This functional form is then assumed for any symmetrical
array in intermediate coupling, and it was shown in I that
the parameters a and 3 can be evaluated simply without
knowing the exact transition energies and amplitudes.
Several relevant statistical characteristics of the transi-
tion arrays 4d*-4d>5p of Pd®" and 4d75s-4d"Sp of Cd**
were very well reproduced.

In the present work, on the other hand, since we wish
to apply the concept to an astrophysically relevant LS-
coupling spectrum, we introduce a different form for the
energy-strength distribution. By the same token, this
form will not be limited by construction to symmetrical
arrays.

Our model is essentially a fast way of generating line
strengths and energies, and does not try to do state-of-
the-art calculations of line profiles, bound-free opacity, or
free-free opacity. These are separate problems which
must be addressed no matter how line strengths and ener-
gies are found; we approximate them simply here to allow
our model to be tested against more detailed calculations
and a UTA approach. Ultimately, we envision our model
being used inside a large opacity code like OPAL [3] or

5715 ©1991 The American Physical Society



5716

MONTE [4] to find line strengths and energies in spectra
where transition arrays are highly resolved.

In Sec. II we explain the model in more detail. In Sec.
111, we present preliminary results for a simple spectrum
of iron where detailed atomic structure calculations are
possible for comparison; we show that our model gives
nearly the same Rosseland and Planck mean opacities as
the relativistic parametric potential model RELAC [5], and
much better opacities than the UTA approach. Section
III also discusses work needed for the model to be further
improved. Section IV gives our conclusions.

II. MODEL

The broad outline of how our model works is as fol-
lows. First, we assign a random energy and strength to
each line, as described in detail below. The energy is
chosen first, from an assumed distribution. Choosing the
strength (i.e., the square of the amplitude) is more com-
plicated because there is a correlation between line ener-
gies and strengths which must be modeled. After each
line is assigned a strength and energy, it is given an as-
sumed shape and added to a plot of the spectrum. This is
done one transition array at a time. When all the lines in
all the arrays are done, we add the continuum opacity to
the spectrum and calculate the Rosseland and Planck
means.

The part of the model that is new is the scheme for ob-
taining line energies and strengths. To get a line energy
we assume the energies in each transition array obey a
Gaussian distribution and generate a random number
obeying this distribution. That is, the number of lines per
unit energy dN /de, irrespective of the strength, is given
by

aw_ N
de  \/2mv,

where N is the total number of lines in the array, e is the
line energy hv, €, is the mean line energy, i.e., the
difference between the configuration average state ener-
gies, and v, is the unweighted variance of the line ener-
gies. This distribution is significantly wider than that of
the strength-weighted energies, which can also be closely
approximated by a Gaussian in many cases. This shows
that there is a correlation between the line energies and
strengths, such that the average strength of lines in a
given energy range decreases farther from the center of
the array. This important part of our model is further
discussed below.

The number N of lines and the mean line energy €, in
Eq. (2) are found using statistical approaches which have
been shown to be quite accurate in a wide range of cases
[6]. As in I, we find the variance v, of the line energies
by combining the energy ranges of the upper and lower
configurations. Specifically, if v,, and v, are the vari-
ances of the energies of the states in the upper and lower
configurations, the variance of the transition energies is
taken to be

, (2)

Uu:Uup+vlow . (3)
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This approximation is equivalent physically to assum-
ing that transitions occur between states whose energies
completely span the ranges of their respective
configurations. This is not true of the strong transitions,
which occur predominantly between relatively narrow re-
gions, called emissive zones, of the upper and/or lower
configurations (Ref. [1], p. 166). It is, however, a reason-
able approximation for the entire set of transitions, most
of which violate LS-coupling selection rules and are very
weak. Wilson [4] also makes this approximation. In the
two arrays we use as examples, the 3d*-3d 34p array of
FeV and the 3d3-3d24p array of Fe V1, this method gives
unweighted variances of 4.2 and 3.1 eV, which are 87%
and 78% of the actual variances of 4.8 and 4.0 eV, as cal-
culated by the atomic-structure code RELAC.

After each line energy is found, its strength is found by
choosing its amplitude from an assumed distribution and
then squaring it. Unfortunately, the actual distribution is
not known theoretically, and there is no simple way to
model it accurately. Earlier papers showing that simple
strength distributions work well model only some of the
lines—those allowed in pure LS coupling. The other
lines, those which violate LS coupling rules, are much
more difficult to model and have a big effect on the opaci-
ty.
Another aspect of the strength-modeling scheme which
opacities are sensitive to is the correlation between line
strengths and energies alluded to earlier and discussed in
I. This correlation means that the amplitude distribution
varies as a function of the line energy. This strength-
energy correlation is illustrated in Figs. 1(a) and 1(b),
which are scatter plots of line energies and strengths in
the 3d*-3d34p array of Fe Vv and the 3d>-3d%4p transition
array of Fe VI, as calculated by RELAC. These plots show
two aspects of this correlation: first, that strong lines oc-
cupy a narrower range of energies than weak lines, and
second, that there is a scarcity of weak lines near the
centers of the arrays.

As mentioned earlier, we use in this work a different
form for the strength-energy correlation from that used
in I. The reason is that in I we focused on spectra in “full
intermediate coupling,” i.e., not near either the LS or the
Jjj limits. The rationale is that the spectra in intermediate
coupling should be more readily modeled by random
simulation, since any approximate symmetry in the Ham-
iltonian will cause nonrandom structure in the spectra.
This is the reason for the vertical “stripes” in Figs. 1(a)
and 1(b). .On the other hand, there are many spectra of
astrophysical interest near LS coupling, for which opaci-
ty calculations are crucial. Also, in many cases the
“shift” [Ref. [1], Eq. (30)] between the weighted and un-
weighted transition energies is not negligible and the ar-
rays are not symmetric. For the cases considered in I,
the present functional form does not give as good a fit as
the log-linear formula of I [Eq. (1) here]; however, it has
more potential flexibility for the nonsymmetric cases.

We model the strength-energy correlation by calculat-
ing the average line strength as a function of energy. (Let
us recall that the strength being the square of the ampli-
tude, the average strength is the variance of the ampli-
tudes.) We now use two assumptions already discussed.
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FIG. 1. Scatter plots of line energies and strengths in two transition arrays of iron, as calculated by the atomic structure code
RELAC and by our Monte Carlo mode. Each line is represented by a point whose x value is the line’s energy in eV and y value is the
log of its strength in atomic units. (a) and (b) are RELAC calculations of the 3d*-3d*4p array of Fe v and the 3d3-3d ?4p array of Fe vI,
respectively. (c) and (d) are Monte Carlo calculations of the same arrays.
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The first is that the number of lines per unit energy is
given by a Gaussian with the unweighted variances, Eqgs.
(2) and (3). The second is none other than the UTA mod-
el (Ref. [1], p. 135). Ignoring the third- and higher-order
moments, we treat the strength density distribution
dS/de in each transition array as a Gaussian.
Specifically, we assume that

0.16 —
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— = exp

de v 27,

2u (4)
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w

Here, S, is the total strength in the array, and the
average weighted line energy ¢, and the weighted vari-
ance v,, are defined as

3
[Sd - 3d24p array in iron m
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FIG. 2. Line strength as a function of line energy in the (a) 3d>-3d%4p array of Fe vi and (b) 3d*-3d4p array of Fev. The x axes
are line energy, relative to the center of the array, in eV; the y axes are line strength in atomic units. The x and y values of each point
are the average energy and strength, as calculated by RELAC, of the lines near that energy. The smooth curve shows the strength-

energy correlation used in our model [Eq. (5)].
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where s; is the strength of the ith line. The values of S,,,
e, and v, are found using well-established procedures
based on the statistical properties of transition arrays [1],
i.e., without calculating the strengths and energies explic-
itly.

Thus the average strength, i.e., the variance of the am-
plitudes, of lines in a small range near energy e is the ra-
tio of Egs. (2) and (4):

S/, dS/de
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Introducing now the “shift” [Ref. [2], Eq. (30)] such that
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where we have used S,, =S\, /N. For the sake of simpli-
city, in this work we shall apply (5) in cases where the
shift de is negligible. In principle, Eq. (4) can be regarded
as the start of a Gram-Charlier expansion (Ref. [1]).
However, the condition for refining Eq. (5) in that way is
finding the corresponding expansion of Eq. (2), which is
not known at this point.

We can now calculate individual line strengths. The
scheme we use is simple and reproduces both the ampli-
tude (or strength) distribution and the observed strength-
energy correlation reasonably well. It has two steps,
which are repeated for each line. First, we choose an am-
plitude randomly from a Gaussian distribution with a
zero mean and a variance of 1; this is squared to produce
a random strength obeying a y? distribution with unit
average strength. Next, this strength is normalized by
multiplying it by an average strength obtained from the
line’s energy and Eq. (5). These two steps are equivalent
to choosing a random strength from a y? distribution
with an average strength which depends on the line’s en-
ergy as described by Eq. (5) (i.e., which decreases farther
from the center of the array). As a result, the amplitude
(strength) distribution of the lines in a narrow energy
range is a Gaussian (y? distribution) and the overall am-
plitude (strength) distribution is the sum of many Gauss-
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ians (x? distributions).

Our model reproduces the observed correlation be-
tween line energies and strengths quite well. This can be
seen from Figs. 1(c) and 1(d), which are scatter plots of
line energies and strengths calculated with our Monte
Carlo model for the same arrays shown in Figs. 1(a) and
1(b). Both the tendencies of strong lines to avoid the
edges of the array and of weak lines to avoid the middle
are reproduced. However, the nonrandom clumping of
lines around certain energies is, of course, not repro-
duced. Another test of our strength-energy correlation is
shown in Figs. 2(a) and 2(b), which display ‘“‘actual” (cal-
culated by RELAC) average strengths of lines in various
energy bins, as well as our assumed average strength as a
function of energy [Eq. (5)].

The rest of the model is straightforward. After each
line is given an energy and strength, it is convolved with
an assumed line shape and added to the plot of the spec-
trum. When all the lines are done, the free-free opacity is
added using simple analytical models for inverse Brem-
strahlung [7] and Compton scattering [8]. Finally, Rosse-
land and Planck means are calculated over a limited ener-
gy range, as explained below.

II1. RESULTS

A. Rosseland and Planck mean opacities

We have tested our model on a relatively simple spec-
trum of iron where an “exact” atomic structure calcula-
tion can be made for comparison. The spectrum contains
two transition arrays, the 3d *-3d34p array of Fe v and the
3d3-3d%4p array of Fevl, and a total of 2184 lines. We
compare Rosseland and Planck mean opacities calculated
by the relativistic parametric potential model
RELAC, by our Monte Carlo model, and by an
unresolved-transition-array approach. The opacities are
averaged over a limited energy range which includes al-
most all the lines in the spectrum but little area where the
opacity is dominated by the continuum contribution.
Thus, what we call a Rosseland mean «y is actually
defined by

v, dB,/dT
[ ——dv
- (6)
w2 dB,

KR
f v dT dv
and our ‘“Planck means” «kp are actually
10} dBv d
[ K dv
vy dBV
f v dT dv

1

Kp=

Here, v is photon frequency, B, is the Planck function,
K, is the frequency-dependent opacity, and T is tempera-
ture; the limits of integration are hv,;=15.72 eV and
hv,=54.93 eV. These are the same as the usual
definitions except that there the limits of integration are
zero and infinity. We use a limited energy range to em-
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FIG. 3. Partial Rosseland mean opacities as a function of linewidth calculated by three different models. Line profiles are Gauss-
ians. The averages are calculated over the energy range 15.72-54.93 eV [Eq. (6)]. The x axis is the Doppler width [fullwidth at half
maximum, (FWHM)] in eV. Results for the Monte Carlo model are the average of ten independent runs; error bars indicate statisti-
cal fluctuations. The dashed line is UTA opacity, which by definition is independent of linewidth.

phasize differences between the models. Averaging over
a wider range would make the models seem to agree
better because the results would be more heavily
influenced by the continuum opacity, which is the same
in all three models.
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The Rosseland mean opacity is much harder to model
than the Planck mean because it is extremely sensitive to
the presence or absence of even a few gaps in the spec-
trum. Even so, our Rosseland means are quite close to
RELAC’s. This is shown in Figs. 3 and 4, which plot

&
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FIG. 4. Partial Rosseland mean opacities as a function of linewidth calculated by two different models. Line profiles are Lorentzi-
ans. The averages are calculated over the energy range 15.72—54.93 eV, as indicated in Eq. (6). The x axis is scaled so that points in
Figs. 3 and 4 with the same x values have the same FWHM. Results for the Monte Carlo model are the average and standard error
of ten independent runs; error bars thus indicate statistical fluctuations.
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TABLE L. Partial Planck mean opacities (in cm?/g) calculated by our Monte Carlo model and by an
“exact” model (RELAC). The averages are calculated over the energy range 15.72-54.93 eV, as indicated
in Eq. 7; the uncertainties shown are one standard deviation of 10 independent runs. The UTA value

(not shown) is 2.63-10°.

Gaussian line profiles

Linewidth 0.01 eV

Model

0.1 eV 1.0 eV

RELAC 2.62Xx10°

Monte Carlo

(2.63+0.13) X 10°

2.63Xx10°
(2.6010.16) X 10°

2.66X 108
(2.61£0.17) X 108

Lorentzian line profiles

0.1 eV

0.3 eV 1.0 eV

RELAC 2.61x10°

Monte Carlo

(2.67+0.12) X 10°

2.47X 108
(2.4740.16) X 10°

2.58x10°
(2.59+0.18) X 10°

Rosseland means calculated by our model and by RELAC
as a function of assumed linewidth; UTA opacities, which
do not depend on line width, are also plotted. We show
results for both Gaussian (Fig. 3) and Lorentzian (Fig. 4)
line profiles. Of course, any number of other line shapes
are also possible; we use these because, besides being sim-
ple, they typify two extremes of possible shapes in that
the Lorentzian has long ‘“‘wings” or “tails” and the
Gaussian does not. (As the figures show, long wings can
dramatically increase the Rosseland mean, because they
fill in low places in the spectrum. In this case that occurs
mainly outside the arrays, and the difference between the
Rosseland and Planck means would be much smaller if
the limits of integration were narrower.) Thus testing our
model on these two simple line shapes gives us confidence
that it would work well with others, too.

As expected, both our Monte Carlo opacities and
RELAC’s are less than the UTA opacity for small
linewidths, when the spectrum is highly resolved, and in-
crease as the lines get wider and the spectrum becomes
unresolved. When the width of each line approaches
UTA width (about 2 eV for both arrays), the Monte Car-
lo and RELAC opacities actually exceed the UTA value.

Our Planck means agree virtually perfectly with
RELAC’s, for both types of line shape and a wide range of
linewidths. These results are shown in Table I. The
Planck mean is much easier to model than the Rosseland
mean because it is defined [Eq. (7)] with the «, factor in
the numerator, not the denominator. This means that
the Planck mean is sensitive mainly to the total strength
in the spectrum and not to gaps between the lines, as the
Rosseland mean is. Because of this, the Planck means are
virtually independent of the assumed linewidth and line
shape and are the same in RELAC and the Monte Carlo
model (as well as in the UTA approach).

B. Spectra

Our model’s spectra appear similar to RELAC’s except
that the strongest lines are too weak, especially when the
lines are highly resolved (Fig. 5). This happens because
the strongest lines in our spectra are about three times

too weak in the Fe v array and two times too weak in the
Fe vl array. This is due to an inadequacy in the strength
distribution. The variance of the amplitudes near the
center of the array is too small, or perhaps a Gaussian
representation of these amplitudes is inaccurate. Anoth-
er way of describing this question is the following: we ig-
nore the fact that there are two distinct types of lines in
these arrays—those allowed in pure LS coupling and
those which violate LS-coupling rules. The LS-allowed
lines contain almost all the strength (of order 90%) but
fewer than half the lines (about § in the Fe v array and 1
in the Fe VI array); hence, in these two arrays the average
strength of the LS-allowed lines is 2 or 3 times the overall
average. In our model, however, essentially the same
amount of strength is split among all the lines, thus our
maximum strengths are too small by the same factors (3
in the FeV array and 2 in the Fe VI array). This makes
our spectra too short when the lines are highly resolved;
when the linewidth approaches the width of the whole ar-
ray, the height of the spectra are determined mainly by
the total strength in the array (not individual line
strengths), so our model does a better job.

Although we have not done any formal tests of the
speed of our model, we are confident that it is inherently
much faster than exact methods. A Monte Carlo simula-
tion of the 2184 lines and energies in the test spectrum
shown here takes about 10 s on a MacIntosh II personal
computer; a RELAC calculation of the same spectrum on
similar machines takes roughly 10 min. (Neither time in-
cludes calculating line shapes or opacities, or plotting.)

C. Discussion

The opacities we calculate here agree very closely with
RELAC’s—within 5% on the average. This level of agree-
ment is not needed for the model to be useful. We say
this because the other uncertainties, e.g., those involving
line shapes, in most current calculations of Rosseland
means are at least this large. Also, most applications of
the Rosseland mean involve making the ‘‘diffusion ap-
proximation” [9] which often involves uncertainties as
large as the discrepancies shown here.
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Despite these good agreements, there are at least two
aspects of our model we would like to improve. The first
is the distribution of line strengths, whose inadequacies
we have already discussed. Improving the strength distri-
bution would require a better theoretical understanding
of actual distribution. By experimenting with various ad
hoc strength distributions, we estimate that a better one
would probably increase our Rosseland means by 10% or
SO.
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The second problem with our model, which was also
mentioned earlier, involves the line energies. It explains
why our Rosseland means tend to be higher than RELAC’s
for Gaussian line profiles and not for Lorentzians. (This
effect is small now, but as just mentioned, would probably
be larger with a better strength distribution). The prob-
lem is a tendency in real arrays for line energies to
“clump” together nonrandomly, an effect we cannot
model by a random distribution. We believe this occurs
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FIG. 5. Plots of the test spectrum of iron as calculated by our Monte Carlo model (right) and the “exact” model RELAC (left).
Each pair of plots assumes a different Gaussian linewidth, as indicated. Also, each Monte Carlo spectrum is from a different run of
the code, so the line energies and strengths are slightly different. The spectrum contains two arrays, the 3d*-3d 4p array of iron v,
centered at 30.61 eV, and the 3d3-3d%4p array of iron VI, centered at 41.08 eV.
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because levels with the same LS designations have almost
the same energies this close to pure LS coupling. The
effect can be seen in Figs. 1(a) and 1(b) as a tendency for
the points to form vertical stripes. The same effect is seen
in Figs. 6(a) and 6(b), histograms of the number of lines
per unit energy in the Monte Carlo and RELAC calcula-
tions. In the Monte Carlo model the energy distribution
is Gaussian, and the deviation from the Gaussian in each
bin is roughly the square root of the number of points in
the bin, as expected. In the RELAC model, on the other
hand, the broad outline of the energy distribution is near-

40—
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Number of lines per Bin
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ly Gaussian but the individual bins deviate much more
from this than in the Monte Carlo model. Also, unlike in
the Monte Carlo model, the deviations do not vary much
as the number of points in the bin changes. In short the
actual distribution of line energies is quite nonrandom.
This nonrandomness of the line energies decreases the
Rosseland mean because it results in energy ranges with
relatively few lines, which tends to open up gaps in the
spectrum. Since we do not model this effect, our Rosse-
land means are consistently too high, especially with
Gaussian line profiles, whose short tails emphasize gaps

3d* - 3d34p array of iron V
Monte Cario calculation
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FIG. 6. Histrograms of the distribution of line energies in our Monte Carlo model and in the “exact” model RELAC. The horizon-
tal axis is line energy in eV and the vertical axis is number of points per energy bin.
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in the spectrum. To prove that this is the reason, we did
a simple test in which we substituted RELAC’s line ener-
gies for the random energies in our model without chang-
ing anything else. The resulting Rosseland means were
much closer to RELAC’s. With Lorentzian line profiles,
however, the long wings of the lines largely fill in any
gaps between the lines, making the clustering of line ener-
gies much less important. Hence our model, which
neglects this effect, works better.

VI. CONCLUSIONS AND FUTURE WORK

We have described a fast Monte Carlo method for cal-
culating opacities of transition arrays where individual
lines are resolved. In tests on a simple spectrum of iron it
gives Rosseland and Planck mean opacities within 10%
of those from a detailed atomic structure calculation; this
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holds for both Gaussian and Lorentzian line profiles and
a wide range of linewidths. The method has been applied
only to cases near LS coupling and would probably need
modifications to work elsewhere. In addition, it has at
least two known shortcomings, discussed above.

If the model can be made to work quite generally, it
could be included in a large opacity code like MONTE or
OPAL as a fast way of calculating bound-bound opacities
in highly resolved spectra.
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