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The problem of calculating the cross section for bound-electron —positron pair creation in very-high-

energy heavy-ion colliders (100 GeV/u or higher, an effective y &2X10") is addressed. The multipole
decomposition of the basic time-varying interaction is explicitly written in terms of simple and compact
forms that display the energy (y) dependence directly. Then, specific gauge transforms remove the y
dependence for smaller impact parameters, up to negligible terms of higher order in 1/y. For larger im-

pact parameters b, the interaction is shown to weaken as 1/b, where the known perturbative results ap-

ply. Only at small impact parameters are strong-coupling calculations necessary, but the gauge choices
show that the contributions from these regions are y independent. Putting these results together leads to
a simple form for the cross section, A lny+B, where A and B are energy independent and A is known
from the perturbative calculations. This form and its weak dependence on energy makes extrapolation
from lower-energy results reliable and indicates the usefulness of a possible experiment at comparatively
low energies (y -200).

PACS number(s): 34.90.+q, 34.20.—b

I. INTRODUCTION

The production of bound-electron —positron pairs by
the electromagnetic fields of the highly charged ions of
relativistic heavy-ion colliders limits the beam lifetime in
an important way [1]. Although the problem has been
studied with perturbation theory for some time [2,3], re-
cent developments force a reexamination [4]. The high
charge states of the ions (aZ-0. 6 for Au+Au interac-
tions) put into question the earlier perturbation results.
In particular, a number of recent papers [5] indicate that
standard perturbation approximations, such as the
Weizsacker-Williams one, strongly underestimate the
electron-capture cross section, at least at moderate im-
pact distances of -fi/m, c. Furthermore, the very high
effective energy (equivalent fixed target Lorentz
y )2 X 10 ) of the Relativistic Heavy Ion Collider
(RHIC) machine now under construction appears to
make the nonperturbative problem formidable.

This paper presents a reformulation that removes this
latter set of problems and reduces the calculational prob-
lem to a much more manageable domain. It further indi-
cates how results at lower energies could be used to safely
extrapolate to the regions of the ion colliders by present-
ing a very general and simple form for the energy depen-
dence of the cross section.

In Sec. II, we examine the basic step of the calculation-
al technology: the multipole expansion. In a departure
from past work, an expansion in 1/y produces the mul-
tipole expansion as compact, explicit, and simple func-

tions of space and time; in Sec. III, comparison with nu-
merical evaluations demonstrates the accuracy of these
forms. The consequent availability of these multipole
forms permits us to see that the y dependence appears in
just one special term, and that term is removable by a
gauge transformation. Section IV is devoted to the study
of this and other gauge transformations that allow for the
removal of the y dependence, so long as the impact pa-
rameter b is well below yA'Im, c. Each of the various
gauge transformations leads to an effective interaction
that is specifically convenient for a particular calculation-
al procedure. Of overriding importance is the clear
demonstration that the strength of the interaction falls as
1/b, thereby becoming weak enough to validate perturba-
tion theory. Section V shows that in this large-b region
the perturbational result reduces to the Weizsacker-
Williams approximation; contributions to the cross sec-
tion accumulate up to the natural cutoff at b -y film, c to
add up to a value of the form A lny+Bp &

where A and
B

p t are y independent and known. Adding in the con-
tribution of the small-b region, which as noted, is y in-
dependent, gives us a cross section of the form

o.= A lny+B,

where A is known from the perturbation calculation [3]
(7.80+0.06 b for fully stripped Au+Au).

This general law for the weak energy dependence of
the cross section makes the results of possible lower-
energy experiments directly applicable to the very high
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energies of the colliders of the future. Experiments at the
CERN heavy ion Super Proton Synchrotron (SPS),
y -200, could be useful, even though the screening of the
target prevents precise comparison with the fully stripped
ions of the collider. The importance of the cross-section
formula comes from the weakness of the energy depen-
dence; a logarithmic increase means that even low ener-
gies are near the high energies of the future.

II. CLASSICAL FORM OF THE INTERACTION

The motion of the relativistic heavy ions is assumed to
be well described by straight line, classical paths and un-
perturbed by recoil effects. Since we are interested in the
pair production process in which the electron ends in a
bound orbit centered on one of the ions, it is useful to fix
the coordinate system on that ion. The interaction of the
electron field with the moving ion (projectile) is then
given by the transformed Coulomb potential

Mt (r, t)= dQ Yt
1

b —p y '+ z —
U, t' '~'

(2.2)

have been analyzed and described in several papers [5].
We do not use these methods here. Instead, we derive
here simple closed forms for MI that are accurate for
large values of y. Our main purpose in going through
these details is the explicit exhibition of the y depen-
dence, and, thereby, to demonstrate its simple nature.
The explicit removal of that dependence is left to Sec. IV.

The derivation consists of an almost straightforward
expansion about the near singular point z =U t, after
some careful rearrangement of the integrand. Thus, as a
first illustration consider the region r (U t. Then

Mt =fdnYI +0
z —u ti y

aZ (1—u a, )
V~(p, z, t) =

I [(b—p)/y ]'+(z —u„t )'I '" (2.1) dQ Yl
1

U t —rcos6

Here b is the impact parameter of the projectile ion's
path, which is taken along the z axis; Z and U are the
charge and velocity of the projectile; y = 1/(1 —

uz )'; p,
z, and t coordinates of the electron field relative to the
fixed (target) ion; and a, is the Dirac matrix. To this is
added the Coulomb potential of the target ion. The
characteristic effects of the electromagnetic interaction
produced by the projectile ion V are contained in its
time dependence and the very severe compression of the
spatial dependences —the sharp pulse description found
in textbooks.

A more detailed insight into the y dependence can be
obtained from the multipole decomposition of V . Such a
decomposition is useful if a calculation is to be made in a
basis set defined by the Coulomb potential of the target
ion; indeed, since our interest is focused on the occupa-
tion of the bound orbitals of that potential, such a basis
set is central to the analysis. The complex problems of
the exact calculation of the scalar multipole,

=6 0
2&~i/2l + 1 up t

r r
(2.3)

where Qt is the familiar Legendre function of the second
kind; it will be recalled that as r ~U t,

Qi~ —,'Pt(1) ln =—,
' ln

u~t —r (u t )2 —r2

There is need for care at r-U t, which it will indeed
receive below. It is important to note that this expansion
requires that b/(r —u t) «y; assuming that the nature
of the physical problem confines r and U t to moderate
multiples of iitlm, c, the requirement of b becomes
b «yA'/m, c. This limitation on b, however, is an easy
burden to carry since we will see later on that at
moderate b the Weizsacker-Williams approximation be-
comes valid and can be merged onto the nonperturbative
calculation appropriate for smaller impact parameters.

To carry out the expansion systematically, we write

1

I[(b—p)/y] +(r cos8 —u t) I'i

+ fdn, , „,[Y, (8,P) Y, (8„P)],—
I [(b—p)/y] +(r cos8 u t) I'— (2.4)

where 0, is defined by

Upt
~u t~ &r, cos8,=, sin8, =[1 (u~t/r) ]'—
~u t~)r, cos8, =1, sin8, =0.

Since the integrand of the second term remains finite when the [(b—p)/y] term of the denominator is dropped, it is

easy to see that this second term of (2.4) is given to order lny/y by
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PI(x) P—&(t/r), ~„P&(x) P—&(t/r)+ dx
x —t/r t/r —x

=5
O

~I~~/2( +1 2P (2.5a)

~/~i/21 + 1
m, O

' t t+r
2Qi — —ln

T t —r
if Itl) r . (2.5b)

We have also replaced v~ by 1 since they differ only by O(1/y ). Both forms are finite and easily computable by stan-
dard methods. The first term in Eq. (2.4) is amenable to elementary treatment if it is noted that to order lny/y the
(b —p) /y in the denominator can be replaced by its value at O=O„v by 1:

I[(b—p)/y] +(r cosO —t) ]'

imP= YP(8„0) dQ
[(b Iy )[1 2(r/—b) sinO, cosP+(r Ib ) sin 8, ]+(r cosO —t)2]'~2

E'~ (8„0) I [(u t/r) 1] +[(b—/r )/y )(1—(2r/b) sinO, ocsP +(r Ib ) sin 8, )]' —(1—t/r)

[[(U t/r)+1] +[(b /r )Iy ](1 (2r/b) sinO—, cosP+(r /b ) sin 8, )]'~ —(1+t/r)
(2.6)

Except in the narrow region of width of O(b/y) around
u~t

/r —1, the logarithm can be expanded, so that we have

i/~i/2l + 1
1

t + r
m, O ln

r t —r
if r & Itl,

and if r) lt,

fdPe' ~ ln4y +in(r —t ) —lnb 1 — sinO, cosP+ 2
sin 8,

Integrating over P we obtain

5 o2m
Yi (8„0) ~2 t2

ln4y + 1 —0
Q2

r —t Yi (8„0)—1 ln + (1 —& 0)2ir
b2 r Im

r —t
0

b2

Q2 —1 +
I'

b

r —t
0 r —t

b2
(2.7)

8(x) is the familiar step function, 0 if x & 0 and 1 if x )0. Should the narrow region at r —t be important in some calcu-
lation, instead of approximating the integral of (2.6) in the manner of (2.7), the original form of the integral is to be used
with 0, ~O to provide a bridge across the gap:

Vnv'2I +1 [(t/r —1) +(b /r )/y ]'~ +(1—t/r)
5 O ln

[(t/r+1) +(b Ir )Iy ]'~ (1+t/r)— (2.g)

in the narrow region around r —t the use of this function is reliable to order 1/y.
In summary, the asymptotic form of the multipole decomposition of V (p, z, t) is given by
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Yi (8r, 0)
V~(p, z, t)=aZ~(1 —a, ) g [Yi (8,$)+ Yi *(8,$)]

1, m )0

() if « Itl
m/2

2m. r —t
m

X . if ~t~ &r & [b'+t']' '
' m/2

2m b

m p

if r&(b'+t')' '

Qi(t/r) if r & /t/

+aZ (1—a, ) g Yi(8) .
I

7T+21 + 1
2 ln2y+ln

4.

if ~t~ &r &(b'+t')' '
2~+1 p

P n=i"

I—2 g
&

n

if r &(b'+t')'~' (2.9)

(2.10)

As noted, at r —
~
t~ the discontinuity is bridged by the logarithm (2.8), so that with inclusion of the finite values of (2.5a)

or (2.5b) the m =0 multipoles are better described at this delicate point by

&mv 2l +1 [(t/r —1) +(b /r )/y ]'~ +(1—t/r) 1

[(t/r +1)'+(b'Ir') Iy']' ' (1+t—Ir)

Expansion of the logarithm of Eq. (2.10) in b /y for
r &&

~
t

~
demonstrates the connection with the two forms

written above. However, note that the singularities at
r —

~
t~ contained in Eq. (2.9) are integrable, and the result

of integration across the r —
~t~ region with either form is

the same to order lny/y. Therefore, unless the m =0
multipole terms are to be integrated together with func-
tions that vary sharply in the r —~upt ~

region, the need
for the bridge function disappears. Such a sharp depen-
dence would be possible for matrix elements involving
high-momentum wave functions whose oscillation length
1/p is of order b/y. As we shall see later the coupled-
channels approach is to be used only for small b, say
& 5irtlm, e; then, for y & 200, the domain p & 40m, c is un-
troubled.

A feeling for the range of energies that are expected to
be of importance can be gleaned from perturbation
theory. As will be seen in Sec. V, the perturbative cross
section is largely determined by the related photon cross
section weighted by an additional factor of inverse pho-
ton energy. As can be seen by weighting the calculation
of Johnson, Buss, and Carroll [6], the K-captured elec-
tron is accompanied by moderate-energy positrons whose
spectrum peaks at approximately 1.5m, c total energy,
and falls very roughly as the square of the energy. %'e
are then dealing with a calculation whose energy domain
is con6ned, as is the spatial domain. It is this picture that
we bring along to understand the usefulness of approxi-
rnations in the full, nonperturbative calculations.

Although in the present work we do not actually evalu-
ate time-dependent matrix elements for use in coupled-
channels calculations, we cannot help but notice that
such an endeavor will be facilitated by the form of the

(21n2y)aZ (1—a, ) g Yi (8) Pi
I

=(2ln2y)aZ~(1 —a, )5(z t), r & ~t~;—(2.11)

the condition r &
~t~ is automatically contained in the

5(z t). But, as we shall see—in Sec. IV, this set of terms
is entirely removable by a gauge transformation. Once
having removed this explicit dependence on y, we are left
only with the implicit dependence inherent in the limita-
tion already noted that the above forms are valid only for
the region b «yA/m, c. However, as we sha11 fully dis-
cuss later, when b is not small, perturbation theory is val-
id. This, then, immediately implies a very general result
for the total cross section for pair creation with the elec-
tron captured into a bound state.

above interaction. In Eq. (2.9) all terms can be expressed
in terms of polynomials and/or convergent series in (t/r)
for t & r, and in (r lt) for r & t Thus t.he matrix element
to be integrated over r can have its interaction expressed
as a series of negative and positive powers of r. In each
of the terms of the series in r, t is effectively a coefficient:
r and t have become separable term by term.

In addition to providing a simple means of calculating
matrix elements, the asymptotic forms obtained above al-
low us to straightforwardly look at the y dependence of
any set of matrix elements or amplitudes. As we can see
directly, the y dependence of the multipole operators ap-
pears only in the m =0 terms and only in the one form:
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III. COMPARISON WITH EXACT SOLUTIONS V =16m g i' ' YP(8, $)Y( (8„,0)

1 z piq .(p —b)+iq (z —v t)

, fd'q, dq,
27T2 e'. +e,'~x'

In this section comparisons are made between the ana-
lytic forms obtained above as large-y limits and the exact
multipole components. Two methods are employed: (1)
an analytic expansion of the interaction in spherical har-
monics followed by numerical evaluation of the resultant
functions, and (2) direct numerical integration of the an-
gularly weighted interaction. There are complementary
advantages to each.

The expansion in spherical harmonics begins with the
familiar Fourier form:

V = 1
P

[ [ (p b ) / y ]
2 + (g v t )

2
]

) / 2

T

X f dq j&(rq)j & (uq)
0

X f d(cosO, )
1

1 —
U cos g

X YP (8,0)Yi. (8,0) (3.2)

Here u is the vector (1+v tz), u its length
[b +(vent) ],and 8„ its polar angle; azimuthal angles
are measured from the b axis. The integrals are well
known:

f "dq J, (rq)g, .(uq)
0

u' I ((I +I'+1)/2)
4 „~'+' I ((I —I' )/2+ 1)I (I'+ —,

'
)

y
—i ( b + v t z ) .q

d q2~2 2 U2 2
gZ U g

(3.1) l+l'+1 l' —l l'+ —' / f
2

'
2

Expansion of each of the plane waves in the usual spheri-
cal harmonics followed by the azimuthal integration over

P» results in

(3.3a)

and the interchange r~u, l+ l' if r &u. For the very
special case of r =u,

1T 1 I (( I +I'+ 1)/2)
"o 4 r I ((I' —I)/2+1)I ((I+I')/2+1)l ((I —I')/2+1) (3.3b)

as notation, we call this set of integralsA(l, l;r, u). The angular integral is

f d(cosO» ) YP (8,0) YP (8,0)
cos g

1 PL(cosO )
( —1) &(2l +1)(2I'+1)g C" oCo'oo f d(cosO )

4m 1 Up cos Oq

( —1) &(2I +1)(2l'+1)g C" C" ~
Q =A(m;I, I', 1/u ) . (3.4)

The multipole decomposition is then given as the series

V~ =+ YP(8, $) g FP(8„,0)%(l, l', r, u)
I, m

XA(m;I, l', 1/v ),
(3.5)

U t b
u =[b +(u~t) ]', cosO„=, sinO„=—

There is a set of special cases that is particularly simple
and informative: For r )u the sum over I' in (3.5) is cut
off by the spherical Bessel function integral (3.3a) (the oc-
currence of a negative-integer value of the argument of
the gamma function ensures that I' ~ I); furthermore, for
l'~l the hypergeometric function is just a polynomial.
Thus the exact result for the Y& component of V is

1, 1—
—,'Qo +—,'Q2

Up Up

1 1
2

—1 Qo
Vp P

Y', (8,$)&3m./2
p' Vp

= Y, (8,(h)&3'/21 b 1

p' Up

1+U
Qo= —,

' ln
1 U

Vp

if r)u,
(3.6)

As y~~, U ~1, the term in square brackets on the
right-hand side approaches —1, in agreement with the
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corresponding expression of Eq. (2.9). Similarly, the Yi
component of V is

Y, (8,$)&3m — 2 Qo
—2 if r)u; (3.7)

XJ (g cosg sin8& ) Yi (8s,0),
which is central to the coupled-channel calculations car-
ried out in Ref. [5], may be easily rewritten as the series
(3.5) using the identity [7]

J i/z(z sma smp)e""' "+
22v —1/2( ~z )

—i/2[ I'( &) ]2(sjna sinP )v
—1/2

i "n!(v+n ) J +„(z)C„(cosa )C„'(cosP),

where C„are Gegenbauer polynomials. The Gegenbauer
polynomials are readily expressed as Legendre polynomi-
als, resulting in Eq. (3.2).

In evaluating the series over l' of Eq. (3.5) we find an
oscillatory behavior, especially for m =0 terms. These
convergence problems can be readily overcome with the
aid of Pade approximants [8]. By construction, the kth
partial sum is given by the sum of 0+1 terms of the
power series

k

S/' = g Yi, (8„,0)%(l, l', r, u)A(m, l, l', 1/v )x (3.8)
I'=0

evaluated at x =1. A Fade approximant to the polyno-
mial Si", (x) of order k is a rational function (ratio of po-
lynomials)

PL(x)
[L/M]= (L +M =k);

QM(x)
(3.9)

the coefficients of the Pade polynomials, Pl (x) and

QI (x), are chosen such that the first k terms of its Taylor
series coincide with SI',™(x).We use the Wynn algorithm
[9] to generate directly the approximants [L/L] and
[L+1/L] for x =1. Numerical studies show that this
sequence of Pade approximants to Sl", (x) accelerate the
convergence of the original series when it converges, and
converge rapidly under circumstances (typically for
m =0) when the original series is seen to diverge. Exten-
sive numerical studies for combinations of r, t, v, b, l,
and m values show clearly the reliability and speed of this
approach. In general, the largest number of terms for
S/™(x)required to achieve convergence occurred near
the singular point r =v t. As examples of the results, for

as y ~ ~ the term in square brackets approaches
21n2y —2, in agreement with Eq. (2.9). In both these il-
lustrations it is clear that the di6'erence between exact
and asymptotic values is O(lny/y ).

In order to compare with forms for the multipole ex-
pansion that appear in the literature, it is noted here that
the term

slnOgZ' (g g)= f d8
1 v cos kg

(l =1, m =0) at b =1, t =20 and y=10, we obtained
convergence to better than one part in 10 for values of r
between 0 and 20. Typically, this measure of conver-
gence is achieved for the [8/g] diagonal element of the
Pade table. However, for b =1, t =1 (l =1, m =0,
y =10 as before) convergence of only one part in 10 is
achieved at the singular point r =v t =1 for the [9/9]
Pade element. Comparison of these Pade accelerated re-
sults for a whole range of r, b, t, I, and m values with the
numerical method described below shows very close
agreement.

Direct numerical integration over the angular coordi-
nates 8 and P, for each value of the variables (r, t), pro-
vides a standard of known accuracy to which the asymp-
totic formulation Eqs. (2.9) and (2.10) as well as the alter-
nate exact expansion Eqs. (3.1)—(3.5) can be compared.
The basic numerical method used involves a uniform grid
in b,P and 5(cos8) (or b, 8) and the summation of contri-
butions is evaluated at the center of each interval in the
two dimensions. Three variations of this method were
employed as appropriate. The first, most straightforward
option, was to simply sum elements evaluated on a uni-
form grid in b.P and b, (cos8). A second, slight variation
of this method was employed in which it was assumed
that only the cosO terms in the denominator vary over
the small interval 5(cos8) and thus each element may be
analytically integrated over the interval b, (cos8). The
third method is similar to the second except that the in-
terval chosen for this piecewise analytic integration is
uniform in b8 rather than in b, (cos8). With these three
methods available, the one most appropriate to the par-
ticular r, t, and y region could be chosen in order to ob-
tain results of sufficient accuracy.

A number of comparisons were made between results
of numerical evaluation of the integrals M &, M &, and Mz
and results of evaluation using the exact expansion Eqs.
(3.1)—(3.5) described above. Agreement between the two
exact methods was in every case excellent. The hardest
case for both methods occurs in the region r = v t, and
our agreeinent (e.g. , M, at y=10, t= 1, b=5) of about
one part in 1500 is what we would have roughly estimat-
ed in each method independently, based on change of re-
sults with mesh size on the one hand and based on the
convergence of the Pade approximants on the other.
Agreement was no worse than this anywhere else we test-
ed, and agreement between the two exact methods was
typically several orders of magnitude better. In compar-
ison between the exact method and the asymptotic expan-
sion which follow, the exact expressions were evaluated
by the direct numerical integration.

To compare the asymptotic expressions with exact
evaluation of the multiple components, the dipole com-
ponents Mi (r, t) and Mi (r, t) have been coinputed at y of
10, 200, and 20000 corresponding to relevant heavy-ion-
beam energies at the Brookhaven Alternating Gradient
Synchrotron, the CERN SPS, and the RHIC collider now
under construction. In the case of RHIC, a 100-GeV/A
on 100-GeV/A collider, the y of 20000 corresponds to
the equivalent energy/A of one ion seen in the rest frame
of the other.

We display the radial dependence of the multipole ele-
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ments for the combinations of time t= 1 and 10 and im-
pact parameter b = 1 and 10. Our unit of length is A/m, c
(386 fm); time is in units of A'/m, c . The two com-
ponents M, (r, t) and M i (r, t) are considered in turn.

In Figs. 1 —8 we follow a convention that the lines cor-
respond to exact calculations and the discrete symbols
correspond to calculations done with the asymptotic
form: For y =10, the solid line corresponds to the exact
form and the circles are the asymptotic form; for y =200,
the long-dash-dotted line is exact and the triangles the
asymptotic form; for y=20000, the short-dashed line is
exact and the squares the asymptotic form.

Figure 1 shows calculations of Mi(r, t =1) for an im-
pact parameter b of 1. For y =20000 and 200 agreement
between the exact calculation and the asymptotic form is
excellent. For example, for the points r=0.9,1.0,1.1,
y=200, the asymptotic form agrees with the exact to
0.1% or better. For y =10 some discrepancy is evident,
particularly around r =t=1, as expected. In fact, the
asyinptotic form is 12% low at r =0.9, 10% high at
r= 1.1, and 7% high at the bridge point r =1. The
bridge formula Eq. (2.10) was used only for the one point
r = t = 1, and in subsequent calculations we also make use
of the bridge formula only if r is exactly equal to t. Note
that for r & ~t~ the asymptotic formula is independent of
y and the points lie on top of each other.

If b and t are increased to 10, then the discrepancies
become larger for y=10, especially around r =t =10 as
we would expect for a formula ignoring terms in (bly)

(Fig. 2). And in the final m =0 example, in Fig. 3 b =10
and t = 1; M i (r, t = 1) is concentrated at small values of
t. These curves are similar to those of Fig. 1. However,
there is a greater discrepancy in Fig. 3 between the
asymptotic form and exact calculations for y=10 as
would be expected for the larger b.

Calculations for M,'analogous to those of M, seen in
Figs. 1 —3 are presented in Fig. 4—6. The general pattern
of the asymptotic form for M, is that it is y independent
(the circles, triangles, and squares are, thus, on top of
each other), is zero for r & t, increases in magnitude for
r &r &(b +t )'~, and decreases in magnitude for
(b + r )

'~ & r. For all values of t and b, there is general-
ly excellent agreement between the asymptotic formula
and the exact calculation for y=200 (long-dash-dotted
line) and y =20000 (short-dashed line) as is evident in
Figs. 4—6. These figures also show a systematic
discrepancy between the exact calculation for y = 10 and
the asymptotic form for values of r ~ t. It is also interest-
ing to contrast the relatively greater weighting of large r
values for M i (r, t = 1), b = 10 (Fig. 6) with the concentra-
tion of Mi(r, t =1), b = 10 around t =0 (Fig. 3).

The general conclusion that follows from these com-
parisons for these I = 1 multipoles is that the asymptotic
approximation agrees very well with exact calculations
for y=200 and 20000. Even for @=10 agreement is
good for b =1 and fair for b =10. As we will see below,
b = 10 is an impact parameter already into the perturba-
tive regime.
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FIG. 1. Graph of the radial dependence of M &, the scalar multipole defined generally in Eq. (2.2), for (l = 1, m =0) and the choice
of variables (t = 1, b = 1). Units of length are (A/m, c), and units of time are (A/rn, c ). The code for the plotted calculations of Figs.
1 —6 is as follows: solid line: y = 10, exact form; circles: y = 10, asymptotic form; long-dashed-dotted line: y =200, exact form; trian-
gles: y =200, asymptotic form; short-dashed line: y =20000, exact form; squares: y =20000, asymptotic form.
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FIG. 2. M& E = 10 6 = 10.

It is expected that higher multipole transitions will
play a role in the nonperturbative region of small impact
parameter. We have chosen one example (l =10, m =0)
to illustrate the scalar multipole and its asymptotic form
for a significantly higher angular momentum. Simple es-
timates, such as those presented in Sec. V, indicate that

transitions should be negligible at an angular momentum
value an order of magnitude larger than 10. We consider
this example as providing a large enough value of / to ex-
hibit large l characteristics, but small enough to be physi-
cally relevant.

Figures 7 and 8 show the (/ = 10, m =0) multipole for
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FIG. 3. M I t= 1 6= 10.
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b=1 t=1
10 t

, and for the y values of 10 and 200 A ftyo
~ ~ ~

t e asymptotic form fails miserabl y, as is eviaent from
ig. . e solid line, representing the exact cal l

is uite r
c ca cu ation,

q
'

e reliable: The two independent methods of
formin theing e exact calculation agree to about one-half of

me o so per-

1% or better. The reason why the die iscrepancy here be-

tween the exact (line) and asymptotic (circles calcula-
tions is so much larger than for the (l=1,

ig. 1) is the [(l+1)(l+2)] weighting thating at appears in
or er y term; the relative correction is

For the larger y value of 200 the agreement between
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FIG. 5. Mi, t =10, b =10.
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FIG. 6. M& t =1 6 =10.

the asymptotic and exact calculations has returned as Is
evident in Fig. 8. The oscillating pattern simply reAects
the P&(tlr) of the asymptotic form for r ) t. The last
zero of the multipole is hardly visible on the scale of the
plot but occurs at r =6.73. For y =200 at r ) (b + t )'~

agreement between the asymptotic form and the exact

formulation of the multipole decomposition, Eq. (3.5), is
better than one part in 10 . At r=1.1 the three methods
have a mutual deviation of 1 —2 %. At the singular point
itself, r = 1 (see Fig. 8), the deviation is tens of percent; re-
call, however, the integrability argument outlined in con-
nection with Eq. (2.10). At the lowest values of r the
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Jl

0 0 O0000000000000

—0.5—
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I

=0) = 1 b = 1, = 10. Solid line, exact form; circles, asymptotic form.FIG. 7. Calculated scalar multipole Mlo (l =10, m=O), =, =, y= . o
'
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IV. GAUGE TRANSFORMATIONS

The basic problem is the solution of the Dirac equa-
tion:

= [H, + V, (t)]Q=H(t)g .

The Ho consists of the kinetic energies of the electron
field and the Coulomb interaction with the target ion.
For the immediate application to a high-Z target it is a
sufIIcient approximation to drop the interactions between
electrons, and, therefore, to reduce the problem to a sum
of one-body problems, whose solution is to be written as
an antisymmetrized product wave function. In what fol-
lows it is not strictly necessary to use this one-body as-
sumption, but since it is conceptually simpler and neces-
sary for practical calculations we adopt it.

A gauge transformation is effected by writing

=e—IX~I f~).l.t

to obtain

(4.1)

values of the scalar multipole become so small that the
exact methods are inadequate. However, since the values
are so very small, their exact evaluation is unimportant.
The situation for y =20000 is similar to that for y =200,
except that the agreement between the asymptotic form
and the exact multipole form is better than about one
part in 10 rather than one part in 10 for r ) (b +t )'~

However, the numerical integration differs from both as
much as 2%%uo because of the limited number of mesh
points.

(4.2)

The use of

y, = (2 ln2y)ad&(z t)— (4.3)

[8(x) is the usual step function] then removes the y-
dependent part of the interaction

(21n2y)aZ (1 —a, )5(z —t) . (4.4)

which then adds to the interaction V (t)
—aZ [1—(1/ )va] aZ~ [1—(1 v~/) a]

[(z v~t) +b /y ]'i [(z v—t) +b ]'i—(4.6)

This then completes the promised removal of the explicit

y dependence.
We can, however, do even better, and remove the lnb

dependence that remains for the large-b region
(r &[b +(v~t) ]' ), replacing it with terms that mani-
festly fall at least as I /O. This replacement is important
in order to establish the weakness of the interaction in
this large-b domain, and, thereby, the connection to the
perturbational results. The useful choice of the gauge
transformation (we put off the motivation for this choice
until later in this section) is

aZ~ y(z u„ t ) + [y (z v t ) +b —]'~—
(z u~t)+[(z u t) +b ]'— —

(4.5)
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The multipole decomposition of the first term is very
similar to that carried out for V (t), except that there are
only m =0 terms to consider (since there is no p depen-
dence); in fact, the results are just the negative of those

obtained except for the absence of the term involving the
factor 0((r (—u~t) )/b —1). The gauge subtraction will

then remove all except the negative of this term, leaving
us with (to order lny /y ) the m %0 terms of Eq. (2.9) and

v

1
T

0 if r(lu~tl

X
0 if lv tl &r([b +(u t) ]'

r —(v t)—ln — if r ) [b +(v~t) ]'

+aZ 1 — a, g Yi(0)f dA'
vp

YI (0')

[(z —u t) +b ]' (4.7)

The last term, brought in by the gauge transformation, is
obviously independent of y, vanishes at least as fast as
1/b at large values of b, and is easy to evaluate analyti-
cally by elementary integration for each l value. The net
result of this second gauge transformation is a highly
compact interaction with no y dependence, which weak-
ens with increasing impact parameter at least as fast at
1/b, and which permits a very simple multipole expan-
sion.

The paper of Toshima and Eichler [10] proposes and il-
lustrates the use of a transform similar to the y-
dependent term of Eq. (4.5) to solve the important
difficulty in calculations with interactions that drop off as
slowly as 1/t [such as the I =0, m =0 term in Eq. (2.9)].

In order to clearly and definitively establish a connec-
tion with the familiar Weizsacker-Williams approxima-
tion, which offers a convenient form of perturbation
theory, we present a third gauge transformation. This g3
is chosen so as to transform the scalar part of V (t) to the

QZp

[ [(b—p) /y ] + (z v t ) ]
'—aX3

Bt

QZp

[(b—p) +(z u t) ]'i— (4.8)

thereby leading to

QZp' ln
(z —v t)+ [[(b—p)/y] +(z v~t) ]'—

(z —u t)+[(b—p) +(z —v„t) ]'i

(4.9)

The resultant interaction is

instantaneous Coulomb interaction, following the classic
Fermi strategy designed to display the transverse modes.
That is, y3 is defined to satisfy

aZ~ —a (b —p)
Ib —pl'

z —v t

[ [(b—p)/y] +(z —u~t ) ]
'

z —v t

[(b—p) +(z v t) ]'~—
aZ (1—a, /u„)

[(b—p) +(z v~t) ]'~— (4.10)
1 QZ Q, /v

y [[(b—p)/y] +(z u t) }'~~—

QZp
—a.(b —p)

Ib —pl'
z —t

lz tl—z —t
[(b—p) +(z —t) ]'i

aZ&(1 —a, )

[(b—p) +(z t)]'i—(4.11)

The last term is explicitly of order 1/y, and so is to be
dropped. The first, the transverse terms, can be well ap-
proximated either by the formal analysis used above, or,
more simply, by noting that the y dependence can only
be important (for b, p confined as before) for (z v~t) 0, —-
where, however, the numerator vanishes. This leaves us
with the approximation to order lny/y:

I

Again, the y dependence has disappeared to order
lny/y . The importance of the transverse components is
manifest; the scalar plus longitudinal term is of order 1

and must be kept, although, as shown in Sec. V, its con-
tribution vanishes in lowest-order perturbation theory.

In order to connect with the region of large impact pa-
rameters, we will return to the full form (4.10), and use it
in Sec. V to obtain the Weizsacker-Williams approxima-
tion to perturbation theory.

These gauge transformations that extinguish the expli-
cit y dependence, up to higher orders in 1/y, are realiza-
tions of the qualitative statement that compression of the
longitudinal dimensions has produced such a very sharp
pulse that the precise shape cannot matter. However,
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lim gz 3~
t —+ —oo

(X' in@, lim yz 3
—+

Vp t —++ oo

cxZp
ln 1 /y,

Vp

(4.12)

this angular compression, —1/y, means that at large im-
pact parameters, say yA/m, c, the linear spreads are of
order A/m, c—the scale of interest to us —and the y in-
dependence is no longer maintained. As will be seen ex-
plicitly in the perturbation theory of Sec. V, there is a
sharp dropoff in the strength of the interaction at
-yR/m, c, which indeed provides the cutoff required for
the cross section to be finite.

Before leaving the subject of gauge transforms, it is im-
portant to examine the effects on the initial boundary
conditions and the final values of the wave function.
Should y have other than constant values at these limits
the input and output might well be in a transformed basis
quite different from the physical form one has in mind.
As we shall see, this complication is absent from all three
gauge transforms considered here.

In the present problem the boundary conditions are
placed at t = —~ and the results read out at t =+~.
How does y, behave? At t=——~, the step function is
constant for all z & —~; at t =+ ~ it vanishes for all
z (+~; this gauge transform then changes the chosen,
physical basis only by a constant phase factor at the
physical input/output points. The yz and y3 are some-
what less obvious to see through. However, it is easily
seen that for finite spatial parameters

use of the function

g'= g e " e' Pk(r)ak(t) (4.15)

the g-dependent terms of the interaction having been
canceled off. Projection with the possibly delimited basis
states then results in equations for the ak set of precisely
the same form as those for the a set. Finally, since the
y function approaches a constant value at t = —ao and
another constant at t =+~, it is guaranteed that the
physical input/output conditions are invariant. This
holds whether or not the basis set is complete, subject
only to the obvious demand that the basis set be the same
in the two gauge conditions.

Should the question of gauge invariance be posed in
another more usual way, the lack of completeness might
well be harmful. If instead of the expansion (4.15) for the
g' function, a straightforward decomposition in the basis
set in usage is put forward,

P'= g e " P„(r)b„(t), (4.17)

leads to the time-dependent equation
I

ie'2 g e "pk(r) =e'~V (t) g e ' $1(r)a&'(t),
k h

(4.16)

and again the basis is transformed only to the extent of a
constant phase factor. Of course, in any numerical calcu-
lation the time dependence must be taken far enough to
ensure asyrnptotia. These gauge transforms, then, com-
plete the task of showing that the cross section for
bound-electron —positron pair production at b «yR/m, c
is independent of y (to order 1/y or higher).

There is always the standard question of the complete-
ness of the basis in which a calculation is performed; one
must be certain that any incompleteness does not spoil
the connection between the transformed and un-
transformed wave functions spelled out in Eqs. (4.1) and
(4.2). To make this explicit, suppose that the solution of

EB =H
Bt

is sought, as has been much the case, via a coupled-
channels format:

V. THE PERTURBATIVE REGION

The probability of a transition states 0 and f is given in
lowest order by the usual form:

+p/=p/Iap/I',
i (E~—Eo)tap/= —. Qt(r)V~(r, t)gp(r)e ' d~dt .

l

(5.1)

the relation between the b's and the a's is no longer trivi-
al. The paper of Rumrich and Greiner [11] examines
how invariance is spoiled by an incomplete basis. An
ameliorative reformulation of coupled channels by Kobe
and Kennedy [12] provides one means for the provision
of explicit gauge invariance within a truncated basis, but
at the expense of a time-dependent basis set.

g= g e P (r)a (t),

= g e " (n
~ V~(t)~m )a (t),at

(4.13)

The time integration is immediately given by the Fourier
integral of V~(r, t). With the gauge choice leading to the
interaction of Eq. (4.10) and the well-known integral ex-
pressions of the modified Bessel functions,

where the P are the (possibly limited) set of eigenfunc-
tions of Ho. In the gauge transformed problem, with the
interaction now

(4.14)

z & y2
e 2l K co

(p2+X 2)1/2

f dx, e' =2&'p( ~~PI )
(p2+ 2)1/2

the first-order amplitude is

(5.2)



5582 A. J. BALTZ, M. J. RHOADES-BROWN, AND J. WENESER

2cxZ
ao& = ——

Up

2cxZ
+

Up

b —p
r

$0(r)e' 'Ko( l(b —p)col )+
it}'

fdr//(r), tto(r)e' '
Ib —pl'

dz &r 1—1

y
—lb —p IK

&
( I

(b —p )~
I )

2cxZ f d r PI(r)a, &0(r )e'"'Ko
Up

co=(E/ Eo—)/vz . (5.3)

At large values of the impact parameter b ))p, and aoI can be simplified by dropping the p dependence:

2aZ
Qoy-

Vp

2cxZp+
Vp

f dr f&(r)a bgo(. r)e' ' —K, —K, (IbcoI )

a, 2QZf dr f&(r) 1 — Po(r)e' ' Ko(l —O(p/b))(IbcoI)+ fdr//(r)a, foe' '
Ko

l Up U~

(5.4)

The last term is clearly of order lny/y since Ko(z) is
—(

—lnz ) for z « 1, and drops as (vr/2z)'~ e ' for z ))1.
The main part of the second term simply vanishes, but re-
quires some manipulation for this to be easily seen; appli-
cation of the current conservation relation

fdr/I e' 'go= fdr//[Ho, e' ']$0

= fdrg*e' 'g (5.5)

guarantees the cancellation between the two parts. A
similar treatment cancels the K, (be) term.

The remaining, first term is the sole contributor to
leading order:

Po/(b)=4(aZ ) p/ f dr f/a bgoe""'

modified Bessel functions, it is clarifying to look at the
large-r limits. As we shall see below, the b region ap-
propriate for perturbative calculations is b ~ 5A'/m, c,
and, of course, co ~ 2m, c, so that bco ) 10. Since
K, (z) =—1/z+O(z) for z small, and drops faster than ex-
ponentially las (rr/2z)' e '] for z ))1,we see that

1

b col
(5.9)

for the region 10 & b Ical & y, and drops rapidly as
(b Idol ) )y. This immediately shows the 1/b behavior of
P (b), as is appropriate for an interaction falling as 1/b. It
is important to note that had we started with the asymp-
totic approximation to the gauge transformed interac-
tion, Eq. (4.11), the

(5.6) b —p
r

b —p
r

The matrix element is immediately seen to closely ap-
proximate that which governs photon absorption; the
transverse nature of the operator is manifest, and the
connection between energy and momentum transfer,
co = (Ef Eo ) /v, approaches that of the photon as
v ~1, difFering only to O(1/y ). Recalling that the pho-
ton cross section is

of Eq. (5.4) would have been replaced by I/Idol leaving us
with the result just obtained. However, as the impact pa-
rameter becomes very large, O(yA'/m, c), the asymptotic
forms are no longer applicable, and the exact expressions
are needed, as in calcnlating a total perturbative cross
section:

(2'�)a h(co)= apI dr//a egoe' ' (5.7)
o'Pel t: d b I b

allows us to write Po& to order 1/r, in terms of o.ph.
Then the integrated (over co) probability as a function of
impact parameter P(b) is

P(b)= f dcoPOI

=2
aZ& f dc' cocT&h(co)

X J™dbb —K,
min r

(5.10)

cxZp 1f dcocoa h(co) —K,
7T' r

2

(5.8)

While it is easy to work with the b dependence of the

Here b;„ is to be chosen so as to justify (1) the validity of
perturbation theory, (2) dropping the p dependence, and
(3) a smooth connection with the nonperturbative calcu-
lations for b ~b
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& r'zsmall terms, of order (~/2cob'~„e '") (2X10 have
been dropped. It is important to note that the lny depen-
dence comes about not through a y dependence of P(b),
but rather through the accumulation of probabilities over
a large range of impact parameters, up to an order of
yA/m, c.

The comparison between the asymptotic limit and the
exact form of the interaction, noted above, also affords an
additional assessment of the validity of the asymptotic
approximation. The frequency response of the exact in-
teraction is governed by

b —p
CO

y

b —p
y

The final evaluation of o. „,involves a straightforward
integration over the impact parameter dependence. The
details are left to the Appendix; the result is, to
O(lny/y ),

cr,„,=—aZ dc@—o h(co)ln; (5.11)
2 2 1

co ~" (0.89)cob

turbation contribution the nonperturbative contributions
that come from impact parameters smaller than b
must be added; but these inner contributions we have
shown by explicit gauge transformations to be indepen-
dent of y (to within higher order in 1/y). The net result
is the prediction that the total cross section for bound-
electron —positron production is of the form

A lny+B, (5.13)

VI. DISCUSSION OF A DIFFICULTY
WITH INTERPRETATION OF EXPERIMENTS

with A as given above, and both 2 and 8 independent of
ion energy up to higher orders in the small parameter
1/y.

This strong conclusion means that experiments at
reasonably large values of y (say 200) can be used to pre-
dict results at y-2X10 or higher. Again, attention is
called to the weak, logarithmic, dependence of the cross
section on energy; even large energy jumps are only short
extrapolations.

while the asymptotic forms result in I/~co~. The physical
explanation is easily seen. The frequency response at co is
determined by the spatial conjugate variable (z —u~t) At.
values smaller than ~(b —p)/y~, the variability of the in-
teraction as a function of (z U t) falls—off; thereby pro-

ducing the cutoff at
~
(b —p ) /yea ~

~ l. In the present prob-
lem concerning bound-state population, perturbation
theory tells us that excitation energies above some
20m, c are not important; then, for ~b —

p~
5y/20(A'/m, c) the asymptotic approximation will do.
A y ~200 permits the small-b nonperturbative calcula-
tion to use the asymptotic simplifications.

In deciding on a safe bound within which perturbative
estimates are valid it is prudent to base oneself on small-
ness of the rates for the strongest modes that might enter
on a physical or virtual basis. For the present problem of
bound-electron —positron pair creation, one of the very
strong interacting modes is the sweepoff of a bound K
electron by the transiting ion. Simple estimates [2] based
on perturbation values indicate an integrated probability
for this mode of —1.5(b/A/m, c) . This points to a
domain b )5'/m, c within which estimates based on the
Weizsacker-Williams approximation mould be valid, and
connection with a full coupled-channel set could then be
made at the boundary.

Having decided to use perturbation theory for
b ~ 5R/m, c, we now apply Eq. (5.11) to the specific mode
of bound-electron —positron pair formation. The photon
cross section falls off with increasing ~ su%eiently quick-
ly so that the integral converges and o. „,takes the form

(5.12)

where both A and B are independent of y to within
higher orders in 1/y, A has been calculated to be
7.80+0.06 b for fully stripped Au+Au; more generally
for Z+Z, there is a Z dependence, x between 7 and 8.5
for Z between 14 and 80; B contains a weak dependence
on b;„, which we now take as —5A/m, c. To this per-

Regrettably, the use of fixed targets means that only
the projectile ion can be fully stripped; the strength of the
interaction acting on it is weakened by screening. Be-
cause the lny term of the perturbative contribution
comes about from addition over a large range of impact
parameters up to -yA/m, c, the screening effects can be
significant. Thus, since bound state radii are

(nb —/m, c)(1 /a Z), screening effects in the case of
Au+ Au begin at impact parameters of a few multiples of
A'/m, c, and so effect a fraction of the parameter region
that results in the 1ny term. A rough estimate of the
screening e6'ect can be obtained by assuming the effective
target charge seen by the stripped projectile ion is the
screened Thomas-Fermi value evaluated at the distance
of closest approach. With the approximate form
Z, ff Ze " ', the perturbative value is changed by a ra-
tio of order

P/co 2b/& $ P/67

b.,-„b b,. b

where a =(fi/m, c)/aZ' . cg is some representative en-

ergy, which we take as 3m, c . For an Au target, this
amounts to —

—,
' at y=200 and b;„=M/ ,mc(Note

that at low values of y, say y = 10, cob;„)y, and there is
no real perturbative region. ) Detailed screening calcula-
tions will be necessary to adequately match experimental
determinations. Ignoring the entire contribution of the
large-b region and attributing the entire experimental
cross section to the small impact parameter region would
provide an overestimate of the latter's contribution.
Adding this together with the perturbative contribution
might provide a possibly useful bound for the collider,
fully stripped cross section.

APPENDIX A

In this appendix some of the details of the integrals or
expansions that may be less familiar are shown.

(i) The integral that appears in Eq. (2.5a),
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PI(x) P—, (a) P&(x) P—&(a)
dx + dx

X CX —1 CX X

is clearly expressible as a sum of polynomials, since the
P&(x)'s are such and the integrands can then be written as
powers of (x —a). The first few I values are trivially
evaluated:

J'o=0, J,= —2P, (a),
Sz= —3Pz(a), J3= ——", P3(a);

these strongly suggest the general result

1

Ji= —2 g —Pi(a),
&

n

which is easily proved by induction. First, a recursion re-
lation for the J& s is easily constructed using the familiar
one for the Legendre polynomials

2l —1 I —1Pi(x) = xPi i(x) — PI g(x),

21 —1 l —1

2l —1+ f dx'P&, (x')
a

1
Pr i—(x)= „[Pi(x)—Pi -z(x) ]2/ —1 dx

puts the recursion relation in compact form

21 —1 I —1 2Ji —~
—T[Pt«) —PI —z(~) l .

The inductive proof is then a matter of straightforward
insertion of the conjectured form for SI „J& 2 to And
the conjectured form valid for 2&.

(ii) The integral over the impact parameter used to ob-
tain Eq. (5.11) is based on two indefinite integrals of
modified Bessel functions taken from Luke [13], Sec.
11.2:

f tK, (kt)K, (kt)dt

=(z /2)[K, (kz) —Ko(kz)K~(kz)]

=(z /2)[Ki(kz) —Ko(kz) —(2/kz)KO(kz)Ki(kz)]

and

f tK, (kt)K, (lt)dt

[kK~(kz)K, (lz) lK, (kz)K—~(lz) ]
k —l

recalling that Then

z z [lK, (kz)KO(lz) —kKO(kz)K, (lz)] .
k —l

K, (bee) —db

bmin~—E0
y

b 2

1 ~ bco

min

2
1 b min 2 bmin

K)
. y'2 '. y

2f
0

~~min

~ berlin ~

co /y

~min~ 1——K, (b;„co)KO

The large-y limit is expressed by using the asymptotic expansions of Ki and Ko given by Abramowitz and Stegun [14],

4n —1K„(z)=Vvr/2ze ' 1+0
8z

z»1

Ko(z) = —[lnz/2+. 5772. . . ][1+0(z /4)],

Ki(z) =—[1+O(z'/4)], z»1 .1

(iii) The integral over the azimuthal angle used to obtain Eq. (2.7) is taken from Gradshteyn and Ryzhik [15], Sec.
4.397, Nos. 6, 7, 14, and 15.

(iv) The integral over the polar angle used in Eq. (2.5), which amounts to the definition of Q„ is given in Sec. 7.224,
No. 1 of Gradshteyn and Ryzhik [15]. The properties of the Q&'s, the Legendre functions of the second kind, are de-
scribed in Secs. 8.82 and 8.83 of that volume, and, of course, in many other standard references.

(v) The integrals over spherical Bessel functions, Eqs. (3.3a) and (3.3b), are taken from Gradshteyn and Ryzhik [15],
Sec. 6.574, Nos. 1, 2, and 3. The properties of the hypergeometric function E(u, /3, y, 6) are described in Sec. 9.1 and in
standard references.
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