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Valence-orbital ionization potentials (VOIP s) for 5d transition elements have been derived by per-
forming fully relativistic self-consistent numerical local-density atomic calculations. The von
Barth —Hedin —Lundqvist local exchange and correlation potential was employed. In order to evaluate
the accuracy of the calculated VOIP s, theoretical ionization potentials were compared with experimen-
tal results obtained from data on the atomic spectra of neutral and of singly, doubly, and triply charged
5d transition elements, for the few atomic configurations for which measurements are available. Good
agreement was obtained between experimentally derived and theoretical ionization potentials, the latter
calculated by a "transition-state" procedure. Comparison was also made with results obtained by per-
forming nonrelativistic local-density calculations. The use of the Kohn-Sham local exchange-only po-
tential was also investigated, in order to assess the effect of correlation corrections included in the von
Barth —Hedin —Lundqvist potential. Moment-polarized relativistic local-density calculations were also
performed and compared with the available experimental results.

PACS number(s): 31.20.Sy, 31.30.Jv, 31.10.+z

I. INTRODUCTION

Semiempirical molecular-orbital (MO) calculations of
the electronic structure of molecules, performed with
methods derived from the zero-differential overlap (ZDO)
approximation, are characterized by the use of atomic
spectroscopic information in the determination of the
one-center one-electron matrix elements and in the evalu-
ation of two-electron integrals [1—6]. The one-center
one-electron integrals (also called one-center "core" in-
tegrals [1]) are systematically related to valence-orbital
ionization potentials (VOIP's) (or VOIP's plus electron
affinities) [1], which depend on the charge and
configuration of the atom. By definition, a VOIP is the
energy difference between the average energy of the states
pertaining to a given configuration of the ionized and
neutral atom. VOIP's are also required to evaluate the
one-center two-electron integrals in Pariser's approxima-
tion [7] and the two-electron two-center integrals in the
empirical Weiss-Mataga-Nishimoto formula [5,8]. Elec-
tron amenities, which are often unknown for transition
elements, are also estimated by an isoelectronic extrapo-
lation using the appropriate VOIP parameters [9].

In the semiempirical extended Huckel method, the
variation known as the self-consistent charge and
configuration (SCCC) method for transition-metal com-
plexes [10(b)] estimates the diagonal Hamiltonian matrix
elements as linear combinations of VOIP's for several
configurations, where each VOIP is assumed to have a
quadratic charge dependency, in order to adequately

represent the fractional populations present in the com-
plex.

For the 3d and 4d transition elements, the dependence
of the VOIP's on both charge and configuration can be
obtained from the large amount of available data on
atomic spectra [11],and thus complete sets of VOIP pa-
rameters have been published in the literature [12—14].
For 5d transition elements, however, the situation is quite
different, since the experimental data are very scarce and
do not allow a reliable estimate of VOIP parameters.
Consequently, for third-row transition elements no com-
plete set of VOIP's as a function of the atomic charge and
configuration is available in the literature.

For these reasons, we have obtained theoretically a
complete set of VOIP parameters, as a function of charge
and configuration, for 5d transition elements by perform-
ing fully relativistic self-consistent numerical local-
density (LD) atomic calculations [1S]. Local-density cal-
culations are an adequate tool to derive VOIP's, since
average energies over the states of a configuration are ob-
tained. The von Barth —Hedin —Lundqvist (VBHL) local
exchange and correlation potential [16,17] was employed
and the "transition-state" concept [18] was used to define
ionization potentials.

In Sec. II we give a summary of some uses of VOIP's in
semiempirical methods. In Sec. III we describe the
theoretical method employed here. In Sec. IV we corn-
pare theoretical and experimentally derived VOIP's,
when available. In Sec. V we give calculated VOIP pa-
rameters for all 5d elements and in Sec. VI we summarize
our conclusions.

5558 1991 The American Physical Society



VALENCE-ORBITAL IONIZATION POTENTIALS FOR THIRD-. . . 5559

II. VOIP'S IN SEMIEMPIRICAL METHODS

Most semiempirical MO methods, derived from the
ZDO approximation, estimate part or all of the diagonal
matrix elements of the one-electron Hamiltonian given by
(in hartrees)

In the CNDO/2 [1] and INDO [1,4] methods, the
electron-core potential integrals VA& are not evaluated
separately but are related to the electron repulsion in-
tegrals

where

B {WA)

UAA (yA~ g2/2 Z g —
1 ~qA)

from atomic spectroscopic data. In Eq. (1), lt„" is a
valence atomic orbital (AO) centered on atom 2 and Z„
is the core (nucleus and inner-shell electrons) charge on
atom A. The one-center term U„„ is essentially an
atomic quantity. The remaining terms in Eq. (1) give the
interaction between a valence electron in P„" with the
cores of the other atoms B.

Different semiempirical ZDO methods [complete
neglect of difFerential overlap (CNDO), intermediate
neglect of differential overlap (INDO), neglect of diatom-
ic differential overlap (NDDO)] [1], which attempt to
treat explicitly at least the most important electron repul-
sion integrals, differ mainly in the extent to which the
ZDO approximation is invoked in these integrals. The
CNDO model, for which the ZDO approximation is used
for all products of different atomic orbitals g„f„,relates
the one-center one-electron "core" integrals U„"„",Eq. (1),
to atomic parameters. In the conventional CNDO/1 pa-
rameterization, these integrals are obtained from atomic
ionization potentials and Slater-Condon parameters [1].
In the INDO [1,4] and NDDO [1]methods, similar treat-
ments are employed, but in these cases the one-center
differential overlap integrals are no longer neglected.

An alternative procedure to evaluate the core integrals

U&„, adopted in the CNDO/2 and INDO/2 methods, is

to use the average between the ionization potential and
electron affinity [1]. Unfortunately, electron affinities of
transition elements, even for the first-transition series, are
often unknown. One procedure adopted for transition
elements involves determining the electron aftinities 3„
by an isoelectronic quadratic extrapolation [9] based on
ionization potentials and promotion energies, for the ap-
propriate charge and configuration, obtained from atomic
spectra.

In the CNDO method, the two-center terms in Eq. (1)
have to be approximated in a manner which is consistent
with the way the two-electron integrals are treated in the
ZDO approximation. Furthermore, the invariance con-
ditions require these terms to be the same for all orbitals

on atom A. Consequently, the diagonal matrix ele-
ments H„„may be written as

(2)
8 {WA)

where VA~ represents the interaction of a valence elec-
tron in atom 2 with the core of atom B. In the original
CNDO/1 method of Pople and co-workers [1] for an s,p
basis set, VAz is calculated using the atom A valence s
orbital.

The integrals y A~ are calculated replacing the basis func-
tions g" and P by s symmetry orbitals of the same prin-
cipal quantum number.

When focusing on molecular spectroscopy, the in-
tegrals y Az are not calculated, but are determined empir-
ically, as in the spectroscopic methods CNDO/S and
INDO/S [5,7]. A procedure to determine these integrals
empirically [5] is to employ the Weiss-Mataga-Nishimoto
formula [8]

YAA IA ~A (5)

where IA and AA are the ionization potential and elec-
tron amenity, respectively, of an s, p, or d electron on
atom A, for a given configuration.

The spectroscopic methods CNDO/S and INDO/S
present one similarity with local-density theory. In fact,
in LD theory the chemical potential, in the zero-
temperature limit, is defined as the first derivative of the
total electronic energy E with respect to the number of
electrons X [15(a)]. The curvature of E as a function of X
at 0 K, for a neutral atom or molecule, may be shown, in
the finite-difference approximation, to be [15(a)]

BE =—I —A,
BN

which is precisely the definition of the integral y AA given
by Eq. (5).

The ionization potentials appearing in the semiempiri-
cal methods derived from the ZDO approximation may
be related to the average of the states of a configuration
(VOIP). Furthermore, the possibility of employing
VOIP's pertaining to the charge and configuration of the
atoms in the molecule would constitute an improvement.

In the semiempirical extended Huckel (EH) method
[10(a)], the Hamiltonian of the system is not explicitly
defined, as is the case in methods derived from the ZDO
approximation. The diagonal matrix elements of the
"effective" Hamiltonian operator are approximated as
minus the VOIP of the atom for a given configuration,
and the off-diagonal elements are proportional to an aver-
age of the diagonal ones weighted by the appropriate or-
bital overlap. Furthermore, the variation of the EH
method, known as the self-consistent charge and
configuration (SCCC) method for transition-metal com-
plexes [10(b)], estimates the diagonal Hamiltonian matrix
elements as linear combinations of VOIP's for several

r
2f /(y»+y»)+&»

where RA~ is the distance between the two centers in
Bohr radii and fz is a parameter introduced by Weiss
[5]. The one-center two-electron integrals are obtained
from the Pariser approximation [7]
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configurations, where each VQIP is assumed to have a
quadratic charge dependency, in order to adequately
represent the self-consistent charge and fractional popu-
lations present in the complex. This procedure requires
extensive tabulations of VOIP's as a function of both
charge and configuration.

III. THEORETIC%I. METHOD

A. Nonrelativistic

The purpose of atomic spin-polarized self-consistent
local-density (LD) calculations [19] based on density-
functional theory [15(a),20] is to solve the set of one-
electron equations

(h —s; )f; (r)=0, (6)

where g; is an atomic spin-orbital, s, the eigenvalue,
and the one-electron Hamiltonian is given (in hartrees) by

h = —V /2+ V[p (r)] . (7)

The potential V[p (r) ] is a functional of the spin density

p and includes a Coulomb and an exchange-correlation
term. The Coulomb potential Vc,„& includes both nu-
clear and electronic contributions

(9)

In the exchange-only LD theory, the local exchange
potential V„[p (r)] is given by the Kohn-Sham (KS) ex-
pression [19]

V [p (r)]= 2(3/4')'~ —[p (r)]'~ (10)

Improvements were made in the theory, in order to in-
clude correlation effects, leading to exchange and correla-
tion local potentials of the general form

[p (r)] V [p (r)][1+F(pt p$)]

where the correction factor F is obtained by a fitting pro-
cedure to numerical calculations of the correlation energy
for a uniform electron gas [16,17].

Nonrelativistic LD calculations retain the restriction
of spherical symmetry for atoms. Consequently, the spin
orbitals g; (r) which are solutions of Eq. (6) have the
property of being the product of a radial function times a
spherical harmonic. In spin-polarized calculations, the
restriction that the radial functions R„& (r) have the same
values for both spin-up and spin-down electrons is re-
laxed, leading to different radial functions and, conse-
quently, different spin densities and self-consistent poten-
tials for the two spin orientations.

The spin density p (r) at point r is defined as a sum over
the spin-orbitals g, (r) with occupation numbers f, ,f,
for either spin

p (r)= g f, g, (r) ' .

B. Relativistic

The one-electron Dirac Hamiltonian provides the usual
starting point for relativistic self-consistent LD calcula-
tions and is written (in hartrees, c = 137.037) as [15(b)]

h~ =ca [p —(1/c) A]+c (P—1)+Ao, (12)

where a and P are the 4X4 Dirac matrices, p the
momentum operator, and ( A, A o ) a four-component vec-
tor potential describing external fields. The one-electron
atomic equations are

(hi, —s„)g„(r,s) =0 . (13)

In the simplest extension of the nonrelativistic LD
theory, one sets A=O and Ao= V[p (r)], where
V[p (r)] includes the Coulomb potential, Eq. (9), and the
local exchange-correlation potential, Eqs. (10) and (11),as
in the nonrelativistic case. The use of nonrelativistic
exchange-correlation potentials in relativistic LD calcula-
tions is well justified. The effect of relativistic corrections
to the nonrelativistic local potential [Eq. (10)] on the en-
ergy levels is negligible for valence shells, becoming
significant only for core levels of heavy atoms [21].

The fourth-order centra1-field Dirac spinors are

(r,s)=
r 'P„„(r)y (O, g, s ).

ir 'Q„,(r)y (0,P, s )

K—' —(1+1) if j =1+—,', (15)

which includes both j and the parity. The two-
component Pauli spinor y, is a vector-coupled function
of a spherical harmonic YI (8,$) and a spin function

g (s) [15(b)].
A set of coupled radial equations is obtained, by substi-

tuting the wave function of Eq. (14) into the eigenvalue
equation [Eq. (13)] [15(b)]

dQ„,(r)
d7

Q„(r)+ V [p(r) ]P„(r)=s„/„,(r),
(16)

dP„,(r) cs—c — P„,(r) —2c Q„(r)+ V[p(r)]Q„(r)
r r

=s„Q„(r) .

These equations can be solved self-consistently, in an
analogous way to the nonrelativistic equations, since the
potential is a functional of the electronic density

p(r)= gf„[P„' (r)+Q„' (r)] .
n, v

(17)

The moment-polarized scheme, developed by Ellis and
Goodman [22], is a relativistic alternative to the spin-

where P„(r) and Q„,(r) are, respectively, the "large" and
"small" components. The orbitals g„(r,s) are eigen-
functions of the total angular momentum squared j and
of its projection j, with eigenvalues j(j+1) and m, re-
spectively, and are of given parity. The relativistic quan-
tum number K is defined by

l if j=l —
—,
'
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polarized nonrelativistic theory, since the spin com-
ponent s, is not diagonal in the four-component theory.
The moment-polarized approach is based on the twofold
Kramers degeneracy, which remains in the Dirac theory
[23], and allows different occupancy for 1, 1 members of
the Kramers doublets and different spatial wave functions
for each component. In this case, different potentials
V[p (r)] (one for moment up and the other for moment
down) are used to determine the t', J, eigenvalues and
eigen vectors, in analogy to the nonrelativistic spin-
polarized case.

The radial equations, for both relativistic and nonrela-
tivistic cases, are solved numerically by using a radial
mesh of 300 points with a logarithmic distribution, which
concentrates a larger number of points near the nuc1eus.

IV. COMPARISON BETWEEN THEORETICAL
AND EXPERIMENTALLY DERIVED VOIP'S

A. Some details of the calculations

The VOIP Vvo for a specific electron of a specific
configuration of the neutral atom is defined as [24]

~vo = ~. +Ex —E~ (18)

~vo =E~ —E~ (19)

where E~ and Ez are the average energies over the states
of a given configuration of the neutral and ionized atom,
respectively, obtained directly from the LD calculations.
Both definitions [Eqs. (18) and (19)], of course, represent
the same quantity.

Since the potential V[p(r)] in the LD theory depends
only on the electronic density, it is the same for all states
within a configuration. Therefore, there is no need for
averaging over the "LS configuration" (in the nonrela-
tivistic case) or over a "jjconfiguration" (in the relativis-
tic case), as in the Hartree-Fock-Dirac method On the.
other hand, considering a single "jjconfiguration" (in the
relativistic LD or Dirac-Fock methods) is meaningful
only when "jj coupling" dominates. Furthermore, the
use of pure jj configurations may be misleading when a
comparison is made with nonrelativistic results obtained
in L,s coupling. The appropriate procedure, when deal-
ing with open-shell systems in intermediate coupling,
would therefore be to average over all the jj
configurations associated with a single LS one [15(b),25].
In this case, the electronic density p(r) [Eq. (17)] has to
be replaced by the average [15(b)]

(p( ))= g (f„,)[&„' ( )+Q„' ( )], (20)

where V;,„ is the first ionization potential, Ez is the aver-

age energy of the given configuration of the neutra1 atom
relative to its ground state, and E~ is the average energy
of the corresponding configuration of the ion relative to
the ground state of the ionized atom. Similar expressions
hold to derive VOIP's for singly and doubly charged
atoms.

As mentioned in the Introduction, in a LD calculation
the VOIP is given by

where (f„)is the average occupation number

(21)

Here, f„& is the occupation number of the nl main shell;
f„& and f„& are the degeneracies of the nl main shell and
the nlj subshell, respectively.

The procedure described above, based on the average
occupation numbers (f„,), was employed to derive
VOIP's in the relativistic calculations reported here,
since most of the available atomic experimental data have
been assigned LS designations or are listed with miscel-
laneous designations owing to the departure from LS
coupling [11]. The atomic spectra are analyzed within jj
coupling only for elements in the vicinity of gold. Furth-
ermore, most semiempirical MO methods are
parametrized using nonrelativistic basis sets.

No account was taken of the Breit interaction term or
higher-order relativistic corrections, and corrections for
the finite size of the nucleus were omitted. The effect of
these corrections on the VOIP's for valence shells is
negligible [26].

Derivations of VOIP's would require two calculations,
one to obtain the energy of the neutral atom and the oth-
er for the ionized atom. However, with the use of the
"transition-state concept, " only one calculation needs to
be performed to obtain each VOIP. In fact, it has been
demonstrated that, up to second order, the energy needed
to ionize an electron from one orbital is equal to the abso-
lute value of the orbital energy in a self-consistent calcu-
lation with —' an electron removed from the orbital [18].
This procedure not only reduces the computations by
50%, but also assures that in many cases better accuracy
is achieved, since it avoids numerical errors due to small
differences between very 1arge numbers.

B. Comparison with experimental results

Theoretical VOIP's for several charges and
configurations of 5d transition elements are given in
Tables I—III. Nonrelativistic (NR) non-spin-polarized
(NP) LD calculations employing the Kohn-Sham (KS) lo-
cal exchange-only potential are designated NR-KS-NP.
Fully relativistic (R) NP LD calculations were also per-
formed employing both the KS local exchange-only po-
tential (R-KS-NP) and the von Barth —Hedin —Lundqvist
(VBHL) local exchange and correlation potential (R-
VBHL-NP). The fully relativistic LD calculations, em-
ploying the von Barth —Hedin —Lundqvist local exchange
and correlation potential and the moment-polarized (P)
scheme developed by Ellis and Goodman [22], were
designated R-VBHL-P. The experimental values present-
ed in Tables I—III were obtained from data on the atomic
spectra of neutral and of singly, doub1y, and triply
charged Sd transition elements, for the few atomic
configurations for which measurements are reported
[11,27—51]. Only configurations for which at least 90%
of the states are known were considered, unless otherwise
specified.

As is well known, the relativistic treatment gives
VOIP's which are larger for the s and p electrons (the or-
bitals are contracted) and smaller for the d electrons (the
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TABLE I. VOIP's for neutral Sd atoms in units of eV.

Configuration' NR-KS-NPb R-KS-NP' R-VBHL-NP~ R-VBHL-P' Expt. '

5d "(d)
Ir

Pt

Sd" '6s (d)
Hf

Pt

Au

5d" 6s (d)
Hf

Ta

Au

Hg

Sd" '6p (d)
Au

5d" '6s (s)
Hf
Ir
Pt
Au

Sd" 6s (s)
Hf
Ta
Pt
Au
Hg

10

10

12

4
9

10
11

5

10
11
12

7.7

8.5

5.1

11.2

12.2

6.7

8.0

1S.3

16.6

13.7

5.6
6.4
6.5
6.6

6.3
6.7
7.7
7.8
7.9

5/2
3/2
5/2
3/2

5/2
3/2
5/2
3/2
5/2
3/2

5/2
3/2

5/2
3/2

5/2
3/2

5/2
3/2

5/2
3/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2
1/2

7.0 g

8.1

7.6 8.2

4.3
4.8
9.5

9
10.1

10.3
0

5.3
5.8
6.4
7.1

12.5
14.2

13.2

13.5
1

143

12.1

1
12.8

6.8
8.2
8.5
8.7

7.2
7.7
9.4
9.6
9.9

8.3
9.5
9.0

10.4

5.4
5.9

10.9
12.3
11.8
13.4

6.5
7.1

7.6
8.3

14.0
15.7
15.0
17.0

13.5
15.2

7.7
9.4
9.6
9.9

8.3
8.8

10.6
10.8
11.1

8.7g

9.5

5.6

11.5

12.4

7.9

14.7

15.8

14.2

6.1

6.6 6.3

10.2
10.8

11.4
13.1

6.9
7.1

8.2
8.5

13.5
14.2

14.8
168 15 6

13.2
4 9

13 .9

8.4
9.8
9.9

10.0

7.4
7.7

10.0
10.5
10.9

8.3g
9.0
8.8

10.2

7.0

8.6

5.3

10.8

11.9

6.5

7.5

14.3

15.6

13.7

7.4
8.4
8.8
9.2

7.8
8.5
9.8

10.1

10.4

5d" 6s6p (s)
Au
Hg

5d" '6p (p)
Au

11
12

8.7
8.9

3.2

1/2
1/2

3/2
1/2

10.9
11.3

3 4
3 6g

4.0

12.1

12.4

4.3
4.9

4.5g

12.6
12.8

4.5
5.1

4.7g

12.1

12.0

4.3

5d" 6s6p (p)
Au 3.9 3.8 4.0

3.8 4.0

5.1 5.4

5.1

6.0 '4
5.4

3.9 4.9

3/2 4.7
1/2

5.0

Hg 12 3/2 4.7
1/2 5.6

'The type of electron being ionized (in parentheses) and the configuration.
Nonrelativistic (NR) non-spin-polarized (NP) calculations employing the Kohn-Sham (KS) potential.

'Relativistic (R) non-moment-polarized (NP) calculations employing the Kohn-Sham (KS) potential.
Relativistic (R) non-moment-polarized (NP) calculations employing the von Barth —Hedin —Lundqvist (VBHL) potential.

'Relativistic (R) moment-polarized (P) calculations employing the von Barth —Hedin —Lundqvist (VBHL) potential.
Experimental values from data in Ref. [11]and [27]—[51].
The j-weighted average of the j = l+1/2 VOIP's are tabulated in order to compare with those obtained nonrelativistically and with

the experimental values.
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TABLE II. VOIP's for singly charged Sd atoms in units of eV.

Configuration' NR-KS-NP R-KS-NP' R-VBHL-NPd R-VBHL-NP' Expt. '

Sd "(d)
Hf

Au 10

11.6

20.6

5/2
3/2
5/2
3/2

11.6 11.2g

19.3
210 "'

12.2
12.8

20.9
22.6

12.5g
12.9
13.5

13.10

20.7 21.4
22.4

12.2

21.1

Sd" '6s (d)
Hf 13.7 5/2

3/2
12@5

13.1
13.8
14.4

14.0 14.4
15.0

14.7 14.3

Au

Hg

23.9

25.4

5/2
3/2
5/2
3/2

21.7 22.5

23.0
25.0 23.8

24.0
25.1

24.6 4
26.6

22.6 233

24.2
26.3

23.8

25.0

Sd" 6s (d)
Hf

Hg

15.9

29.0

5/2
3/2
5/2
3/2

14.1
14 4

25.7 26.5

15.5
16.1

15.8

27.3
294 28 1

15.7
16.3

15.9

26.8 27.6
28.9

16.1

28.1

Sd" '6p(d)
Hf

Hg

5d" '6s (s)
Hf
Au
Hg

3
10
11

14.6

25.1

26.6

12.1

15.0
15.3

5/2
3/2
5/2
3/2
5/2
3/2

1/2
1/2
1/2

13.6 13.8

23.3
24.0

25. 1

24.6
26.7

13.5
17.7
18.2

14.9
1S.6
24.8

15.2

14.6
19.0
19.5

26@2
27 0

28.2

15.5
16.1

15.7

15.3
19.3
19.7

24.2 4
26.0
25.9 26.7

15.0

25.4

26.6

14.3
18.5
18.8

5d" 6$ (s)
Hf
Au
Hg

3
10
11

13.3
16.4
16.7

1/2
1/2
1/2

14.4
18.9
19.4

15.6
20.2
20.7

15.0
19.6
20.4

15.7
19.6
19.9

5d" 6s6p {s)

Hf
Hg

Sd" '6p (p)
Hf

Au

Hg

3
11

10

13.9
17.5

8.6

10.2

10.3

1/2
1/2

3/2
1/2
3/2
1/2
3/2
1/2

15.2
20.5

9.4 8.9g

10.4
11.6
10.6
11.8
" 11.0

16.4
21.9

9.6
10.3
11.4
12.7
11.6
12.9

9.8g

11.9

12.0

17.1
22.5

10.1
10.9
11.8
13.0
11.9
13.2

10.48

12.2

12.3

16.7
21.8"

9.5

11.7

11.-6

5d" 6s6p (p)
Hf

Hg

See footnotes in Table I.
"80%%uo of states known.

9.4

11.3

3/2
1/2
3/2
I/2

9.3 9.5

11.2
1

11.7

10.2
11.0
12.3
13.8

10.5

12.8

10.8
11.7
12.9
14.4

13.4

11.2

13.1"
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orbitals are expanded), as compared to nonrelativistic cal-
culations. These relativistic effects can be observed com-
paring the NR-KS-NP and the R-KS-NP results in
Tables I—III. The lower energies (and the larger VOIP's)
for the 6s and 6p, &2 orbitals, obtained in the relativistic
calculations, are consistent with their penetration into
the core region. The relativistic treatment allows the
description of the contraction of these orbitals, which is a
consequence of the proximity of the nucleus. For the or-
bitals that extend outside the core region, as the Sd orbit-
als, the core contraction yields a greater screening of the
nucleus, and so the electrons experience a weaker poten-
tial. This indirect relativistic effect results in the higher
energies, and smaller VOIP's, for the 5d orbitals.

In comparing the results of the NR-KS-NP and R-
KS-NP calculations, as shown in Tables I—III, with the
experimental values, it may be seen that the relativistic 6s
and 6p calculated VOIP's are always in better agreement
with the measured values, as compared to the nonrela-
tivistic VOIP's. The same is not true for the 5d VOIP's,
for which the nonrelativistic values compare better with

experiment. This is possibly due to a compensation of er-
rors between the use of the KS potential (no correlation)
and the nonrelativistic treatment.

The von Barth —Hedin —Lundqvist exchange and corre-
lation local potential yields VOIP's that are systematical-
ly —1 eV higher than the values obtained using the sim-

ple exchange-only Kohn-Sham potential. The rather
large effect due to correlation corrections can be observed
comparing the R-KS-NP and the R-VBHL-NP results
for the 5d, 6s, and 6p electrons in Tables I—III. Compar-
ing with experimental values, it may be observed that
consideration of correlation effects improves the VOIP's
of 5d and 6p electrons in the vast majority of cases. For
the 6s electrons no improvement may be observed on the
average.

In general, a good agreement was obtained between ex-
perimentally derived and relativistic nonpolarized
theoretical VOIP's, these last obtained using the von
Barth-Hedin —Lundqvist exchange and correlation local
potential (R-VBHL-NP), for almost all atomic
configurations for which measurements are available. On

TABLE III. VOIP's for doubly charged Sd atoms in units of eV.

Configuration'

Sd "(d)
Hf

Hg 10

NR-KS-NP"

21.4

35.1

5/2
3/2

5/2
3/2

R-KS-NP'

021.1

33 4
34

35.4

21.8
22.5
35.0
37.1

35.8

R-VBHL-NP" R-VBHL-P'

22 68
23.1

34o9
36.9

Expt. '

22.6

34.9

5d" '6s (d)
Hf 23.9 5/2

3/2
22.5

22.7
23.1

23.9
24.6

24.2 24.4
25.0

24.5

5d" '6p (d)
Hf 24.8 5/2

3/2
23.6
242 238 25.0

25.7
25.3 25.4

26.0
25.6 25.8

5d " '6s (s)
Hf
Hg

2
10

19.9
25.0

1/2
1/2

21.5
28.6

22.7
29.9

23.2
30.3

22.5
28.6

5d ~ 26s 2(s)
Hf 21.3 1/2 22.8 24.0 23.7 24.1

Sd" -'6s6p(s)
Hf 21.9 1/2 23.5 24.8 25.3 24.7

5d" '6p (p)
Hf

Hg 10

15.4

18.8

3/2
1/2

3/2
1/2

15~ 5
4

15 8

19.1
210 "'

16.5
17.5
20.2
22.2

16.8

20.9

16.9
7 318.0

206
21 3

22.6

17.0

19.9

Sd" 6s6p (p)
Hf

See footnotes in Table I.

16.5 3/2
1/2

16.4 16.7 17.4
18.5

17.8 18o0
18 419.1

17.9
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TABLE IV. Parameters for VOIP curves as a function of the charge q ( Vvo = C2q +Cl q +Co) in units of eV.

Configuration' VOb n=4
Ta

n=5 n=6
Re

71 =7
Os

n=8
pt

n =10 n =11
Hg

n =12

C2
C~
C~
Cq

Cq

C~
Cq

C~
C2
Cq

C2
C2

Cl
Cl
Cl
C,
Cl
Cl
C,
Cl
Cl
Cl
C,
C,

Co
Co
Co
Co
Co
Co
Co
Co
Co
Co
Co
Co

C~
C~
C2
C~
C~
C~
C~
C2
C2
C2
C~

C2

Cl
Cl
Cl
Cl
Cl

dn
d"
d 1l

d" 's
d" 's
d" 's
d n —

lp

d n —
lp

d n —
lp

dn 2 2

2s~

deaf
2 2

dg

d 71

dn —1

d" 's
d" 's
d n —

lp

d n —
lp

dn —
lp

de 2 2

2s2

2s2

dn

d 71

dn
d" 's
d" 's
d" 's
d n —

lp

d n —
lp

d n —
lp
2s2

dn 2 2

2s2

d" 's

de 2 2

G" SP
d n —

lp

d n —
lp

d n —
lp

dn ~p2

2p 2

dn 2p2

sp

sp

dn —1

d/2 2 2

sp
dn —

lp

d n —
lp

Gt'(5/2)
d (3/2)

d (5/2)
d (3/2)

d (5/2)
d (3/2)
d
d (5/2)
d (3/2)

d (5/2)
d (3/2)
d
d {5/2)
d (3/2)
d
d (5/2)
d (3/2)
d
d (5/2)
d (3/2)
d

d (5/2)
d (3/2)
d
d (5/2)
d (3/2)
d
d {5/2)
d (3/2)
G

d (5/2)
d (3/2)
G

s (1/2)
s (1/2)
s (1/2)
p (3/2)
p (1/2)
p
p (3/2)
p (1/2)
p
p (3/2)
p (1/2)
p

s (1/2)
s (1/2)
s (1/2)
p (3/2)
p (1/2)

0.980
0.965
0.925
0.845
0.855
0.900
0.855
0.775
0.815

6.660
6.805
6.825
7.565
7.635
7.500
7.535
7.775
7.655

4.560
5.030
4.750
5.390
5.910
5.600
6.510
7.050
6.730

0.600
0.525
0.560
0.615
0.620
0.600
0.585
0.580
0.600
0.610
0.585

0.585

6.300
6.825
6.720
5.045
5.340

0.860
0.855
0.830
0.825
0.795
0.855
0.820
0.805
0.855
0.715
0.670
0.705

7.420
7.535
7.510
8.025
8.215
8.035
8.040
8.185
8.035
8.755
8.890
8.785

5.320
5.910
5.560
6.350
6.990
6.610
7.540
8.210
7.810
7.630
8.340
7.910

0.570
0.530
0.585
0.585
0.550
0.550
0.565
0.605
0.545
0.580
0.590
0.565

6.690
7.110
6.945
5.355
5.750

0.780
0.840
0.825
0.740
0.730
0.695
0.730
0.780
0.690
0.715
0.640
0.685

8.060
8.080
8.025
8.680
8.810
8.815
8.610
8.660
8.730
9.155
9.380
9.245

6.060
6.780
6.350
7.280
8.060
7.590
8.560
9.360
8.880
8.730
9.580
9.070

0.550
0.545
0.550
0.615
0.560
0.595
0.525
0.560
0.520
0.530
0.615
0.575

7.050
7.365
7.250
5.555
6.020

0.800
0.780
0.770
0.745
0.710
0.780
0.730
0.705
0.770
0.650
0.700
0.700

8.500
8.660
8.590
9.065
9.270
9.060
9.010
9.185
8.990
9.650
9.700
9.600

6.800
7.660
7.140
8.190
9.120
8.560
9.560

10.510
9.940
9.800

10.800
10.200

0.510
0.540
0.550
0.590
0.655
0.630
0.525
0.605
0.585
0.520
0.580
0.575

7.470
7.680
7.550
5.830
6.135

0.815
0.725
0.770
0.695
0.690
0.665
0.725
0.780
0.750
0.650
0.600
0.650

8.955
9.225
9.090
9.615
9.730
9.705
9.425
9.460
9.450

10.050
10.300
10.150

7.530
8.550
7.940
9.090

10.180
9.530

10.550
11.660
11.000
10.900
12.000
11.300

0.505
0.465
0.550
0.655
0.540
0.600
0.615
0.585
0.590
0.600
0.535
0.560

7.785
8.105
7.850
5.935
6.580

0.775
0.775
0.815
0.690
0.725
0.650
0.715
0.760
0.650
0.650
0.600
0.600

9.475
9.575
9.455

10.030
10.125
10.150
9.855
9.920

10.050
10.450
10.700
10.600

8.250
9.450
8.730
9.980

11.250
10.500
11.530
12.820
12.000
11.900
13.200
12.400

0.535
0.450
0.500
0.570
0.570
0.520
0.600
0.560
0.635
0.620
0.580
0.640

7.995
8.450
8.200
6.290
6.790

0.740
0.750
0.715
0.700
0.700
0.750
0.700
0.700
0.750
0.650
0.700
0.650

9.980
10.050
10.055
10.400
10.600
10.350
10.300
10.400
10.250
10.850
10.900
10.950

8.980
10.400
9.530

10.900
12.300
11~ 500
12.500
14.000
13.100
12.900
14.500
13.500

0.460
0.600
0.500
0.575
0.645
0.580
0.630
0.630
0.580
0.535
0.570
0.565

8.420
8.400
8.500
6.475
6.865

0.700
0.700
0.700
0.750
0.800
0.700
0.600
0.600
0.550

10.800
11.000
10.900
10.550
10.600
10.700
11.300
11.500
11.450

11.800
13.400
12.400
13~ 500
15.200
14.200
14.000
15.700
14.700

0.475
0.500
0.550
0.680
0.615
0.590
0.655
0.595
0.670
0.650
0.555

0.635

8.675
8.900
8.650
6.460
7.155

0.600
0.650
0.650

11.700
11.750
11.650

15.000
17.000
15.800

0.550
0.500

0.675
0.605
0.600
0.660
0.635
0.650

9.050
9.000
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TABLE IV. (Continued).

C)
C)
Ci
Ci
Ci
Cl
C)

Co
Co
Co
Co
Co
Co
Co
Co

Co
Co
Co

Configuration'

d n —
lp

de 2p2

drl 2~2

de 2p2

sp

dn —1

It 2 2

SP
d n —

lp

d n —
1+

d n —
lp
2p2

d PT 2p2

dn 2p2

d" sp

VO

p (3/2)
p (1/2)

p (3/2)
p (1/2)

s (1/2)
s (1/2)
s (1/2)
p (3/2)
p (1/2)

p (3/2)
p (1/2)

p (3/2)
p (1/2)

Hf
n=4
5.160
5.445
5.760
5.500
5.370
5.745
5.545

7.700
8.250
9.120
3.950
4.340
4.080
4.770
5.460
5.000
4.220
4.670
4.370

Ta

5.550
5.705
5.985
5.865
5.660
6.030
5.805

8.140
8.760
9.670
4.050
4.500
4.200
4.930
5.710
5.190
4.360
4.880
4.530

5.715
6.025
6.320
6.140
6.010
6.255
6.075

8 ~ 500
9.190

10.200
4.130
4.620
4.290
5.050
5.920
5.340
4.460
5.030
4.650

Pl =7
5.910
6.225
6.485
6.245
6.240
6.560
6.275

8.820
9.580

10.600
4.180
4.710
4.360
5.150
6.110
5.470
4.540
5.160
4.750

Os
n=8
6.200
6.255
6.745
6.430
6.300
6.895
6.520

9.110
9.930

11.000
4.210
4.780
4.400
5.230
6.270
5.580
4.600
5.270
4.820

n=9
6.540
6.500
7.020
6.595
6.440
7.060
6.580

9.370
10.200
11.400
4.240
4.840
4.440
5.300
6.420
5.670
4.640
5.360
4.880

Pt
n =10
6.660
6.610
7.110
6.860
6.795
7.290
6.905

9.620
10.600
11.700
4.250
4.890
4.460
5.360
6.560
5.760
4.670
5.440
4.930

Au
n =11
6.830
6.735
7.415
6.890
6.750
7.535
6.995

9.850
10.800
12.100
4.260
4.930
4.480
5.410
6.690
5.840
4.700
5.510
4.970

Hg
n =12

6.875
7.585
7.200
6.920
7.595
7.150

11.100
12.400

5.450
6.810
5.900
4.720
5.570
5.000

'n corresponds to the configuration of the neutral atom.
VO stands for the valence orbital from which the electron is ionized. The fractions in parentheses are j quantum numbers. No

parentheses designate the j-weighted average.

the other hand, some discrepancies should be pointed
out, mainly for the Sd "(d) and Sd" '6s(s) configurations
of the neutral 5d transition elements. The discrepancies
noticed are invariably an overbinding found in the calcu-
lated VOIP's, as compared to experiment. This overbind-
ing is stronger for the Sd "(d) configuration. It has been
shown [S2,53] for the 3d series that the local potential
produces systematic overbinding in calculated ionization
potentials. Our calculations indicate that the same is true
for the Sd series, at least for the atoms considered here,
for which experimental data was available.

Attempting to improve even further the VOIP values,
we have performed relativistic moment-polarized calcula-
tions with the VBHL exchange-correlation potential (R-
VBHL-P). Moment-polarized calculations usually im-
prove the VOIP value when the ionized electron is a
minority spin 5d electron, although the overbinding is
somewhat overcorrected for some atomic configurations.
The VOIP value is also improved when the ionized elec-
tron is a minority spin 6s electron, but only for atoms or
ions that have a minority spin Sd electron. For atoms at
the beginning of the 5d series, the overbinding is over-
corrected. Consequently, no systematic improvement has
been obtained by performing moment-polarized calcula-
tions. For this reason, we chose the moment-restricted
relativistic LD method with the von Barth —Hedin-
Lundqvist potential (R-VBHL-NP) to derive the com-
plete set of VOIP's for 5d transition elements. The
VOIP's calculated in this manner compare better with ex-
periment on the average, for the cases in which compar-
ison with measured data is possible. Most calculated

VOIP's are within 0.5 eV of the experimental value; re-
sults are in general better for the charged atoms.

V. VOIP'S FOR 5d TRANSITION ELEMENTS

The calculated VOIP's were represented by a quadratic
polynomial form

Vvo(q)= C2q +Ciq + Co (22)

where q is the net atomic charge. The values of the
coefficients Co, C„and C2, for the VOIP's of Sd»2,
5d 3/2 6$.1/2 6+3/2 nd 6p 1/2 ol bitals for several
configurations, are compiled in Table IV. These
coefficients were obtained by fitting the calculated values
for the charges q =0, +1, and +2. The VOIP curves
coefficients for the j-weighted average of the j =I+—,

'

VOIP's are also tabulated in Table IV.
An attempt to estimate VOIP's from experimental data

for Sd transition elements was made by Jostes [S4], for
neutral atoms only. The small amount of available data
on atomic spectra did not allow the determination of the
charge dependence of the VOIP's. Moreover, even for
neutral atoms, the experimental data were not enough to
allow the calculation of the average energies of the
configurations and some assumptions had to be made in
order to estimate the VOIP's.

Relativistic theoretical VOIP's have been employed in
semiempirical calculations of molecules containing
lanthanides [SS,S6] and actinides [57]; however, only
values for neutral atoms in the ground-state configuration
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were considered.
The present parameter set should prove useful for sem-

iempirical MO calculations, since this is the only corn-
plete set of VOIP's derived for all 5d transition elements,
as a function of both charge and configuration. Con-
sideration of the dependence of VOIP's on charge
and configuration, when par ametrizing semiempirical
methods, should improve the results of molecular calcu-
lations. The comparison that we have made with experi-
mental values has proved that the present theoretical
method is capable of providing accurate values. It should
be observed that, in most cases, the comparisons made in-
volve atoms at the beginning and end of the Sd transition
series. This is due to the increased complexity (and thus
difficult interpretation) of the experimental spectra of the
atoms in the middle of the series. For these intermediate
atoms our calculated values should prove most useful.

Furthermore, the present work also provides a parameter
set which can be used in "fully relativistic" semiempirical
MO calculations, i.e., calculations where a jj-basis set is
required [58].

VI. CONCLUSIONS

A complete set of VOIP's for Sd transition elements
have been derived by performing fully relativistic self-
consistent numerical local-density atomic calculations.
A good agreement was obtained between theoretical and
experimentally derived VOIP's, for the atomic configura-
tions for which measurements are available. The present
parameter set should prove useful in semiempirical
molecular-orbital calculations for molecules containing
5d transition elements, in both relativistic and nonrela-
tivistic frameworks.
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