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The neutralization of highly charged ions during interaction with metallic surfaces is accompanied by
the ejection of a large number of secondary electrons. Recent experiments demonstrate two main contri-
butions to this electron ejection process: one from the region below the surface and the second from the
above-surface portion of the trajectory. We present a theoretical analysis of the neutralization dynamics
above the surface, prior to impact, based on the classical over-the-barrier model. The theory incorpo-
rates resonant multielectron capture of conduction electrons, resonant loss into unoccupied states of the
conduction band, and intra-atomic Auger deexcitation. The effective barrier potential includes quantum
corrections to the classical image potential. The effect of below-barrier (“tunneling”) transfer is investi-
gated. The solution of a coupled system of rate equations allows the approximate determination of the
n-shell populations, the projectile charge state, and the total number of Auger electrons. The calculation
describes the transient formation of “hollow” atoms. We find satisfactory agreement with recent data
for K Auger yields by Meyer et al. [Phys. Rev. Lett. 67, 723 (1991)].

PACS number(s): 34.70.+e, 79.20.Nc, 79.90.+b

I. INTRODUCTION

The study of neutralization of ions impinging on sur-
faces can be traced back to the early days of quantum
mechanics [1,2]. Major progress was made in the 1950s
when Hagstrum [3,4] identified detailed mechanisms for
so-called potential emission, or more specifically, elec-
tronic emission by Auger transitions near the surface.
For singly charged ions, interatomic Auger transitions in-
volving two electrons from the conduction band [Auger
neutralization (AN)] was found to dominate. In this
“two-center” Auger process, one electron from the con-
duction band undergoes a nonresonant charge transfer
into an atomic state (mostly the ground state) of the imp-
inging projectile, while a second conduction electron is
ejected carrying away the excess energy. The resulting
secondary-electron emission spectrum contains detailed
information on the electron structure of the conduction
band, particularly of the surface density of states.

For doubly charged ions, Hagstrum found an alterna-
tive neutralization channel to be increasingly important,
namely, resonant capture (RC) of conduction electrons
into excited states of the projectile followed by intra-
atomic Auger deexcitation. In view of the characteristic
length scales involved, the latter channel is expected to
dominate with increasing charge g of the impinging ion.

The advent of high-current low-energy sources for
highly charged (g >>1) ions has revitalized this field and
has led to a detailed investigation of the neutralization
dynamics in several laboratories [5—12]. The typical per-
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pendicular velocities v, presently available are of the or-
der of 1072 to 10~ ! a.u. For collisions at small grazing
angles 6, the velocity parallel to the surface is smaller
than the Fermi velocity v S vp, such that kinematic reso-
nances [13] of Galilei shifted energy levels are not yet im-
portant.

The complexity of the process involving a large num-
ber of electrons makes the delineation of the dominant
pathways for neutralization difficult. However, a consid-
erable amount of information has become available with
which to begin unraveling the puzzle. Delaunay et al.
[14] observed the emission of an increasing number of
mostly low-energy secondary electrons with increasing
charge state and decreasing projectile speed, in qualita-
tive agreement with the picture of resonant capture fol-
lowed by sequential (“ladder”) intra-atomic Auger emis-
sion [15]. De Zwart et al. [8] found evidence for a
Doppler shift of high-energy Auger lines consistent with
the emission of Auger electrons “on the way in.” This
means that the emission occurs in the projectile frame
with velocity v unperturbed by large angle or multiple
scattering inside the solid. It should be noted that the
latter does not necessarily imply that the emission has oc-
curred above the surface, but rather that the emission
occurs prior to significant deflection inside the solid. Re-
cent high-resolution x-ray spectra by Briand et al. [9]
and Andra et al. [10] provided clear evidence for the
transient formation of ‘“hollow atoms.” Multielectron
transfer into high-lying states of the projectile creates a
multiply excited nearly neutral atom with empty or only
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sparsely populated (‘“hollow”) inner shells. Changes of
satellite intensities [10] as a function of the angle of in-
cidence (or v ;) as well as changes in position and shape of
K, and K lines [11] may indicate that the formation of
such exotic states is, at least in part, a surface effect. Hol-
low atoms correspond to an extreme case of level inver-
sion with stored energies in the keV range. There is obvi-
ously considerable interest in the extrapolation of
hollow-atom formation under well controlled conditions
for x-ray laser applications.

The ‘“ladder” model for above-surface neutralization
faces, however, a fundamental “bottleneck” problem.
Characteristic Auger rates are by far too slow to allow
for the relaxation of the charge cloud to the states ob-
served in the experiment. This suggests either a dramatic
increase of intra-atomic Auger rates near the surface
from their free-atom value or the coexistence of several
different neutralization channels.

The fact that several pathways to neutralization may
contribute simultaneously was recently demonstrated by
Folkerts and Morgenstern [16], who measured simultane-
ously the KLL and the LMM Auger emission. From
both the relative magnitude and the different v, depen-
dence of the two intensities it became apparent that the
LMM Auger transition is not always the precursor of a
KLL transition as implied by the ladder model. The au-
thors concluded, therefore, that additional “side feeding”
of the L shell must provide a major contribution to neu-
tralization. Most recently, Meyer et al. [17] achieved an
experimental separation of different components of the K
Auger spectrum for 60-keV N impinging on a gold sur-
face. At very small grazing angles 6=0.5°, they observed
on top of a broad Auger peak a narrower component
shifted in energy. Using the Marlowe simulation code
they were able to identify the broad component as the
subsurface component the K Auger emission while the
narrow component was ascribed to above-surface Auger
emission. The latter data allow a quantitative test for
models of the neutralization dynamics above the surface.

In the following we present a theoretical description of
the above-surface charge exchange and relaxation pro-
cess. Our approach is modeled after the classical over-
the-barrier model (CBM) originally developed for one-
electron capture into highly charged ions in ion-atom col-
lisions by Ryufuku, Sasaki, and Watanabe [18] and later
extended by Barany et al. [19] and Niehaus [20] to in-
corporate multielectron transfer. In spite of its simplici-
ty, it provides a surprisingly good first-order approxima-
tion to cross sections for electron capture into highly
charged ions in slow ion-atom collisions. Two cir-
cumstances contribute to its relative success: resonant
capture into a highly ionized projectile involves final
states with high principal quantum numbers n >>1 for
which, in line with the correspondence principle, a classi-
cal behavior is expected. Furthermore, the cross sections
are large and of the order of the geometric size of the or-
bit involved. This, in turn, implies that dominant contri-
butions to the cross section come from the classically al-
lowed region. The transition takes place predominantly
“over-the-barrier” between the potential wells of the tar-
get and the projectile rather than as a sub-barrier “tun-
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neling” process. Clearly, finer details such as /-subshell
cross sections are more difficult to describe [21]. The
latter is easily understood by the fact that the dominant /
values of the final states with n >>1 are not necessarily
large.

In the following, we present an extension of the CBM
to the analysis of the neutralization dynamics above the
surface. The theory incorporates resonant multielectron
capture of conduction electrons, resonant loss into unoc-
cupied states of the conduction band, and intra-atomic
Auger deexcitation. The effective barrier potential in-
cludes quantum corrections to the classical image poten-
tial. The effect of below-barrier (“tunneling”) transfer is
investigated. Modifications of atomic Auger rates near
the surface are discussed and an additional relaxation
mechanism, dielectric loss to the conduction band, is pro-
posed. The model described the transient formation of
“hollow” atoms. We find satisfactory agreement with re-
cent data for K Auger yields by Meyer et al. [17].

The plan of the paper is as follows. The effective elec-
tronic potentials governing the charge transfer and the
acceleration of charged particles near the surface are re-
viewed in Sec. II. In Sec. III, we introduce the system of
coupled rate equations, which describe the evolution of
the n-shell populations as the projectile approaches the
surface. The approximations underlying the cross sec-
tions and transition probabilities for resonant electron
capture into the projectile, resonant loss into unoccupied
states of the conduction band, and the intra-atomic
Auger rates entering the rate equations are discussed in
Sec. IV. Numerical results for the n-shell populations
prior to impact, the secondary-electron yield, and the K
Auger rate for above-surface emission are given in Sec. V.
Most of our numercial results presented in the following
refer to the impact of hydrogenic nitrogen N°®* on a gold
surface, which allows direct comparison with the data of
Meyer et al. [17]. Atomic units are used unless other-
wise stated.

II. SURFACE POTENTIALS

The interaction of a highly charged ion with surfaces is
a true many-body problem. Even though we attempt a
description for the electronic transfer processes within
the framework of a mean-field or independent-particle
model, collective effects due to the dynamical response of
the conduction electrons have to be taken into account
from the outset. The effective potentials governing both
the motion of the ion and of the electrons contain collec-
tive screening and deviate from corresponding potentials
for ion-atom collisions.

The classical interaction potential of a charged particle
having charge g with a conducting surface is given by

I y=— -4
Vi(z) 4z (1)
where z (z > 0) is the distance to the surface or, more pre-
cisely, to the image plane, which is slightly displaced rela-
tive to the topmost layer of atoms of the surface [22].
The classical expression (1) is only valid at large distances
compared to the characteristic screening length for sur-
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face plasmons,
A, =w,/vp , (2)

where o, is the surface-plasmon frequency and vy is the
Fermi velocity of the conduction band. Echenique et al.
[23] have given an approximate expression for the
quantum-mechanical self-image potential that accounts
for the plasmon dispersion,

exp(—2pz)
}+ap+Bp+pt/a

Lo 49} row
Viz) 3 fo dp (3a)
with @=V'3/5vpw, and B is chosen such that the disper-
sion curve goes through the point (gq,,w.) where the
bulk-plasmon dispersion curve enters the single-particle
continuum. For gold, =~0.35. In the following, the
conduction band is treated as a quasi-free-electron gas
(“jellium”). For an electron with position vector r in the
image field of another charged particle, the projectile
with charge g located at the position RZ (Z is oriented
along the surface normal), the corresponding quantum-
mechanical image interaction is given by

Jo("”P Ye —p(z+R)

w*+ap +Bp+p*/a

Vple(r,Ri)zqwffowdp (3b)

(Jo: Bessel function of zeroth order). Obviously, (3a) and
(3b) tend to their respective classical values as z— 0.
Equation (3) describes the static image potential.
Dynamical screening is unimportant in the present con-
text since the projectile velocity vp=(vi+vﬁ)l/2<vF.
For fast ion-surface collisions at grazing incidence [24],
dynamical generalizations of (3) should be used.

Both Egs. (1) and (3) describe the collective linear
response of the electron gas to a perturbing charge in
front of the surface. For large g, nonlinear corrections to
the response function become important [25]. An esti-
mate for the critical distance Ry of the onset of non-
linear response is given by

R NL ~ 2rs ‘/E ’ (4)

where 7, is the one-electron radius of the electron gas. As
will be discussed below, the g dependence of Ry coin-
cides with the one for the critical radius for resonant
transfer [see Eq. (22)]. The coefficient in (4), however,
turns out to be smaller than in (22) for most metals. Con-
sequently, screening of the projectile by resonant transfer
to the projectile sets in before nonlinear screening effects
in the electron gas become important. This interplay be-
tween different screening mechanisms provides limited
support for the use of linear-response theory.

The “active” electron to be transferred to the projectile
experiences the interaction with its own image. The self-
image potential represents one contribution to the work
function W, or more precisely, to the background poten-
tial ¥, that confines the semi-infinite jellium. From in-
vestigations of localized surface states, it is known that
the electronic self-image potential can be approximated
by [26]
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I\ 1
Velz) Xz +zg) (5)
where z, is chosen such that ¥(z) is continuous across
the jellium edge. As above, V/(z) approaches its classical
value for z — oc.
The active electron at the position r in the presence of
the ion at the position RZ is subject to the total potential

V(z2)=VX2)+V,(It—RZ))+V)(r,RZ) . (6)

Equation (6) holds when both the electron and the projec-
tile are above the surface, i.e., z >0, R >0. The effective
interaction potential between the projectile and the elec-
tron is denoted by V,,. For a bare nucleus or at large dis-
tances between the active electron and the projectile
when its charge cloud can be treated as a point charge,
Ve is given by

5ly—=__4d
Vpe(lr RzZ|) —RZ (7
When the projectile-electron distance becomes compara-
ble to the size of the charge cloud of electrons already
bound to the nucleus (either carried into the collision or
captured), we replace (7) by a Hartree-type static screen-
ing potential [27] (x =|r—R?Z|),

of(X)
v, (=—22 (8)
X

with an effective charge self-consistently determined dur-
ing the evolution of the system,
173

(X)) =Gasym +Ag (148 Px /R Je 220 R (9)
The analytic form of the screening function corresponds
to that of a Hartree potential for a spherical 1s-like
charge distribution. In (9), the characteristic radius of
the charge cloud is denoted by R, and Agq is the charge of
the cloud, i.e., the difference in charge between the inner
pointlike charge g; and the ‘“outer” asymptotic charge
Gasym Of the projectile at large distances,

Aqzqi_qasym . (10)

Obviously, g.4(x) interpolates between g; at x =0 and
Gasym fOr x — o0, In our numerical studies we will deter-
mine the g; values according to Slater screening rules for
“inner” screening. Accordingly, Egs. (8) and (9) provide
a description for “outer” screening during the charge-
transfer process. The choice of the screening function is
certainly not unique. However, as discussed below, we
find no sensitive dependence on the choice of the screen-
ing potential.

The last term in (6), V,,Ie, describes the interaction be-
tween the electron and the image of the projectile. The
value for the charge entering VpIe is not uniquely defined.
One possible choice would be g4 [Eq. (9)]. Noting, how-
ever, that the image charge is delocalized on the surface,
the asymptotic charge of the charge cloud, g,gym, is
preferable. This follows from the observation that R, is
of the order of the distance of the projectile from the sur-
face, R, and that, according to classical image charge
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theory, a disk of the conducting surface with radius R
contains only =~0.3 of the total displacement charge gq.
Accordingly, the charge seen in the surface plane at large
distances from the projectile determines the strength of
the image interaction.

Finally, the interaction potential governing the ac-
celeration of the projectile ion towards the surface reads

V,(R)=¢uymVIR) . (11)

with the image potential ¥/ for the charge dasym Calculat-
ed from Eq. (3a) or (1). We note that g,,, will become R
dependent due to the electronic transfer processes
proceeding during the approach towards the surface.

Figure 1 displays the contours of the potential distribu-
tion for an electron moving in the fields of a charge of
q(=q,ym)=6, as given by Eq. (6). Several important
features are noteworthy. At a distance of a few atomic
units above the surface, a saddle develops that will pro-
vide a major pathway for resonant capture at large
projectile-surface distances R. Near the saddle the con-
tour corresponding to the Fermi energy € delineates the
“pass” through which capture proceeds. The width of
the pass is small compared to R unless the projectile is in
close proximity to the surface. This observation implies
two consequences. The charge transfer proceeds in an
approximately collinear geometry, which allows an ap-
proximate one-dimensional treatment with the coordinate
along the surface normal, 2, as the reaction coordinate.
Furthermore, the initial angular momentum !/ of the cap-
tured electron will be small: The outer turning point of
orbits with low / or large eccentricities (e ~ 1) has, within
a given n manifold, the largest distance from the nucleus
and will therefore reach the region of the saddle first as
the projectile approaches the surface. In addition, the
impact parameters associated with the motion through
the saddle are small. The subsequent electron-electron
interaction will then lead to perturbation of this / distri-
bution and to / mixing.

The structure of the potential surface (Fig. 1) is in-
dependent of the details of the model potentials entering
Eq. (6). Numerical values near the saddle, the region
most important for resonant charge transfer, are, howev-

-10{ S

— 20 b
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FIG. 1. Potential surface for an electron in the field of a N¢™*
ion at a distance R =20.5 a.u. from a gold surface; — — —,
contour corresponding to the energy e= —0.17.
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FIG. 2. Total electronic potential [Eq. (6)] near the saddle
point for a N®* ion at a distance of R =18 a.u. near a gold sur-
face, including ——, quantum image potential [Eq. (3)] and
— — —, asymptotic classical image potential [Eq. (1)].

er, sensitively dependent on the input potential. Figure 2
shows the electronic potential curve [Eq. (6)] along the
surface-projectile axis for a bare projectile g,qm,=g;=6
using the classical [Eq. (1)] and quantum-mechanical ex-
pression [Eq. (3)] of the projectile image potential. While
the position of the saddle is essentially unchanged, the
height is reduced. The change of the barrier height can
be easily wunderstood: the incomplete quantum-
mechanical screening near the surface reduces the repul-
sive interaction between the electron and the projectile
image, thereby lowering the potential barrier. We note
parenthetically that for semiconductor targets in compar-
ison to that for metals, the potential barrier would be
lowered. The effect of the saddle potential on the neutral-
ization dynamics will be discussed in Sec. V.

III. THE RATE EQUATIONS

As the projectile ion approaches the surface, electrons
are transferred resonantly from the surface to the projec-
tile. At the same time, the reverse process becomes possi-
ble: electrons captured previously leak out across the
saddle back into the solid provided that the final state is
not forbidden by Pauli blocking. The near-resonant char-
acter follows from the fact that an electron moving in the
potential [Eq. (6)] conserves its single-particle energy.
Energy dissipation becomes possible if the potential fluc-
tuations occur on a time scale comparable to the transit
time of the electron (e.g., due to electron-electron scatter-
ing). In addition, as the number of electrons increases,
intra-atomic Auger deexcitation sets in. In order to
simulate this fairly complex array of processes, an n-
electron classical trajectory Monte Carlo calculation
(nCTMC) [28,29] could provide, within the limitations of
classical dynamics, an adequate description. Major obs-
tacles, however, make this approach difficult to apply.
Apart from the large number of electrons to be treated
and the associated large amount of CPU time necessary
to accumulate sufficient statistics, the treatment of
electron-electron collisions and of the Auger process
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within the nCTMC is an unresolved problem. As is well
known, classical two-electron systems (with the notable
exception of helium [30,31]) are unstable, i.e., their prob-
ability of autoionization is unity. The quantum suppres-
sion of the classical instability against autoionization is
not easily incorporated into a CTMC scheme.

In the following we use a much simpler approach in
terms of coupled rate equations in which cross sections
and rates for capture, loss, and deexcitation enter. The
latter are modeled after the classical over-the-barrier
model [18] and its generalizations [19-21]. Since in the
CBM electrons move in a time-dependent mean field of
surrounding charges, fluctuations and correlated charge-
transfer events are neglected from the outset.

In the following we will study the set of coupled equa-
tions for the population P, of the nth shell of the projec-
tile as a function of the distance R of the projectile from
the surface that reads

ul(R)—g—P,,(R)=1,,C(R)—1,,L(R)P,,(R)
dR
+13 4, ,Ph(R)
n'>n
—PXR) Y Ap,

n'<n

(12)

This set is augmented by the equation for the number of
autoionized electrons P;(R),
d
v (R)——P;(R)=13 A4, ,P%(R) (13)
dR n'>n ’
Finally, the evolution of the perpendicular velocity of the
approaching ion is described by Newton’s equation of
motion [see Eq. (11)]:
1 d

(R)=55 g VR

d
R - (14)

with

Gasym(R)=Z — 3 P, (R) (15)

(Z, nuclear charge of the projectile). The structure of this
nonlinear system of equations (12)—(15) is as follows. We
specify in Eq. (12) the population of the (multiply excited)
bound states only in terms of their principal shells n. The
assignment of / quantum numbers is, within the CBM,
neither easily possible [21] nor physically meaningful
near the surface because of strong mixing in /. The
current of captured electrons, I°(R), plays the role of an
inhomogeneous source term. An explicit expression for
I€ within the CBM will be given below. One feature will
be that I is nonzero only for a finite number of n quan-
tum number (n =n_,) determined by the over-the-barrier
condition. Equation (12), therefore, becomes a system of
equations of dimension n,. The rate for the loss (“reso-
nance ionization”) into the unoccupied bound structure is
denoted by I(R) and will be discussed below. We note
that both IS and I are implicitly dependent on the vec-
tor {PH(R)}ISnS,,C of occupation numbers. Finally, the
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remaining two terms in Eq. (12) describe the gain and loss
due to autoionization events with rates 4, ,.. Since we
will focus specifically on the “bottleneck problem” of the
Auger rate limited neutralization process, we have in-
cluded in (12) for simplicity only the subset of fastest
decay channels that will come from electron pairs in
the same shell. Rates for nonequivalent electrons

(A4, ... ,)could be incorporated if necessary. An es-
PE2" 12

timate for 4, , will be discussed below.

Each Auger event leads to the emission of one electron
per electron pair. The resulting population of continuum
states due to “potential emission” is described by Eq.
(13). In view of the simplicity of our approach, we have
combined the spectrum of all Auger electrons to a single
channel without attempting to keep track of the energy-
differential spectrum. However, from the population
numbers P,(R) we are still able to determine for low-
lying n shells the number of Auger electrons for a given
final n shell (in particular, of K Auger electrons). Finally,
Eq. (14) describes the self-consistent coupling of the pro-
jectile motion in the multielectron transfer. The flow of
the electron changes g,4,(R) as a function of R rapidly
on the time scale characteristic for the approach of the
ion towards the surface. Therefore, the average number
of transferred electrons at any given time determines the
acceleration of the ion by its image charge. The use of
classical dynamics for the ionic motion imposes a lower
limit for v, for the validity of (14). We require that the
De Broglie wavelength associated with the perpendicular
speed is small compared to 1 a.u., i.e., v, 2~ !, where u
is the mass of the ion in atomic units. In the present case,
v, 210 %a.u.

The set of rate equations [Egs. (12) and (13)] and
Newton’s equation of motion for the ion, Eq. (14), has to
be integrated from infinity to the surface. Since they are
adequate only for above-surface processes, we terminate
the integration typically at a distance of one atomic ra-
dius above the surface. For close encounters with the
topmost atomic layer as well as below-surface processes,
the system of rate equations has to be modified.

The assignment of n “quantum numbers” designating
the coupled channels in Eq. (12) requires the discretiza-
tion of the classical energy continuum. For one-electron
systems a straightforward method consists of forming en-
ergy bins determined by energy values corresponding to a
half-integer quantum number (n=*]). For the present
problem of energy levels near the surface, this corre-
sponds to the binning for the continuum of energies be-
longing to the energy level, €,
g2 (g —1) q? (g—1)

+ <g,(R)< —
2(n —17? 2R 2(n +1)? 2R

L
2
(16)

In (16), the position of energy levels is modified by their
image shift. We have used the asymptotic forms for large
R for both the electronic self-image as well as the interac-
tion with the projectile image charge. For small R the
corresponding corrected expressions [see Egs. (3) and (5)]
should be used. The image interaction shifts the energy
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levels upward as the ion approaches the surface. There-
fore, the resonant n quantum number decreases as R be-
comes smaller.

For multielectron transfer a second and more impor-
tant mechanism for the upward energy shift is the in-
creasing screening of the core charge by previously cap-
tured electrons. The charge g in the Rydberg formula in
(16) becomes dependent on n and on the vector of occu-
pation numbers { P{R’} at a given R. We set

g,(R)=Z— 3 P,(R)S, . , (17)

n'<n

where S, . is the matrix of Slater screening values [32].
As discussed above, the image shift in (16) is more ap-
propriately described by the asymptotic, i.e., n-
independent but R-dependent charge g, (R).

IV. ESTIMATES FOR RATES

In this section we outline the approximations underly-
ing the rates and cross sections entering Egs. (12)—(15).
We emphasize that improved rates could be easily imple-
mented as input if available.

A. Electron capture

The crucial quantity for the neutralization dynamics is
the current of captured electrons flowing into a given n
shell, IS(R). According to the CBM, capture takes place
when the saddle of the potential (Fig. 1), V, is lowered to
below the threshold for an electron of energy € to be
transferred. Considering the beginning of the neutraliza-
tion sequence, we find the critical distance R_, where the
first charge transfer takes place, from the condition

lVil=w , (18)

where W is the work function of the surface and V| is an
implicit function of R.
From (16) we find in turn the critical value n,

n.={maxnle,(R,)<V,} (19)

for the final n shell in which the first electron is captured.
The latter is also the highest shell reached during the
remainder of the neutralization sequence because screen-
ing and image shift of the levels will lower the n values.
Equation (19) therefore determines the dimension of the
system of Eqgs. (12).

If one replaces the effective potentials by Coulomb po-
tentials valid at large R, one can easily find approximate
analytic expressions for the z coordinate of the saddle
point. For ¢ >>1 we have

R
5= 8g 12 (
and the value of the potential at the saddle point
VS=V(zx)z—~i\/8q 2 . 21)

The critical distance R, where the neutralization se-
quence begins is accordingly given by
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Rczﬁ\/Sq 2 . (22)
The analytic form (22) differs from frequently used esti-
mates [33,34] (R,~2g +7), which have been derived
from an approximate treatment of the above-the-barrier
process [33] and are linear in q. The latter leads for very
large g to much larger critical distances than predicted by
(22). It should be noted, however, that over the range of
q values considered, the fit function suggested in Ref. [33]
approximates (22) quite well (Fig. 3). Furthermore, using
the effective potentials [Eqgs. (3) and (5)] rather than the
asymptotic Coulomb potential leaves the positions of the
saddle essentially unchanged (Fig. 2) but alters the height
of the potential and, hence, the critical distance R,,
shown in Fig. 3, by typically =~10%.

The current can be written in terms of a geometric
cross section of the “saddle” o and the current density as

ISR)=0(R)jXR) . (23)

The current density along the surface normal is given
by
j"(R)—':l min[ — W,e(n +1/2)]
! 1

4 J max[Vy,e(n —1/2)] de’'D (e )Tcl(E,R)

XV 2le'+V,l , (24)

where D (g) is the spectral density of states of the free-
electron gas (or, in general of the surface band structure)
and T is the classical transmission function, which is a
step function of the form

T,(e,R)=O(R*(e)—R) . 25)

In analogy to (22), R*(¢) is the critical distance below
which for a given energy € charge transfer proceeds over
the barrier,

R*(e)=—L V'8q,(R)+2 . (26)

T 2le]
The limits of the € integral in (24) are determined by the

40 T T

0 5 10 15
Charge q

FIG. 3. Critical distance R, for the onset of resonant neutral-

ization: —.—.—. , quantum image potential [Eq. (3)]; ,
asymptotic classical image potential; — — —, fit formula 2q +7
(Ref. [33]).
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limits of the energy bins [Eq. (16)]. We note that for ions
moving with a velocity parallel to the surface, v, of the
order of the Fermi velocity vy, the spectral density of
states corresponding to a Galilei shifted Fermi sphere
should be used. By replacing the classical transmission

|

NElslm R> 1

Tqm(e,R)=exp - 2. (R)

V2,

The geometric cross section for the saddle can be estimat-
ed as

o(R)=m{[R*(e)]*—R?} . (28)

Even though the geometric picture of the intersection of
spherical ionic and planar surface equipotential lines un-
derlying the estimate (28) is a drastic simplification (see
Fig. 1), we find (28) to be in agreement with the numeri-
cally determined size of the saddle to within ~30%. For
subbarrier processes, R > R *(g), and o(R) is no longer
positive definite. In order to estimate contributions from
electron tunneling, we replace (28) by

o(R)=wz? , (29)

thereby assuming that the dominant contributions come
from regions where the barrier is relatively low and that
the width of this region is comparable to the distance of
the saddle from the surface.

B. Electron loss

The estimate for the loss rate follows along similar con-
siderations as for capture. An electron is considered to
be lost when it hits the potential surface in the region of
the saddle. The frequency of collisions with the wall can
be estimated from the period of Coulomb orbits

2
g, (R)
V= . (30)
" 2’
The probability for hitting the wall within the area of the
saddle is of the order of

P(e,)~[R*(e,)—R]/R*(e,) . (31)

Loss into the solid can only take place if the energy of
the level lies above the Fermi level. We find, therefore,
for the loss rate

IXR)=O(W +¢,(R)P(e,(R)v, . (32)

Pauli blocking explicitly built into (32) does not pose a
severe rate limiting factor. The reason is that the upward
shift in energy [Eq. (16)] promotes the energy level very
quickly to above the Fermi edge. Equation (32) loses its
validity in the completely neutralized or even negatively
charged ion (g,, <0) since (30) can no longer be used to es-
timate the “bouncing” frequency. In the latter case, we
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function by a corresponding quantum-mechanical
transmission function we will be able to assess the impor-
tance of subbarrier (‘“tunneling”) processes. For the
latter we will use the well-known Nordheim-Fowler for-
mula for field ionization [35],

— {1+1n[4V2]e|R /¢, (R)]} | . 27

estimate the rate from the average escape time of a free
electron moving with kinetic energy le,,l out of the
sphere with radius R.

C. Auger deexcitation rates

The determination of Auger decay rates within the
framework of classical dynamics is difficult due to the
influence of quantum-mechanically forbidden decay
channels. We use, therefore, input from quantum-
mechanical calculations for Auger rates. Since we are in-
terested in the exploration of the apparent incompatibili-
ty of time scales for the approach of the ion to the surface
and for “ladder” Auger deexcitation, we focus here on
the fastest subset of Auger rates. The latter occurs for
electron pairs (nlnl’') in the same shell and in low [
configurations. Furthermore, the decay rate is maximal
for the largest final quantum number n' yielding a posi-
tive kinetic energy of the ejected electron, i.e, for the
smallest allowed quantum jump An =n —n’ between the
intial n and final n’ quantum number of bound electrons.
Using the Cowan code [36] calculating atomic Auger
rates in vacuum we find for this set of Auger rates with
1 =0 and large n; a simple scaling rule (Fig. 4) in atomic
units,

_5.06x107*

An,nr—‘W . (33)

Equation (33) is independent of the charge g, in agree-
ment with known scaling properties [37]. It is interesting
to note that Auger rates of Bhalla quoted by Briand et al.
[9] agree with (33) to within a factor of approximately 2.
Rates for low-lying states can be taken directly from the
atomic structure codes [36,38]. The use of (33) in a classi-
cal nonlinear rate equation [Egs. (12) and (13)] requires
two corrections. The suppression of Auger decay due to
partial population of the final n-shell population, i.e., due
to reduction of the number of accessible final states, must
be taken into account by an empirical reduction factor
[38] approximately equal to (1+1.5XP,)"'. The
enhancement of Auger decay due to the multiple occupa-
tion of the initial shell is, within the framework of the ki-
netic equation [Eq. (12)], explicitly contained in the “col-
lision” term of Eq. (12). However, since we do not keep
track of subshell populations we must correct for distri-
butions among (non)equivalent configurations. The
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FIG. 4. Scaling behavior of Auger decay rates for highly ex-
cited ns? states for decay into final states with small kinetic en-
ergies (<4 eV), calculated from the Cowan code (Ref. [36]).

correction factor approximatly equals 0.5 is chosen such
as to reproduce the correct Auger rate for two equivalent
electrons (e.g., ns?) and for equal population in subshells
of nonequivalent electrons (e.g., ns 'np?).

The use of the Auger rates (33) for the decay of the n-
shell population is, to a certain extent, an upper limit for
atomic rates since the n-shell population will be spread
over several angular momentum states. The approxima-
tion of the rates by their low / values is, however, justified
in view of the saddle geometry (Fig. 1), which favors or-
bits with large eccentricities and hence low I. Further-
more, later steps of the ladder sequence will stay in the
sector of terms with low total L if the first step was a low
L state since AL=0 for dominant Coulomb allowed
Auger transitions.

A conceptual difficulty results from the use of unper-
turbed atomic Auger rates itself. Near the surface atomic
(or ionic) states are strongly perturbed. Two effects on
the Auger rates should be distinguished: Stark mixing of
initial and final states and changes in the threshold value
An for the onset of autoionization. The former is due to
the electric field generated by the image charge and gives
rise to a redistribution of decay rates among substates but
not to an overall increase of fastest rate among substates.
Since Eq. (33) applies to the fastest rate within an » mani-
fold, it is therefore still an acceptable first-order estimate.
The second effect, however, may lead to a drastic change
of the Auger rates for the initial stages of the cascade:
unlike ions in free space the minimum energy transfer be-
tween the two electrons does not need to be sufficient for
ejecting the electron into the continuum. Instead, any
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final state above the height of the saddle is sufficient for
ejecting an electron into unoccupied continuum states of
the solid. Since the final state of the mechanism proposed
here is still a bound (negative energy) state relative to the
vacuum level, we may call this modified Auger decay pro-
cess dielectronic loss into the conduction band. This pro-
cess contributes to the relaxation of multiply excited ions
near the surface in complete analogy to ordinary Auger
processes. Furthermore, since the initial state of the elec-
tron pair as well as the final state of the more deeply
bound electron are identical to that for an ordinary
Auger process, we can estimate the rate from extrapolat-
ing (33) to smaller An consistent with energy conserva-
tion for the above-barrier dielectronic loss process. In-
clusion of this process permits us to estimate relaxation
effects due to surface-specific decay processes. Dielect-
ronic loss modifies the ladder deexcitation by adding ad-
ditional steps of smaller size, thereby increasing the
overall speed of the deexcitation. It should be noted that
the dielectronic loss process operates only in the first few
steps of the “decay ladder” since for low-lying n’ (n’' <4
for N°*) the smallest possible quantum jumps (An =1,
apart from Coster-Kronig intrashell transitions) are
sufficiently large so as to directly ionize the ejected elec-
tron rather than to emit the electron into the band struc-
ture.

V. NUMERICAL RESULTS

In the following we present numerical results pertain-
ing to the approach of N°* ions towards a gold surface.
Within the nearly-free-electron gas model, the gold sur-
face is characterized by its work function [32,39] W =5.1
eV, its Fermi energy €=5.4 eV, and its surface-plasmon
frequency w;=6.3 eV. These values apply to the 6s
band. One conceptual difficulty for the application of the
jellium model results from the overlap of the 6s band with
the completely filled band of 5d electrons in gold [40]
displaying a rather complicated band structure including
relativistic effects [41]. The latter cannot be represented
by an electron-gas model and is not expected to contrib-
ute to above-surface charge-transfer processes because of
its stronger localization.

We also note a considerable disagreement between the
experimentally determined values of W for gold [32,42] of
about =~10%, which, apart from all other approxima-
tions, gives rise to a corresponding uncertainty in our re-
sult. Part of the discrepancy is due to the different crys-
tallographic planes chosen as surfaces. However, as de-
tailed below, the fundamental results concerning the
characteristic time scales and the efficiency of the above-
surface neutralization process remain unaffected by these
uncertainties.

A. Formation of transient “hollow” atoms

As the N°* ion approaches the surface, highly excited
states with n < n, are resonantly populated. This leads to
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the transient formation of hollow atoms (or ions) charac-
terized by sparsely populated or empty inner shells and
multiply occupied highly excited states. We emphasize
the dynamical, transient nature of this process. With de-
creasing distance the n levels shift upward in energy [Eq.
(16)] due to the image interaction and screening by elec-
trons already transferred. Highly excited states continu-
ously decay by resonant ionization and intra-atomic
Auger processes. This results in a continuous shift of the
population to lower n shells. Figure 5 illustrates the for-
mation of hollow atoms. In order to accentuate the effect
of different available interaction times, we have switched
off the acceleration by the image interaction [Eq. (14)] in
Fig. 5, i.e., the ion approaches the surface at a constant

20 R=19 ]

Population

FIG. 5. Formation of hollow atoms near surfaces; occupation
numbers of n shells for different distances from the surface; cal-
culation for N®* on gold for three different speeds (columns
from left to right): v, =1X1073, 5X1073% 9X 1073 Classical
barrier transmission function [Eq. (25)]; image acceleration [Eq.
(14)] switched off.

JOACHIM BURGDORFER, PETER LERNER, AND FRED W. MEYER 44

speed v,. In this calculation, only standard Auger rates
without modification by dielectronic loss have been used
and the only classical above-barrier processes have been
included according to Eq. (25). At R =19 a.u., just below
R., the onset of resonant neutralization into n =n_,=7
becomes visible. At R =15 a.u. the growth of population
of n =5 due to the first Auger cascade step can be ob-
served. Even closer to the surface, at R =10 a.u., we find
for v, =5x107% a.u. and v, =9X 1073 a.u. a nearly neu-
tral hollow atom with, on the average, approximately five
electrons in n =7, approximately one electron in n =5
and one K-shell electron carried into the surface collision.
Only for the smallest speed, v, =1X10"% a.u., can a
change of the K-shell population due to Auger processes
be found. Here, the cascade population stretches from
n =5 to n =1 with rapidly decreasing average occupation
numbers. At the same time, increased screening shifts
the resonant level towards n =6. The point to be noticed
is that the time interval for the cascade starting at n =7
is insufficient to reach the K shell for the ions with
v, 25X 1073, The increased K-shell population for the
smallest velocity is due to both the larger time interval
available as well as due to the shift of the resonant level
to n =6, which reduces the number of cascade steps and
accelerates the cascade sequence.

Quantum-mechanical subbarrier (‘“tunneling”) process-
es are thought to be most important at large distances R
when the resonant transfer is still classically forbidden.
We have investigated the influence of tunneling on the
formation of hollow atoms. Figure 6 shows the excited-
state distribution for the same parameters as in Fig. 5 us-
ing, however, the quantum-mechanical transmission
function (27) for distances R > R *(g) where transfer is
classically not allowed. It should be noted that the

2 R=19

§ ol ]
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FIG. 6. Formation of hollow atoms near surface, parameters
as in Fig. 5, however with a quantum-mechanical sub-barrier
transmission function [Eq. (27)].
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Nordheim-Fowler factor (27) for thick barrier penetra-
tion is not valid for R <R *(¢) for which we use (25) in-
stead. The n-shell distribution is virtually unchanged as
compared to the classical over-the-barrier distribution
(Fig. 5). Obviously, tunneling processes are by far too
slow to build up significant excited state population in the
considered range of speeds v,. Only for much smaller
speeds, v, << 1073 a.u., would the tunneling rates suffice
to form hollow atoms (or ions) at distances R > R larger
than the critical radius for over-the-barrier transitions.
For such small speeds (v, $10™* a.u.), however, the clas-
sical description of the ionic motion would break down.
More importantly, the acceleration of the ion by the im-
age interaction, neglected in the results of Figs. 5 and 6,
renders this velocity range inaccessible.

B. K Auger yields

Since above the surface or, more precisely, at distances
outside the range of two-center AN processes (R 2 1.5
a.u.) no direct charge transfer to the K shell of N is possi-
ble, the change of K-shell population gives directly the
number of K Auger electrons emitted per ion. In Fig. 7
we present the K Auger yield as a function of the inverse
normal projectile velocity v | !, which is a measure for the
interaction time, and a comparison with recent experi-
mental data [17,43]. The hatched areas characterize a
theoretical “error bar” and illustrate the uncertainty of
the final results due to several model assumptions enter-
ing the classical over-the-barrier model.

The “error bar” is determined from a large number of
calculations with different forms of the image potentials

Number of K oAuger electrons
o
T

OVO 1 L dacaassd L
10’ 10° 10°
V] (au)

FIG. 7. Above-surface K Auger yield for an N®* ion imping-
ing on a gold surface as a function of inverse asymptotic perpen-
dicular speed v !. Experiment (Refs. [17] and [43]): [, total K
Auger yield; M, above-surface yield; A, above-surface yield for
Cu target. Theory: upper band, solution of the system of cou-
pled rate equation without image acceleration; lower band, solu-
tion of the system of rate equations including image acceleration
(see text).
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[Egs. (1) and (3)], different forms of the screening func-
tions [Egs. (8) and (17)], and different choices for the
Auger rates. The results obtained incorporating these
variations lie within the two “bands” displayed in Fig. 7.
The two bands differ from each other in that for the
upper band the acceleration of the ion by the image po-
tential [Eq. (14)] was switched off while for the lower
band the self-consistent coupling of the projectile motion
to the neutralization process was taken into account.

The acceleration of the ion leads to a saturation of the
K Auger yield for large v ' (or small v,). The obvious
reason is that no matter how small the asymptotic value
of v, for the incident projectile is, the acceleration by the
image potential limits the available interaction time
above the surface and prevents in all cases considered the
complete filling of the K shell. On the average, more
than 0.5 K vacancies per ion will be carried into these
collisions with the atomic surface or below-surface layers.
We find that the suppression of K-shell filling depends on
the details of the neutralization dynamics, which is cou-
pled to the acceleration for the ion “on the way in.”

The upper boundaries for each band correspond to the
calculations incorporating the effectively enhanced Auger
rates by inclusion of dielectronic loss into the conduction
band and of the quantum-mechanical image potential
[Eq. (3)], while the lower boundaries to the calculation
using only standard Auger rates and the asymptotic clas-
sical expression for the image potential [Eq. (1)]. Both
the incomplete quantum-mechanical screening of the pro-
jectile charge by surface plasmons and the dielectronic
loss processes enhance the speed of the neutralization
cascade. Nevertheless, even when the image acceleration
is switched off, no appreciable K Auger emission takes
place at speed v, > 10~ 2 a.u. This conclusion is obviously
valid irrespective of the ambiguities associated with the
treatment of such a complex multielectron transfer prob-
lem and confirms the conclusion of Ref. [17] that the K
Auger intensity of the broad peak, also shown in Fig. 7,
can be unambiguously associated with subsurface pro-
cesses. On the other hand, the onset of the narrow peak
at speeds v, S 1072 is reproduced by all our calculations
for the K Auger yields irrespective of the details of the
model assumptions, thereby confirming its identification
as the above-surface component.

Most remarkably, the experimental data [17,43] appear
to show the saturation of the K Auger yield at low speeds
v, in accordance with our calculations. While a direct
comparison with these data is complicated by the fact
that they pertain to a different (Cu) surface, they provide
strong support that image acceleration indeed suppresses
above-surface K-shell filling, which otherwise would take
place within a relatively sharply defined velocity interval
2X1073<p, <5%1073

C. Total secondary-electron yield

From the solution of Eq. (13) we can directly infer the
total secondary-electron yield ascribable to ‘“‘potential”
electron emission due to intra-atomic Auger processes.
Several limitations on the validity of the results for total
secondary-electron yields should be stressed. The calcu-
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lations refer only to potential emission above the surface.
Considering the large number of vacancies carried into
the surface (see Sec. V B), a significant contribution to po-
tential electron emission originates from below-surface
processes. In fact, our calculations suggest that the latter
provides the dominant contribution for v, >1072 a.u.
Furthermore, the number of observed electrons is deter-
mined by the R-dependent solid angle for direct emission
into the vacuum, together with the energy-dependent de-
gree of reflection of the emission towards the surface.
Any detailed estimate would require the knowledge of the
energy-differential emission spectrum, which is beyond
the scope of the present model. The solution of Eq. (13)
refers to the total number of Auger events irrespective of
the subsequent fate of the emitted electrons. Further-
more, when the hollow atom (Figs. 5 and 6) strikes the
surface, another secondary-electron emission mechanism
becomes operative: the outer shells of the hollow atoms
get “peeled off”’ as a result of the dynamical screening in-
side the solid [44]. A fraction of these electrons will be
emitted while the remaining fraction will occupy empty
states of the conduction band. While our theoretical ap-
proach would permit the determination of the number of
“peeled off” electrons, it does not provide an estimate for
the fraction of backward-scattered electrons into vacu-
um. We have therefore omitted this contribution.

Our results (Fig. 8) clearly exhibit a strong correlation
between the filling of the K shell and an avalanche of
secondary electrons. When the K shell is almost com-
pletely filled (in simulations without image acceleration
and v, $5X 1073 a.u.), typically ~30 Auger electrons are
emitted per ion. The latter can be easily understood from
simple statistics. If p is the number of cascade steps, typi-
cally 2 Auger processes are involved in the cascade re-
sulting in a single KLL Auger event (provided sufficient
potential energy is available). In the present case, p =5
and 2°=32. Conversely, when the majority of K vacan-
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FIG. 8. Total number of Auger electrons per N ion im-
pinging on a gold surface as a function of the inverse asymptotic
speed: upper band, solution of rate equation without image ac-
celeration; lower band, solution of rate equations including im-
age acceleration (see text).
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cies survives (in the model calculations including image
acceleration), a significantly reduced but still large num-
ber of Auger electrons (= 10) is emitted.

While the present results pertain to the collision pro-
cess N®* —» Au, some tentative conclusion can be drawn
for other studies of secondary-electron emissions as well.
The number of observed secondary-electron emissions
[14] for Ar?™ ions (7 <gq <12), while impressively large,
is still significantly below the corresponding statistical es-
timate given above for a nearly completed neutralization
and relaxation sequence. The latter clearly indicates that
below-surface neutralization will account for a significant
fraction of processes leading to the filling of the inner
shells. This is consistent with the relatively large speeds
v, 24X 1072 a.u. realized in that experiment.

VI. CONCLUSIONS

The present above-the-barrier model for above-surface
neutralization of highly charged ions provides, despite its
inherent oversimplifications, realistic quantitative esti-
mates for the characteristic time (velocity) scales as well
as the efficiency of above-surface neutralization dynam-
ics. Both the mean potentials governing the multielect-
ron transfer and the Auger decay rates of the multiple ex-
cited states are not accurately known. It turns out, how-
ever, that despite these uncertainties the resulting neu-
tralization dynamics is governed by a well-defined time
scale. The model describes successfully the formation of
transient hollow atoms. In the present collision system,
Né* >Au for v,>10"2 au.,, the Auger relaxation
remains incomplete, and essentially all K-shell vacancies
are carried into the solid. For lower speeds, partial filling
of the K vacancy becomes possible. The K Auger emis-
sion is, however, reduced by the image acceleration. The
neutralization does not proceed fast enough and at
sufficiently large distances so as to terminate the image
acceleration at an early stage. Consequently, the effective
speed for approaching the surface does not drop substan-
tially below 1072 a.u. and the ion carries a large fraction
of K vacancies into the surface irrespective of the asymp-
totic speed v,. These conclusions appear to be valid ir-
respective of the assumptions used in the solution of the
set rate equations [Egs. (12)-(14)]. We find satisfactory
agreement with recent experimental data by Meyer et al.
[17,43] for the above-surface component of the K Auger
emission.

The total number of Auger electrons is found to be
strongly correlated with the fraction of K-shell filling
achieved in the neutralization sequence. For the nearly
completely filled K shell, the total number of secondary
electrons is approximately given by the statistical esti-
mate (2?7, p is the number of steps of the relaxation se-
quence). For ions with a large fraction of K vacancies the
total yield is substantially smaller. We point out that the
avalanche of secondary electrons can be used as an in-
dependent test for the degree of above-surface neutraliza-
tion and relaxation. If the yield lies significantly below
the statistical estimate, the relaxation of the charge cloud
occurs most likely in close collisions at the surface or in-
side the solid rather than above the surface. It should be
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noted that in the latter case the approximate propor-
tionality between total secondary-electron yield and the
amount of potential energy [15] carried into the collision
may still be preserved. Energy loss by multiple scattering
of energetic electrons and ejection of additional electrons
in a collision cascade may account for the required ener-
gy distribution over many electrons.

In closing we point to future directions: a treatment of
the multielectron transfer process beyond the mean-field
approach within the framework of either classical [45] or
quantum N-body dynamics would be highly desirable. Of
particular importance is the modification of the effective
above-the-barrier electron flow due to correlated transfer
processes. The latter could lead to either an enhance-
ment or a decrease of the capture current, depending on
the spatial separation of the two correlated electrons rela-
tive to the distance of the ion from the surface. Finally, a
more complete description of the interaction of the high-
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ly charged ion surface requires treatment of processes
occurring at the surfaces and inside the first few layers
such as two-center Auger capture and ion-atom-like pro-
cesses. Preliminary estimates indicate that the 5d level of
gold will provide a major contribution to quansiresonant
transfer during the penetration of the first few atomic lay-
ers.
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