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The Kohn-Sham (KS) one-electron Schrodinger equations assume the existence of a one-body effective
potential v,&(x), defined to generate the correct electron density p(x) of the ground state. This paper re-
turns to the electron-density description of an N-fermion system. It is best thought of as starting from a
given p(x), ideally to be obtained from diFraction experiments. A method is then set up that focuses
predominantly on the way the "correct" v,z.(x) can be "recovered, " if it exists, from such an experimen-
tal density. Certainly the method has associated with it one practical disadvantage in common with the
KS procedure; an order of +Euler equations have to be solved, with input information p{x},though the
"unknown" potential v,z(x) does not now appear. In this program, we have found it most helpful to
work with the Pauli potential and energy, which enable the N-fermion problem to be converted to a bo-
son problem for the density amplitude [p(x)]'~2. The way the above-mentioned Euler equations deter-
mine the Pauli potential and energy is worked out explicitly. Examples that embrace the important area
of atomic central-field calculations are presented to illustrate the method. As a by-product, the theory
developed can a8'ord a direct test as to whether a given electron density is, in fact, representable via a
one-body potential v,&(x).

PACS number(s): 31.20.Sy, 71.10.+x

I. INTRODUCTION

Density-functional theory formally completes the
electron-density method introduced into atomic theory
by Thomas [1] and Fermi [2]. This paralleled the ap-
proach of Hartree [3], in which each electron in an atom
is assigned its own "personal" wave function. In both
directions, exchange was subsequently included [4,5].

In a landmark paper, Slater [6] brought these two ap-
proaches into contact. In his simplification of the
Hartree-Fock method, Slater in fact averaged the ex-
change energy over the Fermi sea by a procedure which
led to a factor —, different from that implicit in the origi-
nal work of Dirac [5]. Slater's pioneering construction of
a one-body potential to use in self-consistent-field theory
was formally completed by Kohn and Sham [7].

While the idea of Thomas and Fermi that the ground
state of an X-electron system could be characterized by
its electron density p(x) was formally proved by Hohen-
berg and Kohn [8], doubts have remained as to the status
of the one-body potential v(x); this is the so-called v

representability problem [9]. Therefore, in the present
paper, a different philosophy will be set out. From the
outset the basic input will be the ground-state electron
density p(x); ideally to be taken from diffraction experi-
ments [10]. Similar to the Kohn-Sham (KS) approach,
the present work requires the solution of the order of X
single-particle Euler equations. These are now, however,
characterized solely by the input density p(x).

It proves most helpful in the present work to focus, in
implementing the above program, on the Pauli potential
[11] and energy, and to demonstrate the way in which

they can be constructed explicitly from the solution of
the above-mentioned Euler equations. The central gain
from working with these Pauli quantities is that the N-
fermion problem is thereby converted to a boson problem
for the density amplitude [p(x)]'

The layout of the paper is then as follows. After sum-
marizing relevant basic results of density-functional
theory in Sec. II, a variational approach to derive Euler
equations characterized by the input ground-state density
is fully worked out in Sec. III. The determination of the
Pauli potential as a functional of p(x) is the focus of Sec.
IV. In Sec. V, contact is made with a body of earlier
work on one-dimensional problems, which embraces the
atomic central field case. Section VI constitutes a sum-
mary of the main results of the present work. Three ex-
amples are presented in Appendices in which the effective
potential is constructed from a specified density.

II. FOUNDATIONS OF DENSITY-FUNCTIONAL
FORMALISM

A. Fermion form

Consider a system of N fermions (electrons) interacting
among themselves via Coulombic repulsion and interact-
ing with some external potential (e.g. , due to a nucleus
for an atomic problem, or to fixed nuclei in specified posi-
tions for molecular and condensed-matter problems). In
addition, it will be convenient to assume, with no
significant loss of generality, that all electrons have only
one (e.g. , up) spin polarization.

The existence theorem of Hohenberg and Kahn [8]
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plus the work of Kohn and Sham [7] allows the ground-
state energy EGs and the density pcs(x) of the system to
be obtained from

Eos= min IT, [p]+ V,ff[p]I =T [p ]+V [p ]
P

(2.1)

where the variational density must normalize to the
correct number N of electrons:

fdxp(x)=X . (2.2)

V. [p] =E„[p]+E,[p]+ V [p) (2.5)

where the terms in order are (i) the classical Coulomb
self-interaction energy, (ii) the exchange-correlation ener-

gy, and (iii) the external potential energy.
The minimization (2.1) with the constraint (2.2) leads

to the Euler-Lagrange equation

5T, [p] +Ueff[p; X]= A,

5p x
(2.6)

The first term occurring in Eq. (2.1) is the kinetic-
energy functional for % noninteracting fermions, defined
by Levy [12] as

T, [p]= min (ql
~

T~ql ), (2.3)
P

where the search for the minimum, which we carry out
explicitly below, is here restricted to single Slater deter-
minants ql which lead to the given density p(x):

Xf dxz. . .dx~~+ (x, , xz, . . . , X~)~ =p(x, ), (2.4)

while T signifies the kinetic-energy operator for N parti-
cles. The second term in Eq. (2.1) is the effective poten-
tial energy functional

representable; i.e., under the same assumptions made by
KS. We have found it very helpful to use the language of
Pauli energy and Pauli potential, which allows the fer-
mion problem to be reduced to boson form explained as
follows.

B. Reduction of fermion problem to boson form

In an admittedly very approximate form of the
density-functional theory, the Weizsacker approach,
March and Murray [13] already noted that the Euler
equation for the density could be transformed into a sim-
ple Schrodinger equation for the density amplitude
[p(x)]' . However the effective potential entering this
equation was v,ff(x)+Up i (x), where the Pauli potential
[11,14] was found within this approximate framework to
be

Ep[p]=T, l p] Twl p] . — (2.10)

In following sections we shall discuss how Ep[p] and its
functional derivative can be evaluated. Therefore, at
present, we assume they are known, just as was assumed
above for E„,[p].

It is to be noted that

UWeiz s [ ( )]2/3

where ck =(3/10)(6ir )
~ for single occupancy of states.

Later workers have generalized this [15—17], and always
the essential quantity appearing is the difference between
T, introduced above and the Weizsacker kinetic energy:

T~[p]= —,
' f dxlVp(x)l p(x)= —f dx~Vp (x)~ (2 9)

In addition to the Pauli potential defined in Ref. [11],see
also Ref. [14], it will be helpful for what follows to define
the Pauli energy functional Ep[p] as

where the effective KS potential is given by Ep[p]=0 for N=1, (2.11)

v,ff[p;x]= =v„[p;x]+v„,[p;x]+v(x) .
5p x)

(2.7)

The last term only in Eq. (2.7), the external potential
U (x), is independent of p. While v„[p;x] is a known non-
local functional of p, the precise form of the exchange-
correlation potential v„,[p;x] and the energy E„,[p] is
not presently known.

Unfortunately, the definition (2.3) does not provide any
constructive algorithm to evaluate T, [p] and
5T, [p] /5p(x). In order to circumvent this difficulty,
Kohn and Sham assumed that densities p(x) which are
close to the solution pcs(x) are U representable for nonin-
teracting electrons. This results in the KS equations; to
be solved iteratively to achieve self-consistency.

The noninteracting iV-fermion picture of the system is
in evidence at each iteration, when the density distribu-
tion used to evaluate v,~ is fixed. The original electron-
electron interaction, of course, is subsumed in v„and v„
as functionals of p.

The aim below is to develop an algorithm which allows
the calculation of T, [p] and 5T, [p]/5p(x) for arbitrary
density distribution p(x) which is noninteracting v

EGs = mi" I Tw [p]+Ep [p]+ Veff[p] )
P

(2.12)

with the constraint (2.2). Furthermore we are led to the
equation

5Tw[p)
+VB[P;X]=A,

5p x
(2.13)

with the effective potential for the boson problem given
by

VB I p; X]—Up [p; X) +Ueff[p; X] (2.14)

where we have now explicitly introduced the Pauli poten-
tial already referred to:

Up[P; X]= (2.15)

since in this case the ground-state wave function, P, say,
can be chosen to be real and positive, and then
p' (x) =P, (x), resulting in Tii,[p] coinciding with T, [p].

In terms of E and V,ff[p] the ground-state problem
(2.1) may be rewritten as
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while u, ff was as defined in Eq. (2.7).
By performing direct functional differentiation of the

Weizsacker energy in Eq. (2.9) we obtain

oTw [P] 1 Vp(x)
5P(x) 8 p(x)

1 V p(x) 1 V [p' (x)]
4 p(x) 2

(2.16)

This allows one to rewrite Eq. (2.13) as

2 &y2——V p' (x)+us[p;x]p' (x)=AP'~ (x), (2.17)

which is of the precise form written by March and Mur-
ray [13] in their early study of the Weizsacker functional,
with the Pauli potential approximated there by Eq. (2.8).

Because of the importance of the form (2.17) for densi-
ty functional theory, (see Ref. [11] and, other references
cited therein), let us comment on its interpretation. Im-
agine that the N-particle density p(x) in Eq. (2.2) is due to
X bosons, instead of X fermions, which in the ground
state all occupy the same state, described by the wave
function b (x):

III. DETERMINATION OF PAULI ENERGY
AND EFFECTIVE POTENTIAL

AS FUNCTIONALS OF DENSITY

A. Choice of appropriate trial functions

Under the assumption of noninteracting U representa-
bility, the density and the kinetic energy of the system
can be written as sums of X contributions connected with
the single-particle wave functions P (x). Therefore, ac-
cording to the definition (2.10) of the Pauli energy, the
functional Ez[p] in terms of T, [p], Eq. (2.3), and Tw[p],
Eq. (2.9), can be obtained as a solution of the minimiza-
tion problem

E~ [p]= min ( T, [P,]+ + T, [Pz ]—T, [p'~2] )
1'' '' N

(3.1)

with the following constraints on the trial functions
P (x).

(a) They shall yield the given density p(x) through

Iy, (x) I'+ . + Iy (x) I'=p(x); (3.2)
p(x) =N (b (x) ] (2.18)

(b) normalization
Then Eq. (2.17) turns out to be the Schrodinger-like equa-
tion for the boson function b (x): f dxIQ (x)I =1, j=l, . . . , N; (3.3)

Vb (x)+—us [Nb;x]b (x) =Ab (x)
1 2

2

with the constraint

(2.19)
(c) orthogonality

f dxg~*(x)gk(x)=0, jWk, j,k =1, . . . , N . (3.4)

dxb (x)=1 .
The boundary conditions are

2.20

The Lagrange multiplier A, is to be determined from the
constraint (2.20). The boundary conditions for the func-
tion b (x) are

b(x)~0 as x —+boundaries of system . (2.21)

EGs= w[pos]+E~[pos]+ I ff[PGs]

=NAY+ Ep[p] —fdxp(x)up[p;x]

+ V ff[p] —fdxp(x)u, ff[p;x] (2.22)

It is to be noted that, as in the prior scheme, the X nonin-
teracting boson picture of the original system is in evi-
dence in each particular step only of the self-consistent
procedure.

It should be noted that Eq. (2.19) represents a second-
order differential nonlinear equation. The difficulty with
this nonlinearity may be overcome by introducing again
the self-consistent scheme of solution.

The ground-state energy of the system in Eq. (2.12)
may be written in terms of the eigenvalue A, =A,z and the
density pos(x) obtained from Eqs. (2.18)—(2.21) when
self-consistency is achieved as

P.(x)~0 as x —+boundaries . (3.5)

y(x)=[ P, (x)I + . + Ip (x)I ]'

sc, (x)=y, (x)x[Iy, (x)I'+ . . +Iy (x)I']'"
=P (x)ly(x), j=2, . . . , N .

(3.7)

(3.8)

It will be convenient also to define an auxiliary function
K&(x), which however depends on all the independent
functions K-:

In Eq. (3.1), the kinetic-energy functional corresponding
to a single orbital is defined as

T, [f]=—,fdxIVf (x)I' . (3.6)

Of course the presence of the last Weizsacker term in
Eq. (3.1) does not influence the minimization, which is
dictated by Eq. (2.3), because it is performed at fixed den-
sity p(x).

In order to obtain a fruitful route to determine Euler-
Lagrange equations corresponding to Eq. (3.1) with the
constraints set out explicitly above, we shall replace the
set P, (x), . . . , P~(x) of trial functions by another set,
into which the condition (3.2) is explicitly incorporated
into the structure of these functions. While this can
be done in a variety of ways, in this section we shall ex-
plore the consequences of explicit choice
[y(x),E2(x), . . . , K~(x)J, defined in terms of the origi-
nal set as
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K, (x)=K, {K2(x), . . . , K~(x)}
= [1—[IKz(x)l + . + IK~(x)l ]]' . (3.9)

The inverse transformation between these two sets can be
written

N N

g T [P ]= ,' —fdx (Vy) +g g IVK I'

+-.'[V(x')] [vl]

PJ(x)=g(x)K. (x), j =2, . . . , N

P, (x)=y(x)K, (K~(x), . . . , K~(X)} .

(3.10)

(3.11)

N
=T, [X]+,' f-dxX' g IVK, I'. (3.15)

minimum.
The constraint (3.2) written in terms of the new set of

functions is just

y'(x) =p(x) . (3.12)

We have chosen above to label the functions P (x) so that

P, (x)is the lowest, i.e., nodeless function of the (assumed
given) single-particle Hamiltonian leading to the given
p(x) according to noninteracting v representability.
Therefore P, (x) can be chosen to be real and positive; this
justifies the correctness of Eq. {3.11) with (3.9), where the
square root is to be understood as the arithmetic one.

Since the functions P.(x) are continuous (as represent-
ing one-particle wave functions), evidently one must re-
quire the same continuity for the density amplitude
g(x)=p' and KJ(x). Also, in general, for the same
reason, the gradients should be continuous, except at
those points (lines, surfaces) where Vp(x) is discontinu-
ous. This latter property would reAect the presence of
singularities in the underlying potential.

Thus, it can be seen that the two sets of trial functions
referred to above consist of the same number A of
members and the transformations between these two sets
are continuous and di6'erentiable. Therefore, by replac-
ing the original set with a new one in the minimization
problem (3.1), we have not changed the value of the

This enables us, by using Eqs. (3.12) and (3.15), to rewrite
Eq. (3.1) as

N

Ep[p]= min fdxp(x) g —,'IVK (x)l, (3.16)
K2, . . . , K~ j=1

where K, is given by Eq. (3.9). It is to be noted that the
Weizsacker term is precisely cancelled with the corre-
sponding term present in Eq. (3.15). While the constraint
(3.2) is already satisfied, constraints (3.3) and (3.4) remain
to be imposed:

fdxp(x)IK. (x)l =1, j=2, . . . , N

f dxp(x)K.*(x)Kk(x)=0, jXk, j,k =1, . . . , N .

(3.17)

(3.18)

In Eq. (3.17) the case j= 1 is omitted, since it is
equivalent to the constraint (2.2) minus the sum of all
constraints listed in Eq. (3.17).

It is worth emphasizing that the noninteracting kinetic
energy T„ the Weizsacker energy T~, and the Pauli en-

ergy Ez can be written as integrals of the corresponding
energy densities: e, (x), equi, (x), and ep(x) which are relat-
ed by e, (x)=e~(x)+e~(x). These densities are to be
identified with integrands occurring in Eqs. (3.1) with
(3.6) for P corresponding to the minimum. It is obvious
from these definitions that e, ~0, equi, ~0, while Eq. (3.16)
demonstrates that ep ~0. Therefore we have E~ &0 for
N ~ 2 [and Eq. (2.11) otherwise].

Therefore, in order to satisfy it, the function y(x) can be
kept fixed at its value p'~ (x). Proceeding to rewrite Eq.
(3.1) in terms of the new set, we evaluate the functional
(3.6) for f =PJ given by Eq. (3.10):

B. Euler-Lagrange equations for functions XJ-(x)

The minimization (3.16) with the constraints (3.17), fol-
lowing the introduction of Lagrange multipliers A, , leads
to

Let us note here that Eq. (3.9) defining K, may be rewrit-
ten as a sum rule for all K. including E, :

y IK, (x)l'=1 .
j=1

(3.14)

This allows Eq. (3.13) to be summed over j to yield

T, [{t',]=T, [yKJ ]= ,' f dx[V—(yK&')] [V(yK) )]

=-,' f dxI(Vy)'IK, I'+q'IVK, I'

+-,'[v(x')] [v(lK, I')]] .

(3.13)

N

g Ep[p, K,K,']
SKI*(x)

where

N—g A,J(S [p,K, , K~" ]—1) =0,
J=2

1=2, . . . , N (3.19)

E [p,K,K*]=—,
' fdxp(x)[VK,*(x)] [VK, (x)], (3.20)

S [p, K, ,K,*]=fdxp(x)K, *(x)K (x) .

In Appendix A it is demonstrated that all contributions
except that due to Ez [p, K i,K i ] can be evaluated in a
fairly straightforward way. This latter term is also calcu-
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lated there, and this enables another central result of the
present approach to be obtained from Eq. (3.19), namely,

,'V—2K—I——,'(p 'Vp) VKi+v, [p, k, (K2, . . . , K~)]KI

=A, (K(, 1=2, . . . , N, (3.22)

where the quantity v, in Eq. (3.22) is obtained explicitly
as a function of x in terms of the particle density p(x), the
function K, (x), and their low-order gradients. Precisely,
the result for v, is

v, [p, K&,'x]= —,'K& '(x)V K&(x)

+ ,' [p '(—x)Vp(x) ] [K, ' (x)VK, (x) ] .

(3.23)

Equation (3.22) constitutes a system of (N —1) second-
order differential coupled equations for the functions
K&(x). The coupling arises through the potential v„Eq.
(3.23), which depends on all functions K, via K, , Eq.
(3.9). This is, however, a local type of dependence, be-
cause in effect v, (x) is a function of K, (x), its gradient
and its Laplacian, together with the density p and its gra-
dient, solely at the point x. To complete the integration
of the differential equations (3.22), one must specify the
boundary conditions on KI(x). This is done in Appendix
B.

To conclude this section, let us also comment that the
requirement of weighted orthogonality of the functions
K expressed in Eq. (3.18) was not included in the varia-
tional approach because it was anticipated that these con-
ditions will be fulfilled by functions resulting from the
solution. This is demonstrated in Appendix C.

C. Existence of solution of Eq. (3.22): The effective potential

Having specified the boundary conditions, we can in-
tegrate the system (3.22) of (N —1) differential equations
for arbitrarily chosen parameters A, and then their prop-
er values can be determined with the aid of the con-
straints (3.17). In other words, this is a typical
eigenvalue-eigenfunction problem. Because these equa-
tions (3.22) have a nonlinear coupled character, it may
perhaps be questioned whether their solution exists.
Below, we answer this is in the affirmative, by making use
of our general assumption about the noninteracting v

representability of p(x) [which is involved in Eqs. (3.22)
and (3.17)j. This assumption means that p(x) can be
written in terms of one-particle wave functions P (x) of
some one-electron Hami ltonian:

(3.24) —(3.26). Then it can be directly verified that the
functions K (x) thereby obtained satisfy boundary condi-
tions and Eqs. (3.22) and (3.17), and (3.18) having eigen-
values

(3.27)

In this way, it has been demonstrated that there exists a
solution IA,~[p],K&[p;x], j =2, . . . , N] of a system of
(N —1) equations (3.22) with constraints (3.17), (3.18) and
the desired boundary conditions (found in Appendix B).
It should be noted that the solution is a functional of
p(x), because this density enters these equations quite ex-
plicitly.

In terms of the above-mentioned solution, we can ob-
tain functions P (x) by employing Eqs. (3.10) and (3.11)
with (3.12). But this also means that the effective poten-
tial can be obtained, since from Eq. (3.24) we have

V P, (x)
vetr(x) =E)+ 2

(pi x
(3.28)

In fact any one of the functions P&(x) can be used for that
reason, but the nodeless function P&(x) can be expected
usually to be the most convenient. Therefore the effective
potential which generated the given p(x) is obtained in
terms of the above solution as

D. Pauli energy

v, tr[p; x]+const =v,~[p; x]—E, =v,s.(x)

=2 'V Ip'i (x)K, [p;x]]/[p'i (x)K, [p;x]I, (3.29)

where K& is given by Eq. (3.9).
It is important to note here that the problem of calcu-

lating the effective potential from the particle density for
one-dimensional systems was solved by Werden and
Davidson [18] in quite a different way.

In any practical application, having some particle den-
sity p(x), we may not know in advance whether it has the
property of being noninteracting v representable. Never-
theless, we can attempt to solve the systems of Eqs.
(3.22), along with (3.17), utilizing this density p(x). If a
solution is found, then surely p(x) is v representable, with
the potential given by Eq. (3.29). Otherwise, it does not
belong to this class. Of course, such categorical con-
clusions can be drawn only in the case when the input
density together with the solution of the system of equa-
tions are represented analytically (see examples given in
Appendix E). In the case of numerical input and solu-
tion, the conclusions are conditional on the accuracy and
reliability of the code employed.

—
—,
' V P, (x)+v,a(x)P, (x) =E,P, (x),

Jdxg (x)gk(x)=6k,

(3.24)

(3.25)
According to Eq. (3.16), the Pauli energy can be writ-

ten in terms of the density plus the functions K. found
above as

p(x)= g lpj(x)l (3.26) N

Ep[p]= J dx p(x) g —,'lVK, [p;x]l' . (3.30)

Although by assumption the potential v,s(x) exists, its
form is not known a priori. Using Eqs. (3.8) and (3.9), let
us therefore construct functions K (x), j= 1, . . . , N from
the functions p (x), j = 1, . . . , N, which satisfy Eqs.

This can also be expressed in terms of the eigenvalues A, .
To obtain this form let us first multiply both sides of Eq.
(3.22) by KI*(x). We then obtain
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—(2p) '-K,*V (p. VK, )+u, lK, I'=X, IK, I',
1=2, . . . , N . (3.31)

Next, we take the complex conjugate of this equation and
then average the two equations to find

tion of the eigenvalue problem posed in Eqs. (3.22), (3.17),
(3.37), and boundary conditions (Appendix 8) and where
K, is given in terms of this solution by Eq. (3.9). It fol-
lows from Eqs. (4.1) and (4.2) that one can write the Pauli
potential Uz as a sum of two contributions, namely,

—(4p) '[K(*V (pVKi)+K(V (pVKi')] v~[p;x]=up"(x)+uP (x), (4.3)

+v IK l&=g IK I2 (3 32) where the direct contribution is given by

which may be transformed to
—(4p) 'V (pVIKil')+2 'IVKzl'+u, lKzl'

v "(x)=
~ 5E,[p,K, , K,*]

5p(x)
(4.4)

=kiIKil ' l =2, . . . , N . (3.33)
In Eq. (4.3) the indirect piece (i.e. , via K& [p ],
l =2, . . . , N, as independent functions) is

—,
' y IVK, I'+u, = y X, IK, I'. (3.34)

Actually it is readily shown from Eq. (3.23) that Eq.
(3.22) and therefore Eq. (3.33) holds also for 1= 1 with
A, , =0. Now we perform the sum of Eqs. (3.33) from l= 1

to N, using the sum rule (3.14), to find

uP (x)= g f dy
1=2

5Ki*[p;y)
5p(x)

N

X Q Ep[p, K, ,K*].
5K,*(y )

Substituting this result into Eq. (3.30) we obtain

E~[p)= g A&
—fdxp(x)v, (x),

1=2
(3.35)

+C.C.

From the definition (3.20) we obtain immediately

(4.5)

and after substitution of Eq. (3.23) for u, and some ma-
nipulation the result is vp"(x) = g —,

' IVK, (x) I (4.6)

N VK, (x)
Ep [p]= g A.

&

——f dx p(x)
1=2 2 K, (x)

(3.36) In order to calculate U&" let us first add and subtract the
term

O=A &A2 A,„—,AN k, , N &k (3.37)

in order to ensure the absolute minimum of the variation-
al procedure. It should be noted that the ordering (3.37)
is equivalent to the similar ordering of c1—the eigenval-
ues of a one-electron problem, Eq. (3.24), because of the
relation (3.27).

IV. DETERMINATION OF PAULI POTENTIAL
AS FUNCTIONAL OF DENSITY

To this result, we have to add the requirement that the
proper solution [A,~, KJ, j =2, . . . , N) or
j = 1, . . . , N ) should correspond to the following
enumeration of the eigenvalues

N

g A, (S[p,K.,K*]—1)
J —2

(4.7)

N

u~ (x)= g f dy
1=2

5Ki*[p;y]
5p(x)

N
X g A, S[p,K, ,K*]

5K(*(y)

in the expression within the brackets in Eq. (4.5). After
that, use may be made of Eq. (3.19), which is fulfilled by
the functions belonging to its solution. Thus the only
term which remains is that connected with Eq. (4.7):

5Ep[p]
up[p;x]= (4.1)

According to Eq. (3.30), using Eq. (3.20), the Pauli energy
1S

Having determined the Pauli energy Ez as a functional
of the density, we turn to one of the main results of the
present work, namely, the calculation of the Pauli poten-
tial Uz, as the functional derivative of Ep.

+c.c. (4.8)

N

uP (x)= g A, , f dy
1=2

5Ki*[p;y] 5S [p,K(,Ki*]
+C.C.

5p(x) 5K,*(y)

(4.9)

Next we use the fact that only independent functions K1
and K. are involved in Eq. (4.8); there being no K, there.
Hence the summation over j can be removed:

+p [p) = g &p[p K, I p],K,"I p) 1 (4.2)

where [A, .[p],K,.[p;x], j=2, . . . , N) represents the solu-
After inserting the functional derivative of S, Eq. (Al),
we have
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vied(x) = g A, , f dy
1=2

&Ki*[p yl
p(y)KI (y)

5p x

ground-state energy reduced to the boson problem

Ã

E~[p]—fdxp(x)U~[p;x]= g &1[p] . (4.15)
&Ki[p'y]+ '

p(y)K,*(y)
5p x

5= g ki fdyp(y) (iKt[p;y]i ) . (4.10)
1=2 5p x

Now let us calculate the functional derivative of both
sides of the constraint in Eq. (3.17):

f dy p(y)IKI[p;y)l
5p x

= IK, [p;x]l'+ f dy p(y) (IK, [p;y]l') =0 .
5

5p(x)

(4.1 1)

Employing this result in Eq. (4.10) we obtain

1=2

This result was obtained directly from Eqs. (3.35) and
(4.14).

Results similar to those obtained in Secs. III and IV in
terms of variational functions K (x) are exhibited in Ap-
pendix D in terms of conventional single-particle wave
functions. Simple illustrative examples of the solution of
the system of Eqs. (3.22) for some particular one- and
two-dimensional densities p(x) and subsequent derivation
of the effective potential and Pauli quantities are given in
Appendix E. The purpose of the final Appendix F is to
demonstrate explicitly that the Pauli potential can be
written in terms of the particle density and the kinetic-
energy density in the case of the one-dimensional har-
rnonic oscillator problem.

1V

Up" (x)= —g A&~KI(x)~
l=2

(4.12) V. ONE-DIMENSIONAL CASK:
RELATION TO HYPERSPHERICAL FUNCTIONS

Collecting direct and indirect contributions, we have
finally the Pauli potential Uz in the form

U [p;x]= g ( —'~VK [p;x]~ —
A, .[p]~K [p;x]~ ) . (4.13)

Of course, any arbitrary constant can be added to Eq.
(4.13), because, according to Eq. (2.2), the integral of
5p(x) is zero.

Equation (4.13) is, as already mentioned, one of the
principal results of the present work. It shows that v~(x)
is made up of two parts. Clearly the first term in Eq.
(4.13) is positive everywhere; one might loosely refer to
this direct contribution therefore as a "repulsive" poten-
tial. However, one has a balance between this and an
"attractive" term, since A, in Eq. (4.13) is, according to
(3.37), positive. It is worth emphasizing that through Eq.
(4.13) the Pauli potential has been expressed solely in
terms of the solution [A,, [p],K, [p;x], j =2, . . . , NI of
the eigenvalue problem connected with the determination
of the Pauli energy E~[p].

By analogy with the case of the Pauli energy, other
forms of Eq. (4.13) for the Pauli potential U~ are possible.
Thus, if we make use of Eqs. (3.34) and (3.23), then Eq.
(4.13) reduces to

~1 2 + N ~N+1 (5.1)

then the jth eigenfunction has exactly j —1 nodes x. k ly-

ing between the boundaries (called proper nodes)

p~(xJ k)=0, k =1,2, . . . ,j —1, (5.2)

while the boundary conditions (3.5) can be viewed as two
additional (improper) nodes, say

A. Variational problem in terms of ECJ (x)

So far the methods devised have been applicable to
problems of any dimensionality and arbitrarily low sym-
metry. In this section contact will be established between
these more general methods and an earlier body of work
on one-dimensional problems. This latter class can, of
course, embrace central field problems, after separating
the wave function into a product of radial and angular
(spherical harmonic) functions.

Let us note that for the one-dimensional case all eigen-
values of the single-particle Hamiltonian (3.24) are non-
degenerate while the eigenfunctions can be chosen to be
real. If they are enumerated according to the following
ordering of the eigenvalues

v~ [p;x]= —
U, [p,K, [p];x]

r

V' E1 +
2 X1 P

VK,
(4.14)

Q x 2 Q xJ Q lower boundary

x1 1
=x2 2

= . =x = =upper boundary

where K& =K&[p;x] is given in terms of the solution via

Eq. (3.9).
It is of some interest at this point to calculate the com-

bination occurring in the expression (2.22) for the

(5.3)

(both infinite or finite boundaries may occur). The proper
nodes of the (j+1)th eigenfunction lie between the nodes
of the jth function

Xj,Q Xj +1, 1 Xj, 1 Xj +1,2 + Xj, 2 + + XJj —1 +Xj +1,j Xj j (5.4)
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If the minimization problem (3.1) for Ei, is solved for the
one-dimensional case in terms of K.(x), Eq. (3.8), then
the requirement (3.37), which asserts that in order to
have the solution at the absolute minimum, it should em-
brace the iV lowest eigenvalues, can be replaced by the re-
quirement that the set of eigenfunctions forming the solu-
tion should include these only, which have
0,1, . . . , X —1 proper nodes, according to the property
(5.2) with (5.1); it is obvious from Eq. (3.8) that the prop-
er nodes of K (x) coincide with the nodes of P (x). The
new requirement is much more convenient for numerical
implementation than the previous form.

B. Variational problem in terms of phase functions

K, (x)=p '~
Q, =K, (8, )=cos[8,(x)]

K, (x)=p '~
P) =K (9„9,. . . , 6 )

(5.5)

Following Dawson and March [19], and also
Nalewajski and Kozlowski [20,21], we shall explore a set
of trial functions [9 (x), j=1, . . . , N —1], called phase
functions, as variational functions for the minimization
problem (3.1), suitable for the one-dimensional case. In
these terms, the set IK (x)} or tp (x)I, j =1, . . . , N in-

troduced in Sec. III is given as the so-called hyperspheri-
cal functions:

N N

g K, (x)= g K (9„.. . , 9.)=1 .
j=1 j=i

(5.8)

In order to define the opposite transformation
IK J

—+t8 J or IP, ] ~I8.] in a unique way we assume,
without loss of generality, that K (x))0 for x close to
the lower boundary. Then the above transformations are
given by the following.

(i) For j= 1 and N =3,4, . . . ,

8,(x ) =arccos [K (x ) ]=arccos( P, /p' ),
0&6,(x) &~/2 .

(ii) For j=2, . . . , N —2 and N =4, 5, . . . ,

9 (x)=arccos[K /(K +K, +, + +KN )'~ ]

=arccos[P~/(PJ+P +,+ +PN)'~ ],
0&6,(x) & ~ .

(5.9)

(5.10)

(5.11)

(5.12a)

The function 8 (x) oscillates around the level m/2, satis-
fying

thus leaving (N —1) functions 9 (x), j = 1, . . . , N —1, in-

dependent.
The definition (5.5)—(5.7) ensures that the basic proper-

ty (3.14) is fulfilled for arbitrary x:

=sin(8, )sin(8z). . . sin(8~, )

Xcos(9 ), j=2, 3, . . . .

By definition, for an N-particle system we put

9N(x) =0,

(5.6)

(5.7)

8.(x k ) =m/2 for k =1,2, . . . ,j —1, (5.12b)

which follows from the property (5.2).
(iii) For j =N —1 and N =2, 3, . . . , the function

9N 1(x) is determined by the following complex equa-
tion:

exp [i9N, (x) ]= [KN, (x)+ iKN(x) ]/[KN, (x)+KN(x) ]'

[PN —l(x)+10N(x)]/[PN —l(x)+AN(x) l

—(2N —3)vr/2 & 9N 1(x) & vr/2 .

(5.13)

(5.14a)

The 9N 1(x) is a decreasing (on average) function of x, having the following particular values at nodes of pN 1 and pN..

8N 1(xNk)= —(k —1)vr, k =1,2, . . . , N —1;
N —1( N —l, k)

which follow from the properties (5.2) and (5.4).
In all cases (i), (ii), and (iii) we have

0&8 (x) &~/2 for x close to x~ o .

(5.14b)

(5.14c)

(5.15)

The established conditions (5.10), (5.12), and (5.14), which must be imposed on the variational functions 9 (x), guaran-
tee that the functions P&(x) expressed in terms of 8 (x) have the required number of nodes as in Eq. (5.2). In this case,
of course, positions of the nodes are not known a priori, so their number and ordering only is important.

It is to be noted that we order the functions K in a different manner from that adopted in the work of Dawson and
March [19]and of Nalewajski and Kozlowski [20].

The minimization problem (3.16) for the Pauli energy rewritten in terms of 9.(x) via the transformation (5.5)—(5.7) is

Ez[p]= min —,
' f dx pI [81] +[sin(81)82] +. . . +[sin(91) . sin(8 1)8'] +. . .

] (5.16)

(the number of terms being N —1). Here and elsewhere we write
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df (x) fgp( )
d f (k)

dx dx

The normalization constraints

f dx p(x)K~(8&(x), . . . , 8 (x))=1, j=1, . . . , N

(5.17)

(5.18)

have to be imposed, only (N —1) of them, however, being independent due to Eqs. (5.8) and (2.2). The orthogonality
constraints (3.18)

fdxp(x)k (8,(x), . . . , 8 (x))Xk(8,(x), . . . , 8k(x))=0, jAk

are fulfilled by the solutions, as has already been demonstrated.
It turns out that the Euler-Lagrange equations for the problem (5.16) and (5.18) are

—,
' f dy p(y) I [8;(y)]'+ +[»n(8i)»n(8~ 2)8~ i]']

58, x

(5.19)

J=2 f dy p(y)& J(8i(y), , 8J(y)) —1 =0, 1'=1, . . . , N —1 (5.20)

where the A. are the Lagrange multipliers connected with
the constraints (5.18). Because the integrands in Eqs.
(5.20) depend solely on the zeroth and first derivatives of
the variational functions 8I, Eqs. (5.20) lead to a system
of (N —1) second-order differential nonlinear coupled
equations. We shall not write these down explicitly for
arbitrary N as the detail proliferates. Rather the example
N=2 will be discussed in some detail in Sec. V E and the
example N=3 in Appendix E2.

The boundary conditions necessary to solve such equa-
tions are

[p'i cos(8, )]"
u, s [p;x ]+const =u,s[p; x]=-

p'i cos(8, )

Using Eq. (4.14) we have for the Pauli potential

(5.25)

up[p;x]= —,'(8', ) + —,'tan(8, ) 8", + 8', (5.26)

The basic expression for the Pauli energy coming from
Eq. (5.16) with the solution (5.22) is

E~ [p ]= f dx —,
'
p [ [8', ] +

8~ (x)~0 as x ~boundary . (5.21) +[sin(8, ) . sin(8~ 2)8~, ] ] .
These conditions follow directly from Eq. (B8) via the
transformations (5.9), (5.11) or (5.13). Both infinite and
finite (e.g. , at x=0 for a radial equation problem [22,23]
referred to above) boundaries are covered by Eq. (5.21).

Therefore, for any N, a system of equations and con-
straints [(5.20), (5.18), (5.21), (5.10), (5.12), and (5.14)], in-
volving the given density p(x), defines an eigenproblem
which can be solved numerically, leading to the unique
solution

N

Ep[p]= g A, &[p] + f dx p(x)u~[p;x]
1=2

(5.28)

D. Differential form of virial theorem

(5.27)

Using Eq. (4.15) it can be written in terms of all eigenval-
ues and one function 8&(x) [via Eq. (5.26)]:

[~J+1[p] 8j [p'x]» (5.22)

[A,, [p],K, [p;x],j = I, . . . , N] . (5.23)

Here A. , =0 is added, see Eq. (3.27), and then, using Eqs.
(D2), (D6), (3.10), and (3.12), transformed into

[A,, [p],g [p;x],j=l, . . . , N] . (5.24)

Next, using Eqs. (5.5)—(5.7), this solution can be
transformed into

e,'(x)+ —,'p(x)u', tr(x) —
—,'p'"(x) =0, (5.29)

where e, is defined in terms of single-particle solutions
P.[p;x] as

It should be mentioned that for one-dimensional sys-
tems there exists an interesting differential form of the
virial theorem given by March and Young [24] and by
Baltin [25]. This relates derivatives of the kinetic-energy
density e, (x) and the efFective potential u,~(x), namely,

C. Pauli quantities

N

e, [p;x]= g —,'[g,'(x)]; T, [p]=f dx e, [p;x] (5.30)

This will allow the use of the forms for the Pauli ener-

gy and potential derived in Secs. III and IV. In particu-
lar, using Eqs. (3.29) and (5.5), we have for the effective
potential in terms of p and 0& only

[to be compared with Eqs. (D8) and (3.6), remembering
that EI. =T, —T~, see also the last paragraph of Sec.
III A]. Below we shall use Eq. (5.29) to obtain uz in
terms of e,

' and p. Let us differentiate Eq. (D24) using
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also Eq. (2.16):

1/2)ii
vp= 1/2

/

V e6' (5.31)

Into Eq. (5.31) we shall now insert v', tr from Eq. (5.29) to
find

v~(x) = Ie,'(x) —[p' (x)]'[p'~ (x)]"] .
2

p(x)
(5.32)

E. Two-level results

For compactness, the remainder of this section will be
restricted to the two-level problem. In this case, only one
eigenfunction 9&(x)=9(x) and one eigenvalue A2=A, are
to be determined. Equation (S.20) then simplifies to

f dy p(y) [ —,
' [9'(y) ]

—k sin [9(y) ] I
=0 .6

(5.33)

9"+ 9'+ A, sin(29) =0 .
P

This is to be solved subject to the conditions

(5.34)

Therefore the Euler equation is (see Harriman [26], also
Nagy and March [22])

theory. For general ¹ lectron atomic and molecular
systems, without invoking any simplifications due to the
possible existence of symmetry, X —1 Euler equations
(3.22) have been derived. The first stage of practical im-
plementation of the present method must be the solution
of the eigenvalue problem posed by these equations, for a
given input p(x). Provided these equations have physical
solutions (which is the test of potential representability of
the input density), it is then demonstrated explicitly how
the eigenvalues and eigenfunctions can be used to con-
struct the Pauli potential and energy, as well as the KS
potential. Some examples are given to illustrate the ap-
proach. It does not need stressing that it is now of the ut-
most importance to have high-quality electron densities
for atoms, molecules, and condensed matter from x-ray
and/or electron scattering experiments. Standard
quantum-chemical procedures using extensive basis sets
should then be adequate to solve the Euler equations
(3.22) derived here. These have the merit of "locality, " in
the sense that the functions KJ(x), plus gradient and La-
placian, together with the input density and its gradient,
alone enter these equations at a single position vector X.
Solutions of these equations, when they can be found for
a given input density, then demonstrate v representability
of that density. In terms of them the Pauli potential, en-
ergy and effective one-body potential can all be extracted.

9'(x)~0 as x ~boundary

and the constraints

(5.35)
ACKNOWI. EDGMENTS

f dx p(x)sin [9(x)]=1 (5.36)

Following the early work of Stoddart et al. [10] on Be
metal, in which the Brag g refl.ection experiments of
Brown [27] were used to construct an input charge densi-
ty p(x), the philosophy of the present work has similarly
centered on the use of an experimental ground-state den-
sity within the general framework of density-functional

and [see Eq. (5.14)] that 7r/2(9(—x) (ir/2, that 9(x)
must have one node and that k )0.

Equations (5.34)—(5.36) can be readily solved numeri-
cally for given density p(x), leading to the solution
A2=A[p], 9, =9[p;x]. Then from Eqs. (5.25) —(5.28) one
can find the Pauli quantities, as well as the effective po-
tential v,z.

VI. SUMMARY

APPENDIX A: INTERMEDIATE STEPS IN DERIVATION
OF THE EULER EQUATIONS (3.22)

FOR Z, (x)

The results below have been employed in passing from
Eq. (3.19) to (3.22).

6
MCi*(x)

S[p,KI,K(*]=p(x)Ki(x); l =2, . . . , N (A 1)

and

This collaboration was made possible by the presence
of both authors at the Research Workshop in Condensed
Matter and Atomic and Molecular Physics held at ICTP
Trieste. N.H.M. wishes to express his thanks to Dr. Ru-
ben Santamaria and Mr. Pawel Kozlowski for many valu-
able discussions on density-functional theory.

6
SK(x) ' '

a(V K)Et [p,KI, KI*]= —V + [p(x)—,'[VKi*(x)].[VKI(x)]J

= —
—,'p(x)V Ki(x) —

—,'[Vp(x)] [VK,(x)], l =2, . . . , N . (A2)

The term presenting the most difhculty will now be
written as

Ep[p, K, ,K, ]=fdxX,
=

—,
' f dxp(x)[K, (x)] '[V[K, (x)]] (A3)

but [see Eq. (3.14)]
N

V[K, (x)]= g (
—K, VK* K "VK, ) . —

J =2

It follows that

(A4)
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=
—,'p[2[VKi] [ V—K, ](K, ) '+[V(K, )] K, K, ]

KJ(R —$,8,$)=K (R, O, Q) — K (R., O, Q)/+0(g ) .J ' ' gR J

and

K ) '(VK) ) (VK()+ (K, 'VK, )'K, (A5)
(84)

Next we must turn to analyze Eq. (3.22) in the vicinity of
the boundary. Using Eqs. (83) and (84) we have for the
second term in Eq. (3.22)

a(VK*) 4
=&K '[V-(K')]{ K—)= I'-K—'(V-K )K .

(A6)

Also

BX,—V.
8( VKI* )

=
—,'(Vp) (K, 'VK, )K( — (K, 'VK, ) KI

(p 'Vp)VK =c. '(8, $)g "nc (8,$)g"

BK (R, O, Q)
X ' +0(g')

BR

, BK(R,O, )
=ng ' +0(g ) . (85)

As follows from the expansion {84), all terms in Eqs.
(3.22) and (3.23) other than those calculated in Eq. (85)
for j =l and j= 1 are of the order of g as g tends to zero.
Therefore we must require that

++(K, 'V K, )Ki++(K 'VK ) VK (A7) aK, (R, O, y)
aR

Using these steps, the Euler equations (3.22) for the
functions KI follow.

APPENDIX 8: BOUNDARY CONDITIONS
ON EULER EQUATIONS (3.22) FOR K~ (x)

In order to integrate the differential equations (3.22),
one must, of course, specify the boundary conditions for
the functions KI(x). These have to be derived from the
properties of a given input density p(x) as the only infor-
mation available about the system.

Ifp(x) happens to be a periodic function

p(x+R; ) =p(x),

in order to have the terms arising from Eq. (85) finite too.
Equation (86) is therefore the boundary condition
sought, with respect to the radial variable. As a function
of 8 and P, the function K is periodic with a period 2n. .
Therefore conditions analogous to Eq. (82) are to be ap-
plied

K {R, 8+ 2m. , P ) =K (R, 8, Q ) =K (R, 8, Q+ 2~) . (87)

Now the general case of the infinite domain can be
realized as the limit when the box radius R tends to
infinity. Thus the following boundary conditions are
found:

Ki(x+R; ) =KI(x), l =1,2, . . . . (82)

where R; represent the periods (e.g., the edges of a large
box) then the boundary conditions are found from the
conditions that the functions K&(x) must exhibit the same
periodicity

and

lim
8 log[K (r, 8, $)] =0

Br

lim KJ(r, 8+2m, g)= lim K&(r, 8,$)
f~oo f~oo

(88)

p(r, 8,$)=p(R —g, 8, $)=c(8,$)g"[1+0(g)], (83)

where n ~ 2. As to the form of the functions K (r, 8,$),
they must be nonzero at r =R because of the property
(3.14) valid at any r. Hence one can write

Of course, in this case, all integrations must be carried
out over an irreducible region, defined by the transla-
tions.

If p(x) is aperiodic, then, for x—+ ~, p(x) must tend to
zero fast enough to ensure the convergence of all in-
tegrals involved. The boundary conditions for this case
will be established by taking the limit of a finite-region
case. Suppose that the system under consideration is en-
closed in a spherical box of radius R much greater than
any important physical length in the system. This means
that an additional potential, infinitely repulsive at ~x~ =R,
is imposed. The density of the system, written in spheri-
cal coordinates, in the vicinity of the boundary must take
the form

= lim K ( r, 8, P+ 2m ) .
y —+ co

(89)

This completes the specification of the conditions under
which the Euler equations (3.22) are to be solved for a
given input density p(x).

A further equation can now be obtained from Eq. (C1) by

APPENDIX C: ORTHOGONALITY RELATIONS

This brief Appendix is concerned with weighted ortho-
gonality of the functions XI. Let us start from the Euler
equations (3.22) satisfied by K&. As remarked in the text,
the case l=1 with A,

&
=0 can be included because of Eq.

(3.23). Then we multiply both sides by p(x)K.*(x), j&l,
and integrate through the whole of space. After addi-
tional integration by parts we then obtain

f d x,' [p(VK,*)~ (VK, )+2pU, K,"K,]=X, f d x pK,*K, .

(Cl)
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interchanging the indices j and l and taking the complex
conjugate. The left-hand side is then identical with that
of Eq. (Cl) and by subtraction we find

0=(&,—A J)f dxpK, "E&', jAl; j, l =1,2, . . . , N .

(C2)

tions on g.(x).
After introduction of Lagr ange multipliers

A. ,j =2, . . . , N, connected with the normalization con-
straints, we find from Eq. (D8) the result

Therefore orthogonality as in Eq. (3.18) is established for
states belonging to different eigenvalues. In the case of
degenerate eigenvalues, corresponding eigenfunctions can
be orthogonalized.

+ Q T[g ]—A, fdxlg, —1

1=2
=0.

(D9)

APPENDIX D: PAULI ENERGY AND POTENTIAL
USING CONVENTIONAL SINGLE-PARTICLE

WAVE FUNCTIONS

As mentioned in Sec. III, the Pauli energy may be ob-
tained from a minimization technique by employing vari-
ous possible sets of trial functions. In this Appendix, our
purpose is to explore the set [y, gz, . . . , fz I, which is re-
lated to the original set [Pi, . . . , P&I in the following
way:

N

5(i', )=VP+ g ( Q~VQ—J* QJ*VQ)—) . (D 1 1)

Contributions from the terms in the square brackets can
be obtained in standard fashion. Special attention is
needed though for T, [g, ] [see Eqs. (3.6) and (D6)] which
may be rewritten as

T, [g, ]=fdxX, = fdx 8 '(Q, ) '[V(1t,)], (D10)

where, according to Eq. (D7)

x(x)=l: IP'i(x)l'+ ' ' ' + 0'x(x}l']'",

f (x)=P (x), j=2, . . . , N .

(D 1)

(D2)
Thus one has

1=2

As done previously, we take the P (x) to be labeled such
that P, corresponds to the ground state, so that it is a
nodeless function, chosen to be real and positive. There-
fore the inverse transformation is

fi(x)= [y (x)—[l@p(x)l + . + @iv(x) ]]'~, (D3)

=2 '4i '(Vfi)'4 —2 '(iti 'Vfi) (VA) (D12)

'(4i) '4 [V(fi)]'+8 '(fi) '2V(Pi)( —1).V4i
I

P, (x)=P,(x), j =2, . . . , N (D4) (D13)

with the arithmetic square root used in Eq. (D3). The
constraint (3.2) may evidently be rewritten as

and

y (x)=p(x) (D5)
—V- 2'0 '(V0 —)'4+2 '0 '(V'0 )fi

=[p( ) —(lg I'+ +l0 I'}1'". (D6)

In terms of this function, Eq. (D4) is valid also for j= 1

when the constraint (D5) is imposed. We can rewrite Eq.
(D6) as a sum rule involving gi as well as all the indepen-
dent g~ as

p(x)=[/, (x)] +I@~(x)l + +I/~(x)l~ . (D7)

The original minimization problem (3.1)—(3.4) can now
be rewritten in terms of a new set of trial functions as

and it is therefore automatically fulfilled if the function
y(x) is fixed as p' (x); that is y is the usual density am-
plitude. It will prove convenient to define also an auxili-
ary function itt, (x) depending on p(x) and all independent
functions g (x}:

41(x) Pl(p(x) e2(x) ' ' ' eN(x))

+2 '(Pi 'VVi) (VWi) . (D14)

5T, [Pi]
5$,*(x)

V gi(x)
gi x (D15}

After evaluating the remaining terms in Eq. (D9), we ob-
tain finally the desired Euler-Lagrange equation as

V ~i(x)+U [fi(P 42

l=2, . . . , X, (D16)

where

The sum of Eqs. (D12) and (D14) provides the variational
derivative

Ep[p]= min (T, [0i]+T. [&&]
&z. 6

1 V g, (x)
u, [P,;x]=—

2 g, (x)
(D17)

+ . . +T, [P~]—T, [p'i ]) (D8)

with the usual normalization and orthogonality condi-
with 1(t, defined by Eq. (D6).

Equation (D16) represents a system of (N —1) second-
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~l ~1 ~1 (D18)

order differential coupled equations for the functions
gi(x). The coupling arises through the potential u„Eq.
(D17), which depends on p, g2, . . . , P& in a local way.
This system, together with normalization constraints and
boundary conditions (the same as for conventional, wave
functions) can be solved numerically, leading to the solu-
tion jA, , [p],g, [p;x],1=2, . . . , Nj.

By comparison of (D16) with the system of Eqs. (3.24)
for Pi(x), resulting from the assumption of noninteract-
ing u representability for p(x), one readily sees that fi(x)
coincides with Pi(x), while the eigenvalues are related by

&Tw[p]
up[p;x] = — —v,ff[p;x]+const

5p(x)

or in terms of the boson potential uz(x), Eq. (2.14),

&Tw[p]
+u~[p;x] =const,

5P x

(D26)

(D27)

i.e., the boson problem Eq. (2.13).
It is to be noted that the present result (D22) is close to

the result of Bartolotti and Acharya [28] (BA). For com-
parison, consider all functions Pi to be real, as tacitly as-
sumed by BA, and also let us write

The effective potential turns out to be equivalent to the
present coupling potential

p, (x)=g (x) .

In this case, Eq. (D22) can be rewritten as

(D28)

v, (X)=u, ff(x) =u, ff(x)+const (D19)

[see Eqs. (3.28) and (3.29)].
It is easy to establish also the equivalence between the

present solution tA, , [p],g, [p;x], l =2, . . . , N j and that
discussed in Sec. III, [Xi[p], Ki[p;x], l =2, . . . , N j, via
the relation

Pi(x)=p' (x)Ki(x) . (D20)

1 Vp(x)
8 p(x)

(D22)

where A,
&

=0 and

&i[p;x]= [p(x) —(lfpl p;x]l'+ . . + I@elp;x] I') j
'" .

(D23)

An alternative form of the Pauli potential [11] is [see
Eqs. (4.14), (D21), and (D19)]

The eigenvalues remain the same, while the relation be-
tween the coupling potentials (D17) and (3.23) is

5T []+ — —— = + (D21)
8 p 4 p Qp

Again one can obtain the Pauli energy and potential in
terms of the eigenvalues; in view of the procedure set out
in the main text we omit the details. In the representa-
tion used in this Appendix, one form of the Pauli poten-
tial that follows is

1 N
v [p;x]= & —,

'
I VV, [p;x] I' —~, [pll @,[p;x] I'

p x
2

1 (VP )'(VP ) (Vp) (Vp)up(x)=
8p J=i pj p

N

g Ajp,
p

(D29)

Thus Eqs. (D29) and (14) of BA, taken for a particular
spin polarization, differ only by a constant.

APPENDIX E: EXAMPLES TO OBTAIN
EFFECTIVE POTENTIAL AND PAULI QUANTITIES

FROM A GIVEN PARTICLE DENSITY

1. One-dimensional problem in semi-infinite domain

The following particle density, de6ned in the one-
dimensional domain (0, ~ ), is the given input information

p(r) =32r [(1—2r) —8 exp( 4r)]exp( 4—r) . —(El)

N= f dr p(r)=2 .
0

(E2)

Therefore we can use the formalism given in Sec. VE,
dealing with the two-level problem in terms of a phase
function. Thus one has to determine one eigenfunction
8&(r)=8(r) and one eigenvalue A2=A, from the Euler-
Lagrange equation (5.34). Let us rewrite it here in the
form

This function exhibits two maxima: a narrow one at
r=0.28 with p=2.35 and a broad one at r=1.28 where

p =0.78, separated by a shallow minimum of value
p=0.57 at r=0.79. By integration, this p(r) corresponds
to a number of particles

1 V'p 1 Vpup(x)=
p 8 p

or equivalently

'2

v ff[p]

—(8"+8'p'/p) /sin(28) = A, .

The boundary conditions (5.35) are

8'(0)=0; lim 8'(r)=0,
p —+ oo

(E3)

(E4)

1 V [p („)] 1 V g, [p;x]
u~(x) =—

2 p»'(x) 2 g, [p;x]
(D25)

the constraints on the range and nodes

—~/2(8(r) (m. /2, 8(r, , )=0, (E5)

Also with the aid of Eq. (D21) and the relation between
up and potential v„see Eq. (4.14), one can write

and no normalization [Eq. (5.36)]

f dr p(r)sin [8(r)]=1 .
0

(E6)
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We now assert that the desired solution of the above
problem is

while the Pauli potential, according to Eq. (4.13), is

up(r)= —,'(K', ) + —,'(K2) —6K2 . (E19)
8(r)=arctan[R (r)], (E7)

where

R(r)=8 '~ (1—2r)exp(2r) .

The following relations, derived from Eq. (E7), will be
useful for verification of the solution:

This function starts from u~ = ——', at r =0, increases (qua-
dratically for small r) to the maximum 3.50 at r=0.65,
then goes through zero at r=0.81 and further decreases
to —4.34 at r=1, to —5.95 at 1.5, and eventually ap-
proaches the asymptotic value —6 for large r.

2. One-dimensional problem in 6nite domain

and

sin( 8)=R /(1+R )'r

cos(8)=l/(1+R )'

O'=R'/(1+R ),

(E9)

(E10)

(El 1) p(x) =S (14C +2S ), (E20)

where

The following density, defined in the range (0,2), is the
given input information:

8"=R"/(1+R ) —2R (R') /(1+R ) (E12)
$(x)=sin(vrx/2), C(x)=cos(~x/2) . (E21)

It can be seen from Eqs. (E7) and (El 1) that Eqs. (E4) and
(E5) are fulfilled, with r2, =

—,'. Condition (E6) is readily
checked with the help of Eq. (E9). By inserting Eqs.
(E9)—(E12) into the left-hand side (LHS) of Eq. (E3) we
obtain after some algebra a constant value

r

1 R" 2(1 4r) —R'
(E13)

2 R r R
=6.

and

P, (r) =p' K, =p' cos(8)= 16r exp( 4r)—(E14)

Pz(r)=p'~ Kz=p' sin(8)

The one-particle wave functions [see Eqs. (5.5) —(5.7)],
corresponding to the solution obtained, are

This function has one maximum p =2 at x = 1, two maxi-
ma p=2. 16 at x=0.41 and 1.59, separated by two mini-
ma p=1.47 at X=0.71 and 1.29, and quadratically ap-
proaches zero at the boundaries.

By integration, this p(x) corresponds to a number of
particles

2X = f dx p(x)=3 .
0

(E22)

Using the formalism of phase functions, developed in Sec.
V B, we have to determine two functions 8,(x) and gz(x)
and two eigenvalues k2 and k3 by solving the system of
two Euler-Lagrange equations, Eq. (5.20), for I= 1,2,
which can be written in the form

=8r(2) '~ (1—2r)exp( —2r) . (E15) +(A2 —A3)sin (82)]sin(28, ), (E23)

Therefore the given density p(r) has been generated by
the one-particle Hamiltonian with the effective potential
[see Eqs. (3.28) and (3.29)]

+2 cotan(gi)gi Oz+(A2 —k3)sin(282) . (E24)

u, tr(r) = (1/2)P", /P, = 4/r +8=u,s(r) —8—, , (E16) We now assert that the desired solution of the above
equations with the boundary conditions (5.21) is

which is the Coulomb potential with Z=4, shifted by a
constant 8. So, if, in addition, we allow for double occu-
pancy of the levels, the above example simulates the radi-
al equation problem of Be, but with the electron-electron
interaction switched off. Its eigenenergies given by

c,i= —Z /(21 ) (E17)

Er =—f dr p(r)[[Ki(r)] +[K2(r)]2I, (E18)

are consistent with si = —8 seen in Eq. (E16) and
A, =A,z

= sz —E i
=6 from Eq. (E13).

The phase function 8(r), Eq. (E7), has a maximum
0=0.34 at r=0, from which it decreases monotonically,
going through zero at r =

—,', then 0= —1.21 at 1.0,
—1.55 at 2 and approaches the asymptotic value —~/2
for large r.

The Pauli energy can be evaluated numerically accord-
ing to Eq. (3.30), using Eqs. (E14) and (E15), as

kg=(3/8)m. , A,3=(5/8)vr

8,(x)=arccos[(14C +2$ )
'~ ],

(E25)

(E26)

arctan[2C —(2C) '], for 0&x &1
8~(x)= —~/2, for x =1 (E27)

—vr+arctan[2C —(2C) '], for 1 &x &2 .

We see that 8, satisfies Eq. (5.10), and Oz Eq. (5.14) with

x2 ] 1 x 3, =—', and x4 &

=—', . The function 0& has two
maxima t9&

= 1 30 at the boundaries and a minimum
gi=rr/4 at x= 1. The function 82 decreases monotoni-
cally from 0.98 at x =0 to —4.12 at x =2.

Having the solution (E25)—(E27) in analytical form,
Eq. (E23) and (E24) can be verified, in principle analyti-
cally. But the expressions became so unwieldy that in-
stead of performing that task we checked them numeri-
cally at a large number of points. With differentiations
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performed numerically, excellent agreement was ob-
tained.

Substituting the solution (E26) and (E27) into Eqs.
(5.5)—(5.7), we find

and

Pi(x) =p' cos(8, ) =sin(n. x/2),
Pz(x) =p' sin(8, )cos(82) =sin(mx),

$3(x) =p'~ sin(8, )sin(82) =sin(3mx/2) .

(E28)

(E29)

(E30)

u,s(x) =
—,'P", /P, = —n. /8=u, s(x) —e, .

This corresponds to the empty well potential

(E31)

+ao, x (0
udt(x)= 0, O~x ~2

+ tx), 2(x
(E32)

3. Two-dimensional problem in in6nite domain

The input information this tin1e is the following densi-
ty in the infinite (x,y) plane:

Therefore the given density p(x) has been generated by
the potential

proving that the solution (E38) satisfies Eqs. (E36). To
find the effective potential according to Eqs. (3.28) and
(3.29), we must determine

1/2
~1 P 1 PO (E40)

[Eqs. (3.11), (3.12), (E38), and (E33) were used here].
Thus

=
—,'(x +y ) —1

=u,s(x,y) —e, . (E41)

It is seen that the given density was therefore generated
by an isotropic two-dimensional harmonic oscillator po-
tential. The two-dimensional eigenfunctions $1(x,y)
=p'~ Kl, 1=1,2,3,4, given by Eqs. (E38) and (E33), can
be written in terms of the eigenfunctions of the one-
din1ensional oscillator

g, (x)=n. ' exp( —x /2), Pz(x)=2' xg, (x)

(the eigenvalues are —,
' and —,', respectively), as

(E42)

fi(x,y)=Pi(x)gi(y), $2(x,y)=$2(x)g, (y),
(E43)

$3(x,y) = 1( &(x )g,(y), $4(x,y ) =$2(x )$2(y )

The corresponding eigenvalues are

p(x, y) =po(x, y)D (x,y) (E33) E, =—+—=1 E, =6 =&+2=2 E, =—+—=3 (E44)

with

po(x, y)=~ 'exp( —x —y )

and

(E34)

D (x,y) = 1+2(x +y )+4x y (E35)

where

(E37)

Again, we assert that the solution of the system (E36),
with the boundary conditions (B8) and (B9), is

D
—1/2 ~ 21/2xD 1/2

1 2

1/2' —1/2 K =2xJD 1/2
(E38)

By inserting Eqs. (E38) and (E33)—(E35) into the LHS of
Eq. (E36), we obtain some functions of (x,y), which after
lengthy algebra reduce to constant values equal to

A,2=A,3=1, A,4=2, (E39)

This function exhibits the syn1metry of a square. By in-
tegration, it corresponds to four particles. Therefore ac-
cording to Sec. III, we must determine three functions Kl
and eigenvalues X&, l=2,3,4, from the system of Eqs.
(3.22). These can be rewritten as

,'(Ki 'V Ei ——K—, 'V~X, )

—
—,'p '(Vp). (KI 'VKt —Ki 'VIC, )=Xi, l =2, 3,4

(E36)

which is in agreement with e, in Eq. (E41) and with Eq.
(E39) where k&=e& —e, . Because the eigenvalues (E44)
are constructed from the lowest eigenvalues of the one-
dimensional oscillator problem, the requirement (3.37) is
fulfilled.

It should be noted here that the ground state of the
system of four electrons, generated by the potential
u,s(x,y) in Eq. (E41), happens to be triply degenerate. To
see this, we may replace the fourth function of the solu-
tion (E43) by gi(x)$3(y) or $3(x)gi(y); the energy
ren1ains unchanged since the corresponding eigenvalue is
2+ &

=3 also.

APPENDIX F: PAULI POTENTIAL OF HARMONIC
OSCILLATOR POTENTIAL WITH N OCCUPIED LEVELS

IN ONE DIMENSION

t ( x ) = —,', P~ [x —x ( 4N + 1 ) + 2N +4N )

,', g~(x +1—2N)+ —6xgivg~ . —

It will be useful to introduce the quantity

W~(x) = u,s(x) —e~ =
—,'x —(N —

—,
' ),

(F2)

(F3)

As shown by Lawes and March [29] (LM), the kinetic-
energy density t (x), defined now by

1V

t(x)= —
—,
' g (F1)

1=1

for a linear harmonic oscillator with N occupied levels is
given by
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occurring in the Schrodinger equation for the Xth state:

4 2WN PN

Thus Eq. (F2) written in terms of Wtt becomes

12t =(4W~ —6W~+2)1lttt —2W~(Q'tt) +2xgttg~ . (F5)

N
t +Ueffp

—g El/i
1=1

(Fl 1)

and employing Eqs. (F9) and (D18) with E, = —,
' we obtain

and sum it over all N states. Then using the definition
(Fl) we have

We plan to eliminate f& and ttj& from the relation be-
tween 8'N and t; to do so we need two more equations.
They are Eq. (2.2) of LM, written in terms of W~

N

&if' = 2t ——
—,'p" +(N —

—,
'

)p .
1=1

(F12)

2p=(l 2'—4m+(4x)' (F6)

p (2WN 1 WN+( 4) 2xeNWN (F7)

and the derivative of Eq. (2.4) of LM, written in terms of
W& using Eq. (F4)

Of course, the price paid for achieving the summation
over l is the introduction of the kinetic-energy density t
as well as p and its derivatives.

The Pauli potential according to Eq. (D22) is
'2"

Ir l I
dlr+ ind + P PP4PSP.

Then one can verify readily the identity

12t + (2 W~ —1)2p+p" =0 . (F8)
2t p" 1+ —+ — 1V ——

2

Solving Eq. (F8) and forming v,s. from Eq. (F3) we have

P
p 4p

(F9)

4i 4"—+—U.ttft =Eitti
1

(F10)

In order to obtain the Pauli potential using Eq. (D22),
let us take the Schrodinger equation for the 1th state

2

=—+ —— +const . (F13)
3t p" 1 0'

p

The same result may be obtained in an alternative
manner from Eq. (D24) with (F9) and (3.29).

It is worth remarking in this context that for this
specific example Eq. (F2) expresses t(x) in terms of the
wave function of the highest occupied level X.

[1] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542
(1926); in Self Consistent Fi-elds in Atoms (Ref. [3]).

[2] E. Fermi, Z. Phys. 48, 73 {1928).
[3] D. R. Hartree, Proc. Cambridge Philos. Soc. 24, 111

(1927};reprinted in N. H. March, Self Consistent Fiel-ds in
Atoms (Pergamon, Oxford, 1975).

[4] V. Pock, Z. Phys. 15, 126 (1930).
[5] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930).
[6] J. C. Sister, Phys. Rev. 81, 385 (1951).
[7] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[8] P. Hohenberg and W. Kahn, Phys. Rev. 136, B864 (1964).
[9] See, for example, R. G. Parr and W. Yang, Density Func

tional Theory of Atoms and Molecules (Oxford University
Press, London, 1989).

[10]J. C. Stoddart, P. Stoney, N. H. March, and I. B. Orten-

burger, Nuovo Cimento 23B, 15 (1974).
[11]N. H. March, Phys. Lett. 113A, 66 (1985); 113A, 476

(1986).
[12] M. Levy, Phys. Rev. A 26, 1200 (1982); Local Density Ap

proximations in Quantum Chemistry and Solid State Phys-
ics, edited by J. P. Dahl and J. Avery (Plenum, New York,
1984), p. 155.

[13]N. H. March and A. M. Murray, Proc. R. Soc. London
Ser. A 256, 400 (1960).

[14] See also C. Herring and M. Chopra, Phys. Rev. A 37, 31
(1988).

[15] M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30,

2745 (1984).
[16]E. N. Lassettre, J. Chem. Phys. 83, 1709 (1985).
[17]G. Hunter, in Proceedings of the Fifth International

Conference on Quantum Chemistry, Montreal, 1985 [Int.
J. Quantum Chem. 29, 197 (1986)].

[18] S. H. Werden and E. R. Davidson, in Local Density Ap
proximations in Quantum Chemistry and Solid State Phys-
ics (Ref. [12]),p. 33.

[19]K. A. Dawson and N. H. March, J. Chem. Phys. 81, 5850
(1984).

[20] R. F. Nalewajski and P. M. Kozlowski, Acta Phys. Pol. A
74, 287 (1988).

[21] See also P. M. Kozlowski and N. H. March, Int. J. Quan-
tum Chem. 36, 741 (1989).

[22] A. Nagy and N. H. March, Phys. Rev. A 39, 5512 (1989);
40, 554 (1989).

[23] See also F. Aryasetiawan and M. J. Stott, Phys. Rev. B 38,
2974 (1988).

[24] N. H. March and W. H. Young, Nucl. Phys. 12, 237
(1959).

[25] R. Baltin, Phys. Lett. 113A, 121 (1985).
[26] J. Harriman, in Local Density Approximations in Quantum

Chemistry and Solid State Physics (Ref. -[12]).
[27] P. J. Brown, Philos. Mag. 26, 1377 (1972).
[28] L. J. Bartolotti and P. K. Acharya, J. Chem. Phys. 77,

4576 (1982).
[29] G. P. Lawes and N. H. March, J. Chem. Phys. 71, 1007

(1979).


