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Ab initio calculation of static atomic dipole polarizabilities
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The simultaneous optimization of the bound and continuum multiconfiguration Hartree-Fock orbitals
for an electron scattered by an atom leads to a set of bound orbitals for the target atom that completely
takes into account the polarization of the target by the electron. The polarized orbitals that are generat-
ed for zero kinetic energy and angular momentum of the continuum electron form an excellent basis for
the calculation of the static dipole polarizability. We have done this for the ground states of the inert-
gas atoms helium, neon, and argon. Our results agree extremely well with experimental measurements,
indicating that this ab initio approach provides very good wave functions with which to determine high-

ly accurate values of the polarizability.

PACS number(s): 34.80.Bm, 31.20.Di, 35.10.Di

I. INTRODUCTION

The dipole polarizability, the quantity that describes
the response of an atom or molecule to an external field,
is a fundamental property of the atomic or molecular sys-
tem. Its correct calculation can serve as a test of the
wave functions that must describe the system in the pres-
ence of the field. Perhaps in no case is this more strongly
felt than in the area of electron-atom or electron-
molecule scattering.

It is well known that a basic problem in low-energy
electron-atom scattering is how to represent the long-
range polarization potential between the electron and the
polarizable target, especially when a considerable portion
of the polarizability derives from the continuum. Temkin
[1] accounted for this effect by taking the view that the
process could be represented as scattering of the electron
by an atom which had been polarized by the incident
electron. His approach led to the definition of a set of po-
larized orbitals which describe the atom in the presence
of the incident electron. This polarized-orbital method
was successfully applied to the scattering of electrons off'

hydrogen by Temkin and Lamkin [2] and has been used
for a number of other systems as well [3—6].

Damburg and Karule [7] suggested a solution to this
problem for electron-hydrogen scattering through the
definition of a polarized pseudostate which could be in-
cluded in the close-coupling approximation. Burke, Gal-
laher, and Geltman [8] used this pseudostate approach,
with the pseudostate obtained from a first order perturba-
tion calculation describing the static dipole distortion of
the target in the field of a distant outer charge, with a
substantial improvement over the usual close-coupling
method.

Feautrier, Van Regemorter, and Lan [9] extended the
polarized-orbital method of Temkin to coupled channels
to obtain the appropriate polarized pseudostates. Lan, Le
Dourneuf, and Burke [10] developed a general method
for calculating any polarized pseudostate for a complex
atom within a superposition of configurations framework.
Lan [11] discussed the principle of constructing such

pseudostates in a single configuration scheme based on
the numerical solution of the first-order perturbation
equation. Burke and Mitchell [12] made a first attempt at
calculating multiconfigurational ps eudostates and ob-
tained the polarized pseudostates as linear combinations
of configurations. They obtained results for helium,
neon, argon, and nitrogen. Lan, LeDourneuf, and Burke
[10], using their general method, obtained the polarized
pseudostate and calculated atomic dipole polarizabilities
for complex atoms such as C, N, and O. Miller and Kelly
[13] used many-body perturbation theory to calculate the
dipole polarizability of the neutral carbon atom in the 3p
ground state. Billingsley and Krauss [14] and Stevens
and Billingsley [15] calculated static dipole polarizabili-
ties of atoms within a multiconfiguration self-consistent-
field framework. Their method involves the direct solu-
tion of the multiconfiguration self-consistent-field equa-
tions of an atom in the presence of a perturbing field
which is simulated by a charged particle. Robb [16] cal-
culated the dynamic dipole polarizability of the ground
state of beryllium and carbon atoms using an expansion
of the perturbed-atomic-state wave function in terms of
R-matrix states. Robb [17] also calculated the
frequency-dependent dipole polarizability of the ground
state of atomic nitrogen using the R-matrix method.
Burke and Robb [18] developed a theory of electron
scattering by complex atoms based upon the R-matrix
method to calculate the static atomic dipole polarizabili-
ties.

In recent years Saha has applied an expanded
multiconfigurational Hartree-Fock (MCHFi technique
[19] to the calculation of elastic electron-atom scattering
cross sections [20—23]. The results for the total cross sec-
tion at very low energy have been extremely good. This
technique relies on a simultaneous optimization of both
the bound and the continuum orbitals for each energy of
the scattering electron. In this way the dynamic core-
polarization eftects can be very accurately taken into ac-
count ab initio. In the limit in which the kinetic energy
and angular momentum of the scattering electron are
equal to zero, the bound target orbitals which are gen-
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crated should contain all the information about the static
polarizability governing the response of the target to the
external field of the electron. Thus, they form an ideal
basis for the calculation of the atomic polarizability.

In the work which follows we describe a calculation of
the static dipole polarizability based on the expansion of
the distorted wave function in terms of the excited
configuration states used to describe electron-atom
scattering as discussed above. The polarized orbitals are
first generated by application of the multiconfiguration
self-consistent-field method to the electron-target system
with minimization and determination of the bound orbit-
als for zero kinetic energy and angular momentum of the
electron. These orbitals are then used in the traditional
manner to perform the calculation of the static polariza-
bility. As a test of the validity of this approach we have
obtained results for the polarizability of the rare gases
helium, neon, and argon.

II. THEORY

A. Dipole polarizabilities

The static dipole polarizability of an atomic system is
defined through the expression

(Atomic units are used throughout. ) The summation and
integration extend over all states Pk, including the con-
tinuum, which are coupled to the initial state $0 by the
dipole operator

4'
1 3

1/2

g r, Fp,'(r, ), (2)

where the polarized orbitals P are solutions to the atom-
ic Hamiltonian in the presence of the external field. Our
approach is to determine these polarized orbitals through
the MCHF method by selecting those bound states which
are solutions to the full Hamiltonian, with scattering
electron, for zero electron energy and angular momen-
tum.

where N is the number of atomic electrons. For an atom
in the gas phase it is sufficient to take p =0, then
M~~=X, z, Following Dalgarno and Davison [24], the ex-
pression for a given in Eq. (1) can be shown to be
equivalent to the expression

I&@OIMg ld, &I'
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0'(yLS;N+1)= g a~4'(y~L, S,;N)PI(
j=l

+ g c;@(y;LS;N+1), (4)

where C&(y L,S„N) are target wave functions coupling
with the wave function of the scattered electron to form
an eigenstate of L and the total spin angular momentum
S. @(y;LS;N + 1) are (N + 1)-electron wave functions
formed from bound orbitals and are included for polar-
ization. The method of constructing the polarized orbit-
als for l =0 and k =0 involves the solution of coupled
integrodifferential equations of the form

d2 2Z

dp'

l(I+1)
P, r

where a is the scattering length.
As the polarization of the target atoms by the scatter-

ing electron is very strong at zero energy, all the
configurations which account for the polarization are
considered in the expansion of the scattering function.
The dipole polarization is taken into account by adding
configurations generated by the replacement of the target
orbitals with excited orbitals which reproduce dipole
effects. The resulting set of coupled second-order
integrodifferential equations, which can become quite
large, is solved numerically by an iterative method which
varies both the bound and the continuum orbitals simul-
taneously. Part of the output of this technique is the set
of polarized orbitals P~ which are then used to calculate
a according to Eq. (3). The energy E is obtained by a
direct evaluation of the X-electron atomic Hamiltonian in
the state described by the polarized orbital. No further
minimization is employed. We stress the fact that the po-
larized orbitals generated through this procedure contain
all the necessary information about the polarization due
to the external field.

III. RESULTS

=—[Y;(r)P;(r)+X;(r)+I;(r)]+QE P.(y) (5)
2

1

by an iterative method as described in detail earlier [20].
The bound wave functions satisfy the boundary condi-
tions

limP;(r)=r' ', lim P, (r)=0
r~O r —+ oo

and the radial function for the scattering orbital for l =0
and k =0 satisfy the boundary conditions

limP, (r)=r ', lim P, (r)= A'(r —a),
r~O r~ Qo

B. Polarized orbitals

As in earlier work, the distorted wave function for the
scattering states is expanded in terms of members of a
complete set of bound and continuum orbitals, as

To test our approach, we select inert-gas atoms be-
cause of two reasons. First, a number of theoretical and
experimental results are available for these atoms, and we
can compare our results with them. Second, inert-gas
atoms have a closed shell in the ground state. Their
configuration can only form a single LS state, 'So in the
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TABLE I. Contributions from the polarized orbitals to the static dipole polarizability of helium.

Initial
state

HF

MCHF

Polarized
orbital

2p
3p
4p

2p
3p
4p

hE~ (a.u.)'

0.859 58
0.968 90
1.964 71

0.900 31
1.009 62
2.005 43

Dipole
matrix

element

1.078 51
0.748 51
0.801 33

1.053 46
0.734 35
0.768 30

Contribution
to a (ao)

0.902
0.386
0.218

0.822
0.356
0.196

Total a
(a,"

1.506

1.374

'Energy difference E~ —Eo from Eq. (3).

Russell-Saunders description. There are no unoccupied
orbitals close enough in energy to the ground state to
make a significant contribution to the polarizability.
Thus, the polarizability becomes very sensitive to the dis-
tortion of the occupied orbitals. While it is easier to
determine the polarizability for open-shell atoms, as it
derives primarily from excitations to unoccupied orbitals
lying relatively close in energy to the ground state, the
same is not true for the rare gases. Although other
methods have been used to calculate the polarizability of
these elements, none of these approaches are based on an
ab initio technique. As examples of our approach, we cal-
culate the polarizabilities of helium, neon, and argon. In
all cases the expression in Eq. (3) will be used as the basic
form of the expression for the polarizability a.

a = 1.506a o; in the latter we obtained the value
a = l. 374a 0. The experimental result [26,27] is
+=1.384ao. The only excitation contributing to the po-
larization in helium derives from 1s~np. When the
Hartree-Fock approximation is used, the 1s orbital per-
ceives no inhuence from other possible configurations,
which then seem to appear in the polarizability.

In Table I is given a listing of the contributions of each
of the polarized orbitals to the polarizability of helium.
These are separated according to whether the HF and or
the MCHF calculation was used for the ground state. En-
ergy differences from the corresponding ground state and
matrix elements are given as well. Only values for n =2,
3, and 4 are given; the contribution from n = 5 is negligi-
ble.

A. Helium B. Neon

For the case of helium the polarized orbitals were pro-
duced by expanding the scattering wave function in terms
of configurations involving the single replacement of the
1s orbital of the target with excitations of the type
is~np (n =2—5). For the perturbed continuum state
the wave function expansion was over 30 configuration
states. The ground state Po was determined in two ways
[25], either by a single configuration Hartree-Fock calcu-
lation or by a multiconfiguration Hartree-Fock calcula-
tion. In the former case we obtained a value of

For the case of neon it proved to be quite adequate to
represent the ground state with only a Hartree-Fock
wave function. For the 2s 2p configuration of neon, the
polarization effects are taken into account by including
configurations involving the single replacement of the
target orbitals according to 2s~np and 2p~n'd, n's.
The orbitals np, n's, and n'd were varied simultaneously
with the continuum. Thirty-eight configurations were
used in the distorted wave function expansion for the
continuum states. For the calculation of the polarizabili-

TABLE II. Contributions from the polarized orbitals to the
static dipole polarizability of neon.

TABLE III. Contributions from the polarized orbitals to the
static dipole polarizability of argon.

Polarized
orbital

3d
4d
5d
3$
4s
5s
3p
4p
5p

bE~ (a.u.)'

1.566 97
2.041 60
3.844 64
0.835 64
2.900 91
8.557 17
1 ~ 849 08
2.430 63
3.346 85

Dipole
matrix

element

2.073 73
0.629 35
0.464 78
0.871 18
0.222 95
0.034 68
0.11607
0.393 20
0.293 53

Contribution
to a(ao)

1.830
0.129
0.037
0.605
0.011
0.0001
0.005
0.042
0.017

Polarized
orbital

3d
4d
5d
4s
5s
6s
4p
5p
6p

hE~ (a.u.)'

0.843 91
0.907 64
1.298 31
1.692 20
2.692 20

10.681 54
1.208 10
1.51679
2.102 92

Dipole
matrix

element

3.561 38
0.521 98
0.127 14
0.742 03
1.243 68
0.16096
0.063 38
0.283 69
0.274 20

Contribution
to a (ao)

10.020
0.200
0.008
0.217
0.383
0.002
0.002
0.035
0.024

Total static dipole polarizability =2.676ao

'Energy difference E~ —Eo from Eq. (3).

Total static dipole polarizability=10. 891ao

'Energy difference E~ —Eo from Eq. (3).
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TABLE IV. Comparison of various calculations for the dipole polarizability a (in units of ao).

He Ar

Theory
This work
McEachran, Ryman, and Stauffer (Ref. [30])
Bell, Scott and Lennon (Ref. [31])
Fon, Berrington, Burke, and Hibbert (Ref. [32])
Fon, Berrington, and Hibbert (Ref. [33])
Fon and Berrington (Ref. [34])
Dasgupta and Bhatia (Ref. [35])
Dasgupta and Bhatia (Ref. [36])
Kaneko (Ref. [37])
Lahiri and Mukherji (Ref. [38])
Stevens and Billingsley (Ref. [14])
Burke and Mitchell (Ref. [8])

1.374
1.322

1.294

1.323
1.323

2.676
2.377

2.555
2.803

2.358
2.36
2.368

10.891
10.758
12.57
12.79

14.29
10.60
10.08

11.56

Experiment
Leonard and Barker (Ref. [26])
Harbatsch, Darrewych, and McEachran (Ref. [28])
Miller and Bederson (Ref. [29])
Dalgarno and Kingston (Ref. [39])
Dalgarno (Ref. [40])

1.384
2.66

2.7

11.06
11.08

ty we used polarized orbitals generated through the exci-
tations n =3—5 and n'=3 —5. It is found that higher
values of n and n' make a negligibly small contribution to
the static dipole polarizability.

The contributions to the polarizability from the vari-
ous polarized orbitals are given in Table II for neon, to-
gether with the energy di6'erences from the Hartree-Pock
ground state and the matrix elements. The final result
which we obtain for the polarizability is a=2. 676ao.
This is in excellent agreement with the experimental re-
sult [28] of a=2. 66ao.

C. Argon

In calculating the polarizability of argon we again used
a Hartree-Fock wave function for the ground state.
Configurations generated by the single replacement of the
orbitals 3s and 3p according to 3s ~np and 3p ~n 'd, n "s
with n =4—6, n'=3 —5, and n"=4—6 were used to pro-
duce the polarized orbitals. The MCHF expansion for
the continuum state was over 46 configurations. As was
the case for neon, it was found that higher values of n, n ',
and n" than those given in Table III made a negligible
contribution to the polarizability.

The energy difI'erences, matrix elements, and overall
contributions to the polarizability for each of the polar-
ized orbitals are given in Table III for argon. The final
result which we obtain for the polarizability is
&x=10.891ao. This, too, is in excellent agreement with
the experimental value [29] of a =11.06a&&.

IV. DISCUSSION

In Table IV is given a comparison of the results of our
calculations of the static dipole polarizability with those
of other methods. We have already indicated that the re-
sults which we obtain agree very well with the experi-
mental values. Thus, even though our original goal had
been to produce polarized orbitals to take into account
the target polarization in a collision problem, it turns out
that the solution to the collision problem at zero energy
provides the necessary wave functions for the calculation
of the static polarizability, the only ab initio calculation
to do so.

Because our technique relies on polarized orbitals
which are generated as a natural consequence of the solu-
tion of the Schrodinger equation through the minimiza-
tion procedure, the method used is completely general. It
can be applied to any atomic system. In addition, it can
be generalized in a straightforward way for a given
nonzero frequency. It would then be necessary to optim-
ize the orbitals for each frequency separately. This possi-
bility is planned to be explored in a later paper.
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