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Simulation of atomic transition arrays for opacity calculations
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A method is proposed for simulating resolved transition arrays of ionized atom spectra in full inter-
mediate coupling. The wave number and intensity of each line in an array are picked at random from
separated but correlated distributions. Even though each line is not exactly reproduced, this procedure
yields the correct following characteristics of the supposedly symmetric array: total intensity; second
and fourth moments of the distributions of unweighted wave numbers, of intensity-weighted wave num-
bers, and of transition amplitudes; numbers of lines and sums of intensities in consecutive narrow energy
ranges. All the parameters of the distribution are obtained by means of compact formulas, or tabulated.
Applications to the arrays 4d -4d Sp of Pd + and 4d Ss-4d Sp of Cd + are presented. Comparison with
the explicit results of the Slater-Condon method shows good agreement. It is proposed to use this
method for fast and reliable computation of Rosseland means and other opacity properties.

PACS number{s): 32.70.—n, 97.10.Ex, 52.25.—b

I. INTRODUCTION

The computation of bound-bound transition contribu-
tions to opacities in hot plasmas has long been recognized
as a major problem in computations of radiation transfer
and plasma equilibrium, for instance, for stellar atmo-
spheres [1,2]. The problem is essentially computational.
In principle, accurate and detailed calculations of
relevant energy levels and transition probabilities are not
impossible. However, for atomic ions of astrophysical in-
terest in local thermodynamic equilibrium (LTE), the
number of individual (level-to-level) transitions can
amount to millions. Considerable computational and
theoretical efforts [3—5] are invested in such calculations.
Many involve some kind of approximation like an aver-
age atom model [6], pure LS coupling [7,8], or use of an
experimental database [9]. It turns out that the results
depend critically on the amount of details in the atomic
model used in these computations. For instance, equilib-
rium properties of Cepheid stars are very sensitive to the
way the opacities of Fe and Ni ions in the plasma are cal-
culated [10].

For heavier ions in laboratory plasmas possessing open
d or f subshells the number of levels is even greater, and
detailed calculations of each energy level are plainly im-
practical, even with the most powerful computers avail-
able. Therefore it would be extremely useful to find an
approximation which would circumvent the exact com-
putation of energy levels and transition probabilities, but
would keep the level of detail required for the opacity
problem.

One approach would be to use the unresolved-
transition-array (UTA) [11] model. Here, each
configuration-to-configuration transition array is treated

as a single broad unresolved feature. The first few mo-
ments in a Gram-Charlier —type expansion [12] of these
features can be calculated very quickly by compact for-
mulas, without resorting to the detailed calculations
[13,14]. This model was successfully used for the inter-
pretation of emission spectra [15—17], because, in that
case, it is useful to compare the actual spectral features,
even if partially resolved, to unresolved Gaussians. A
low instrumental resolving power may actually improve
the comparison between UTA theory and experiment.
However it was shown previously [10,18] that neglecting
the resolved character of the transition arrays could lead
to serious discrepancies in the computation of the Rosse-
land mean because the latter is sensitive to the gaps be-
tween lines. An additional difference between emission
and absorption is that, in the latter, there is no "instru-
mental" line broadening, as far as the radiative transfer is
concerned. Thus, it turns out that, for the purpose of
opacity calculation, the VTA model is not as useful as for
emission spectroscopy.

The aim of the present work is to formulate an approx-
imate description of resolved transition arrays which
would hopefully help solving the problem of opacity cal-
culations. The basic idea, which is actually not new (see
Ref. [1], Chap. 7, and references therein), is quite simple:
Since the Rosseland mean involves some integral of the
quotient of a smooth, slowly varying function over the
absorption coefficient, it should not really matter if the
lines of the arrays are not at their exact places as long as
the correct number of lines are there, with a "proper"
distribution of intensities and wave numbers.

Thus, we shall look for a way of using random numbers
to simulate in a realistic way the energies and intensities
of the transitions in an array. These, of course, will not
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be exact. It is required only that some characteristics of
the array may be correctly reproduced: the average wave
number, the total number of lines, the array skewness and
kurtosis, etc. This simulation is proposed for obtaining
easy and reliable evaluations of the Planck and Rosseland
means. Other authors have used random numbers [19]
for opacity calculations. Our approach is different be-
cause we apply statistical ideas to the transitions them-
selves, for which we find some physically meaningful dis-
tribution, not to some matrix elements of the Hamiltoni-
an.

Previous implementations of the same ideas were al-
ready reported. For a superposition of many transition
arrays, the distributions of line energies and of line inten-
sities were correctly represented by separated statistical
distributions [20]. But, for a single resolved transition ar-
ray, it has been shown [21] that these distributions ought
to be correlated for the array to be reproduced in a satis-
factory way.

In the present paper, such a model of a joint distribu-
tion is derived from phenomenological results computed
for an array in full intermediate coupling and discussed
(Sec. II). Its parameters can be derived from compact
formulas already published (Sec. III). The application to
two different arrays is presented (Sec. IV). Then, the gen-
eralization to other types of arrays is discussed (Sec. V).

This paper is concerned with distributions of lines
only. The lines are supposedly infinitely narrow. Actual
results of Rosseland means computations with proper
line profiles are published in the following paper [22].
For the sake of simplicity, we restrict the analysis in this
paper to arrays that are symmetrical and for which the
shift 5E (Eq. 30 of Ref. [11])is small.

Throughout the following, the energy E of a line stands
for its wave number v', according to E =bcv'. The inten-
sity of a line uJ-a'J' is replaced by its strength S, which
is the square of its amplitude:

D'" being the electric dipole moment of the atom. This
replacement implies that the J levels of the initial
configuration are supposed to be populated proportional-
ly to their statistical weights 2J+1, and that the energy
dependence of the transition probability over the span of
the array can be neglected.

The proposed simulation is tested by comparison with
detailed line-by-line calculations, obtained through expli-
cit diagonalizations of the Hamiltonian. In the following,
such detailed results are referred to as exact.

Many numerical examples of that property can be ob-
tained by means of the relevant analytical formulas
[13,14].

In other words, the correlation is a trend for the
stronger lines to lie at energies closer to the center (of
gravity) of the array than the weaker lines. This qualita-
tive fact has not yet been represented by a general analyt-
ical formula. However, it is possible to study it in exam-
ples of line-by-line calculations.

A. Choice of an example

We have chosen a case where the statistical methods
are likely to be the most appropriate. Indeed, it has been
shown in fundamental papers [23—25] that the basic sta-
tistical properties of the best-known mathematical model
for random matrices, the Gaussian orthogonal ensemble
[26], may be spoiled by the occurrence of approximate
symmetries in the system. What is meant by approximate
symmetry is the existence of a good quantum number for
labeling the levels in addition to rigorous quantum num-
bers like J, the total angular momentum. Such good
quantum numbers in the vicinity of the Russell-Saunders
coupling are S, the total spin and L, the total orbital an-
gular momentum. In the vicinity of jj coupling, the j
quantum numbers of some electrons are good quantum
numbers.

For this reason we consider here configurations where
both major intra-atomic interactions, namely, the in-
terelectronic electrostatic repulsion G and the spin-orbit
interaction A, have the same order of magnitude. More
precisely, the variances of the matrix elements of both in-
teractions ought to have nearly the same value. The ex-
pansions of these variances in terms of the energy radial
integrals can be found in Refs. [13] and [14]. It is clear
that this condition may not be fulfilled simultaneously in
the energy variances of both configurations of a given
physical array. We shall assume, as a compromise, that it
is fulfilled in the sum of these variances. This sum is used
in Sec. III as a fair approximation for the unweighted
variance v„of the array line energies, i.e., with unity
weight for each line.

Let us consider as a good example the 4d -4d 5p tran-
sition array in the Pd + spectrum. It has the additional
advantage that it is quite symmetrical, and that 6E is
small. The values of the relevant energy radial integrals
used here are listed in Table I. These are Hartree-Pock
values, corrected by scaling factors (Ref. [27], p. 623)
close to unity.

II. CORRELATION BETWEEN LINE ENERGIES
AND INTENSITIES B. Functional shape of the correlation

The correlation between the energies of the lines and
their strengths is a conspicuous phenomenon which has
been presented in a previous paper [21]. It is supported
by general arguments and by many examples of detailed
line-by-line calculations. It may be sufficient to recall
here that the FWHM of the line energy distribution is
smaller, or even much smaller, when these energies are
weighted by their strengths than when they are not.

To determine the shape of the correlation, one can ap-
ply the following procedure to the exact energy and am-
plitude values of the lines, obtained by means of the
Slater-Condon method. The exact energies are distribut-
ed into consecutive ranges of equal widths on both sides
of the average energy E,„. Because this array is nearly
symmetrical, with a skewness coefficient +3= —0.50, two
ranges symmetrical with respect to E„can be combined
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4d4 4d 5p

TABLE I. Values of the parameters used for the diagonaliza-
tion of the 4d -4d 5p array in the Pd + spectrum, in cm

(Q; —Q,„)"w;

p„(Q)=
i =I,L

(2)

F (4d, 4d)
F (4d, 4d)
F (4d, 5p)
G'(4d, sp)
6'(4d, sp)
(4d

4p

73 800
50 500

2 200

76 300
52 700
30 323
10000

8 020
2 390
5 784

C. A joint distribution

Now that the correlation between the distributions of
energies and of amplitudes is fixed, it is necessary to
determine quantitatively one of these distributions. For
that purpose, we use the numerical values of the exact
centered moments of order n computed from the general
formula

I n (va)

into one. Then, for each range, the variance v, of the line
amplitudes is computed.

It turns out that the closer the range to E,„, the larger
the v, value. The variation is nearly a decreasing ex-
ponential function of ~E E,„~, w—here E is the average of
the range boundaries E=(E, +E2 ) l2:

ln(v, ) =a+PIE E„—
I

.

For the Pd + 4d -4d 5p array, a least-squares fitting of
a and p to the values of ln U, for nine values of E yields
a=2.07+0.20 and P=( —1.08+0.04) X 10 cm, which
are the correlation parameters. This fitting is presented
in Fig. 1. The same shape has already been found [21] in
the 3d -3d 4p array of Fe + and is also observed in the
4d Ss-4d Sp array of Cd + (Sec. IVB).

In the following, we will assume that the correlation
between energies and amplitudes is properly described by
Eq. (1) for the cases of interest to this paper. We will
show in Sec. III that once the functional form is assumed,
the parameters a and P can be determined without using
the exact results.

where L is the total number of lines and Q,„ is the aver-
age value of the generic quantity Q. We apply Eq. (2) for
n =2 and 4, successively, to (i) Q:Ew—ith weights w; = 1

(unweighted moments), (ii) same as above with Q =a, and
(iii) Q =Eand—weights w; =S, , the strength of line i. This
gives weighted moments.

All the values obtained for o.=[pz —(p, ) ]'~ and the
kurtosis coefficient a4=p4/(pz) are gathered in the left
column of Table II. It appears that a4 is close to 3, the
value for a Gaussian distribution, in the case of the un-
weighted energy distribution only. Therefore we adopt a
Gaussian distribution for the unweighted energies.

Based on this and the log-linear form for the strength-
energy correlation [Eq. (1)], a joint distribution function
of energies E and amplitudes a can be proposed:

L p
2

D (E,a) = exp
2m.+U„

a
Xexp — exp( —a —P~e~ )

2

~+plEIX exp
2

(3)

where c.=E —E,„, U„ is the variance of the unweighted
energies, a and p are the correlation parameters, and L is
the total number of lines. o „=(U„)' is given in the left
column of Table II.

The following built-in properties can be checked by
means of various integrations.

(i) f dcfD. ( as)da =L.
(ii) The variance of the amplitudes for a given energy

value E is equal to v, as defined in Eq. (1).
(iii) The variance of the energies is equal to v„as can be

seen after first integrating D(e, a) over a = —~ through
+ oo.

The simulated array defined by Eq. (3) can be generat-
ed numerically as follows. First, one picks at random L
energies in a Gaussian distribution with average value
E„and variance U„. Second, to each random energy E
one assigns an amplitude a picked at random in a Gauss-
ian distribution with average value zero and variance v,
computed by means of Eq. (1).

—2
—3

I

1 2

FIG. 1. Correlation between energies and strengths in the ex-
act Pd + 4d -4d Sp array. The variance U of the amplitudes of
the lines lying between (k —1)X 10 and k X 10" cm ' from the
array average wave number is a decreasing exponential function
of k.

D. Discussion

That the energy distribution in Eq. (3) is truly Cxauss-
ian (after integrating over a) is in fair agreement with the
phenomenological result for a4 (Table II). On the other
hand, the amplitude distribution is only assumed to be
Gaussian at a giuen energy. This is equivalent to assum-
ing that the distribution is approximately Gaussian in
each of the narrow energy ranges defined in Sec. II B.

Now, the adequacy of the joint distribution D [Eq. (3)]
can be checked by comparing the exact and the simulated
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TABLE II. Comparisons of various moments in the Pd + 4d -4d Sp and Cd + 4d Ss-4d Sp arrays.

Pd + 4d -4d Sp
Exact Simulated

Cd + 4d Ss-4d Sp
Exact Simulated

rms deviation o.„of
the line energies'

rms deviation o of
the weighted line energies'

rms deviation o., of
the line amplitudes

Kurtosis n4 of the
line energies'

Kurtosis a4 of the
weighted line energies'

Kurtosis o.4 of the line
amplitudes'

Largest line strength
of the array

29 068

ll 115

1.31

3 ' 1

8.1

53

26 470

11 110

1.31

2.8

6.0

34

24 869

6 503

4.92

2.9

10.8

1050

23 869

6 593

4.92

3.0

5. 1

10.0

1569

'In cm
Calibrated so that the total strengths of the arrays are 2940 and 50400 in Pd + and Cd +, respectively.

'The kurtosis coefficient is equal to 3 for any Gaussian distribution.

values of the number of lines, and of their total strength,
in each energy range. These comparisons are presented
in Table III. The two columns under the heading N, ver-
ify that N;, the number of lines in the energy range I,, has
almost the same value in the exact and simulated arrays.
The number of lines and the total strength in range i can
be obtained from the distribution D (E,a) by integrating
over adequate ranges (see Appendix). The exact array
and one sample random simulation are plotted in Fig. 2.
For the purpose of drawing, the lines were given a Voigt
profile, with a full width at half maximum (FWHM) of 90
cm

Although not perfect, the agreement between the two
arrays is quite good. This is satisfactory in view of the
simplicity of the model. The amplitudes exhibit a more
complicated behavior than the energies, but this could be
anticipated from the results of many previous studies.

III. AB INITIO CALCULATIONS

An essential property of the distribution proposed in
Eq. (3) is the possibility of deriving its various parameters
without resorting to any detailed Slater-Condon pro-
cedure, unlike what has been done in Sec. II for the phe-
nomenological study. This is shown more precisely in the
following.

(i) The average energy E,„ is the difference of the aver-
age energies of the corresponding configurations, which
can be obtained by means of any ab initio code [28—33],
to which 5E, the shift for the l +'-l /' arrays [Ref. [11],
Eq. (30)] is added. Let us recall that in this work, we con-
sider only cases where 6E is small enough so that using
the same E„ for the weighted and unweighted moments
is acceptable.

(ii) The number of lines L is determined, within 2% of

TABLE III. Comparisons between the exact and simulated line distributions in the Pd + 4d -4d Sp
array.

Energy
range'

Number of lines N;
Exact Simulated'

Total strength
Exact Simulated

479
420
308
215
150
77
30
25
11

S18
447
332
213
118
56
23

8
2

1983
757
146
38.1

13.6
1.7
0.1

0.1

0.0

2047
657
182
43.3

8.9
1.6
0.2
0.0
0.0

'The lines in the range k lie between (k —1)X 10 and k X 10 cm ' from the array average.
Calibrated so that the total strength of the array is 2940.

'Equation (A 1).
Equation (A2).
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Pv„~ exp( —P U„/2)
U =v„( 1+p U„)+&2/m

erfc( —PQ U„ /2 )
(4)

where erfc is the complementary error function. It is
noteworthy that the a parameter does not appear in Eq.
(4).

Let us define X=—PQU„. Then Eq. (4) can be rewrit-
ten

X +1— X X
exp erfc — =X&2/rr .

2 2
(5)

accuracy, by a statistical formula [Ref. [34], Eq. (26)].
(iii) The variance U„of the unweighted energies has not

yet been evaluated in compact form. However, as indi-
cated in Sec. II, it is approximately equal to the sum of
the variances of the unweighted energies of the aJM
states of both configurations [13,14]. Of course, this way
of computing does not account for the electric dipolar
selection rule on J. Its validity relies on two assumptions.
First, it can be assumed that the energies of the lines for-
bidden by the selection rule on J are distributed in nearly
the same way as the energies of the allowed lines.
Second, the state-energy distribution is often nearly
Gaussian [35,36] except in highly asymmetrical
configurations (Ref. [27], p. 624). Then, the distribution
of the line energies follows from the convolution of two
Gaussian curves, resulting in the additivity of the vari-
ances.

There remains the problem of determining ab initio the
values of the correlation parameters a and P. For that
purpose, the ab initio value of U, an exact expansion in
terms of squares and crossed products of energy radial in-
tegrals [13,14] can be used in the following way.

As mentioned in Sec. II, the correlation between ener-
gies and amplitudes is closely linked with the fact that
the variance of the unweighted line energy distribution U„

is larger than U . The latter can be expressed in the form

f e deaf D( ea) ada
oo oo

f de f D(c,, a)a da

resulting in

a=in(S, „)+In X +1-
0

—ln(X) +—' ln
2 2

(6)

For example, in the Pd case, using the values v„=(25 g2()
cm ) and v„=(11115 cm '), one obtains X=2.5g4 by
means of Table IV, then a= i.g3 and p= —1.0X lo
cm.

The total strength of the array is an exact multiple of
the square of the electric-dipolar radial integral [37]. All
the needed values of atomic radial integrals can be evalu-
ated, in general, by means of ab initio computer codes
[2g —33].

IV. NUMERICAL EXAMPLES

A. The Pd + 41 -41'5p array

The tests and applications presented above only con-
cern the 4d -4d Sp array in the spectrum of Pd +, which
contains 1718 lines. That array has been chosen because,
in both configurations, the matrix elements of the electro-
static interelectronic repulsion G and of the spin-orbit in-
teraction A have the same order of magnitude. As dis-
cussed earlier, such an array looks best suited for testing
the proposed statistical model. The comparisons with the
detailed exact results, obtained by means of the Slater-
Condon method with the same values of the radial in-
tegrals (Table I), are presented in the two columns on the
left of Table II, in Tables III and V, and in Fig. 2. The
agreement is good.

Equation (5) can be solved numerically for any value of
the ratio U /U„after the numerical values of the vari-
ances U„and U have been calculated by means of the
compact formulas [13,14]. For general use, solutions of
Eq. (5) are tabulated in Table IV.

The value of P is immediately deduced from that of X.
The value of a can be derived from the average value S„
of all the strengths in the array. S„being the ratio of the
total strength over L„ it is reached through the computa-
tion of the double integral

f dE f D(E, a)a da .

Using Eq. (5), it then follows that

B. The Cd + 41 Ss-41 5parray

TABLE IV. Solutions of Eq. (5) vs p=v /v„. The same model can be used for simulating another ar-
ray where G and A have approximately equal magni-

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060

6.841
6.794
6.771
6.738
6.707
6.651
6.586
6.477
6.252
5.935
5.627
5.354

0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

4.520
3.939
3.503
3.158
2.876
2.638
2.434
2.255
2.098
1.957
1.827

0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

1.714
1.608
1.510
1.419
1.335
1.256
1.182
1.113
1.047
0.985
0.926

Pd6+ Cd4+

a
ay,

b
cate
Pm'

bP..i.

2.07+0.20
1.83

—(1.08+0.04) X 10
—1.00 X 10

4.42+0. 31
5.00

—(1.42+0.08) X 10-'
—1.97 X 10

'From least-squares fit of Eq. (1). For Pd + see Fig. 1.
bEquations (5) and (6). P is in centimeters.

TABLE V. Comparison between the fitted and calculated
values of the correlation coe%cients a and P.
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Total strength"
Exact Simulated

Number of lines N;
Exact Simulated'

Energy
range'

44 486
5 330

536
45.3

3.2
0.2
0.0

45 404
4 366

466
132
28.4

2.6
0.3

677
554
365
239
137
77
32

678
570
402
239
119
50
18

1

2
3

5

6
7

'The lines in the range k lie between (k —1)X 10 and k X 10 cm ' from the array average.
Calibrated so that the total strength of the array is 50400.

'Equation (A1).
Equation (A2).

tudes: the 4d 5s-4d Sp array of Cd +, which contains
2082 lines. The relevant radial integrals have been deter-
mined by van Kleef and Joshi [38], who have classified
the Cd + spectrum. From the exact array, the values
a=4.42+0. 31 and P=( —1.42+0.08) X 10 cm can be
deduced, like in Sec. II B. Their small rms is a check of

the fitness of the correlation shape.
The simulation can proceed as described in Sec. IIC,

using the constants derived from ab initio results like in
Sec. III. The comparisons between the exact and simu-
lated arrays are presented in the two columns on the
right of Table II, in Tables V and VI, and in Fig. 3. The

16.0—
xgQ:
14.4—

9000.0

8100.0
(a)(a)

12.8—7200.0—

11.2—6300.0—

5400.0

4500.0 8.0—

6.4—3600.0—

4.8—2700.0

1800.0—

1.6—
900.0—

,. i. .. ~3~34,JI„J
5.99 7.19 8.39 9.59 10.79

x&Q

iu.LJi,~a( HIl& 0.00.0
24.68 4.7936.68

x j.Q
31.88 34.2827.08 29.48

9000.0 16.0—
xiQ-
14.4—

12.8—

11.2—

9.6—

(b)8100.0—

7200.0—

6300.0

5400.0—

8.0—4500.0

3600.0

2700.0

6.4—

4.8—

1800.0—

900.0—

) I, i, I, I&I)II1J,Jui.0.0
5.99 7.19 9.59 10.79

xlQ
8.394.7927.08 34.28 36.68

xIQ
31.8829.48

FIG. 3. Two calculated spectra of the Cd + 4d 5s-4d 5p ar-
ray. (a) Exact results of the Slater-Condon method. (b) Simulat-
ed spectrum (Sec. IVB). Abscissas in cm ', ordinates in the
same arbitrary units in both plots.

FIG. 2. Two calculated spectra of the Pd + 4d -4d'5p array.
(a) Exact results of the Slater-Condon method. (b) Simulated
spectrum (Sec. IV A). Abscissas in cm, ordinates in the same
arbitrary units in both plots.

TABLE VI. Comparisons between the exact and simulated distributions in the Cd 4d Ss-4d'5p ar-
ray.
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agreement is good. It can be stressed that the correlation
between energies and amplitudes is very strong. In gen-
eral, this occurs when the array is of the 1 l'-l l" type,
different from the l +'-l l' type, which is that of the
first example (Sec. IV A). Indeed, the l l '-I l" type
differs markedly from the latter by the existence of an
electric-dipolar selection rule on the atomic core. This
selection rule results in much smaller values of U /u„and
much stronger correlations.

V. CONCLUSION

A. Summary

In conclusion, the proposed simulation is very simple
to apply. The different steps are the following:

(i) All the energy integrals relevant to the chosen array
are calculated ab initio, together with the radial transi-
tion integral. Many relativistic Hartree-Fock or central-
field codes are available for that purpose.

(ii) The weighted and unweighted energy variances of
the array, the total number of lines L, and their average
strength are derived by means of compact formulas.

(iii) One obtains the parameters for the strength-energy
correlation from the value of a variable X [Eq. (5)] which
can be deduced by interpol. tion between the numbers in
Table IV.

(iv) A number L of energy values are chosen at random
from a Gaussian distribution, and to each one a transi-
tion amplitude is assigned, chosen from another Gaussian
distribution, which depends on the value of the energy.

The numbers obtained in this way for all the relevant
arrays can be used as input for opacity codes. Calcula-
tions of the Rosseland mean over limited energy ranges,
carried out for both exact and simulated arrays, have
shown a good agreement, and are reported in the follow-
ing paper [22].

B. Other cases and perspectives

The present model offers a wide range of applications,
i.e., the numerous arrays in genuine intermediate cou-
pling. In such cases, it appears that the correlation be-
tween energies and amplitudes is the crucial characteris-
tic for a correct simulation.

However, it is not sufficient when the symmetry effects
are large (Sec. IIA). This happens essentially in two
physical cases, i.e., where the electrostatic repulsion G
largely predominates over the spin-orbit interaction A,
and the opposite case.

In the former situation, the selection rules on the S and
L quantum numbers are all the more efficient as the spin-
orbit interactions are small. More precisely, the percen-
tage of very weak lines is much larger than in the present
model. Attempts have been made recently [21,22] for
simulating the arrays Fe + 3d -3d 4p and Fe + 3d-
3d 4p. But no general approach is yet available. In some
cases where exchange integrals are very large [39], the ar-
rays can be very asymmetrical and 5E quite large, and
another correlation functional form could be needed.

For the latter situation, that of predominant spin-orbit
interactions, the splitting of the array into subarrays [11]
is clearly outside the range of application of the present

work. Another model must be worked out.
In the future, the effects of configuration mixing ought

also to be accounted for because they pervade the neutral
and low-ionized atomic spectra, which are most interest-
ing in astrophysics.

Despite the present limitations indicating a need for
further study, we are confident that energy-amplitude
correlated distributions can and will be useful for opacity
calculations in hot plasmas, and will eventually make re-
liable models of plasma radiation equilibrium within
reach. Preliminary encouraging results are planned to be
published shortly.

ACKNOWLEDGMENT

From the definition of the joint distribution in Eq. (3),
one can deduce analytical formulas for many characteris-
tics of the array. Such formulas are useful for bypassing
the statistical determination of these characteristics, i.e.,
their explicit calculation from the line energies and am-
plitudes picked at random (Sec. II C). The following ex-
amples are given.

(i) The number of lines in each of the "consecutive en-
ergy ranges" defined in Sec. IIB is useful for detailed
comparisons between the exact and simulated arrays
(Tables III and VI). It is equal to

2 f de f D (e, a)da

=L erf
+2U„

1—erf
+2U„

(A 1)

(ii) The sum of the strengths of the lines in each energy
range is useful in the same way. It reads

2f deaf D(e, a)a da

X=L exp a+
2

X ~2
erf +
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—erf —+X
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+2U„
with the values of a and X evaluated in Sec. III.

(iii) Moments of the whole array can also be derived.
The fourth-order moment of the amplitude distribution
reads

p4(a) =—f ds f D (e, a)a da .

From the result of the integrations, one deduces the kur-
tosis coefficient of the overall amplitude distribution:

erfc(+2X )a4=3 exp X
[erfc(X/&2) ]2

(A3)
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