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Perturbed ladder-operator method: An algebraic recursive solution
of the perturbed Coulomb eigenequation
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The perturbed ladder-operator method is applied to the solution of the Coulomb eigenequation per-
turbed by an anharmonic potential, i.e., with a total potential U(x )= —m (m + 1)/x —2q /x
+blx+b2x +b3x'+ - . . This method is an extension of the Schrodinger-Infeld-Hull factorization
method within the perturbative scheme. The introduction of specific basis functions for the finite-
di8'erence solution of the factorazibility condition, together with the use of the symmetry properties of
the Bernoulli polynomials, allows a straightforward determination of analytical expressions of the per-
turbed Coulomb ladder functions and eigenvalues. Some illustrative examples showing the capabilities
of the method are given; particularly, analytical expressions of the linear, quadratic, and cubic Stark
shifts are quickly derived.

PACS number(s): 31.30.—i

I. INTRODUCTION

The Schrodinger-Infeld-Hull factorization method
[1,2] is known to be an elegant and powerful method for
analytically solving some linear second-order di6'erentia1
equations of fundamental interest in quantum mechanics.
Let us recall that, for instance, the hydrogenic radial
functions as well as the Dirac hydrogenic functions, the
spherical harmonic functions, the harmonic-oscillator
and Morse-oscillator diatomic vibration functions, and
more generally the conQuent and Gauss hypergeometric
functions are (or are amenable to) solutions of factoriz-
able equations [2]. Particularly, when an eigenequation is
factorizable, the expression of the eigenvalue in terms of
the quantum numbers directly follows from knowledge of
the factorization function, closed-form expressions of the
eigenfunctions involving orthogonal polynomials are

known [3], and closed-form expressions of many matrix
elements are obtainable by means of an algebraic recur-
sive procedure [4,5]. In fact, there are six fundamental
types of exactly factorizable equations (noted types A to
F, within the Infeld-Hull nomenclature). Nevertheless, in
most cases, the mathematical description of physical phe-
nomena leads to the solution of equations that are not ex-
actly factorizable but can be viewed as "perturbed factor-
izable" equations: one can extract from the given physi-
cal model potential an unperturbed part leading to a fac-
torizable equation. In this case the original range of ap-
plicability of the exact factorization method can be ex-
tended within the perturbation scheme [2,6—9].

In a recent paper [10] (hereafter referred to as paper I),
an algebraic recursive procedure has been proposed for
analytically solving wave equations that can be viewed as
"perturbed factorizable" equations. The efficiency of this
procedure mainly relies on the use of basis functions
y, (x) that satisfy selective ladderlike properties for ex-
panding the perturbation; it also relies on the use of
Newton's expansions for the quantum-number depen-
dence of the required perturbed ladder and factorization
functions. In paper I types A to D "perturbed factoriza-

tions" have been considered in detail and several exam-
ples have been worked out. This procedure is valid for all
factorization types and can also be applied to the solution
of perturbed type-E or type-F eigenequations. However,
as already pointed out in paper I, it is worthwhile to ex-
amine separately these cases and, possibly, when tackling
the determination of the perturbed ladder and factoriza-
tion functions, to take advantage of their expected sym-
metry properties in the quantum number.

In the present paper, special attention is paid to the
solution of a wave equation with a Coulomb potential
(factorizable type F) with a perturbation expanded in
terms of basis functions y, (x)=x'. Analytical solutions
of such an eigenequation are known to play a central role
in atomic and molecular structure calculations, particu-
larly when studying atoms in external fields, and also they
can serve for the analytical solution of fundamental mod-
el problems such as the (static or exponential cosine)
screened Kepler problem [6]. After a necessary and brief
recall of the exact and perturbed factorization schemes,
the solution of the factorizability condition is revisited in
order to investigate the possible interest of introducing
specific basis functions when carrying out the finite-
difference solution of the factorizability condition (Sec.
II). Focusing on type F and making use of the symmetry
properties of the Bernoulli polynomials, analytical ex-
pressions of the perturbed ladder functions and eigenval-
ues are derived (Sec. III). Illustrative examples are
worked out (Sec. IV).

II. PERTURBED LADDER-OPERATOR METHOD

In order to set up the definitions and notations, it is
first necessary to brieAy recall the main features of the ex-
act and perturbed factorization schemes.

A. Exact factorization

After exact or approximate separation of variables,
many problems of current interest in quantum mechanics
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lead to the solution of eigenequations of the Sturm-
Liouville type. By an appropriate transformation of vari-
able and function, these equations can be reduced to the
standard form

[X(x,m+1)]2+ K(x, m+1}+L(m+1)=—U(x, m),
(2.7)

[IC (x, m)] — IC (x, m)+L (m) = —U(x, m) .

d2 + U(x, m)+A~ %'~ (x)=0
dx

(2.1)

associated with the boundary conditions (x, ~x ~ xz)

le(x, )l'= le(x, )l'=O, I 'le(x)l'dx =1, (2.2)

where m =Nl p+ 1 M p+ 2 ~ ~ . is a quantum number which
takes successive discrete values labeling the eigenfunc-
tions.

Such an equation (2.1}is factorizable when it can be re-
placed by each of the following two difference-differential
equations:

H +,H++ i 4 = [A L(m +—1)]4
H+H %', =[A —. L(m)]%

(2.3)

where L (m} is the factorization function, which does not
depend on x, and H are mutually adjoint ladder opera-
tors: H =K(x, m—) Tdldx. Owing the mutual adjoint-
ness of the ladder operators H+ and H, the necessary
condition for the existence of quadratically integrable
solutions of Eq. (2.1), i.e., the quantization condition, is
e(j —m)=u =integer~0, where @=+1 (or e= —1) ac-
cording to whether L(m) is an increasing (or decreasing)
function of m.

The interest in and advantages of the factorization
method are well known [2].

(i) Closed-form expressions of the eigenvalues are
readily obtainable from the knowledge of the factoriza-
tion function L (m),

1
A =L j+—+—

2 2
(2.4)

(ii) The normalized eigenfunctions are solutions to the
following pair of difference-differential equations

IC (x, m )+ O'J. =JV~(m)VJ~
d

K(x, m +1)— %. =JV.(m +1)%. +, ,
d

(2.5)

1 dK x,j+—+——e %' . =0 .
2 2 dx

(2.6)

From the comparison of Eqs. (2.3) and (2.1), it is easily
shown that the necessary and sufhcient condition to be
satisfied by IC (x, m) and L (m) allowing the factorization
of Eq. (2.1) is

with JV~(m) = [A- L(m)]'~ . Thes—e "ladder" equations
allow the determination of any VJ~(x) function from the
knowledge of any one of them, particularly from the
knowledge of the normalized "key" function %&7(x),
which is a solution of the first-order differential equation

There are six fundamental types of potential functions
U' '(x, m) (denoted types A to F, within the Infeld-Hull
nomenclature) leading to factorizable equations. More-
over, as pointed out by Infeld and Hull [2], when direct
factorization is not possible solely because of the inade-
quate m dependence of the potential function U(x, m)
under consideration, one can resort to "artificial" factori-
zation, i.e., one can consider U(x, m) as "embedded" in a
new potential function u (x,m;p, ), which depends on a
supplementary "artificial" parameter p such that
u (x, m;4u) can be identified in m with a factorizing poten-
tial U' (x, m) and that u(x, m;p=m)=U(x, m). Then,
Eq. (2.1) is factorized using u (x, m;p) and the eigenval-
ues AJ(p) =L [j+(e/2)+ —,';p] are determined as well as
the eigenfunctions ql (x;p), both depending on the pa-
rameter p. At the end of the ladder procedure (2.5), one
merely sets p=m and obtains the required solutions
A (m)=AJ(p=m) and ql (x)=% (x;p=m). This
"artificial" or "embedded" factorization device is widely
used all along the "perturbed factorization" scheme.

B. Perturbed factorization

K(x, m)=K' '(x, m)+gK'"(x, m)

+~'SC"'(x, m)+

L(m)=L' '(m)+gL"'(m)+g L' '(m)+

(2.8)

where K' '(x, m) and L' '(m) are the ladder and factori-
zation functions allowing an exact factorization of Eq.
(2.1) with U' '(x, m).

In order to satisfy the factorizability condition (2.7)
with U(x, m) at any order N of the perturbation, the re-
quired perturbed potential ladder and factorization func-
tions have to be solutions of the following differential-
difference equations

N dg X' '(x, m+1)K' '(x m+1)+ K' '(x, m+1)
v=p dx

+L' '(m+1)= —U' '(x, m),
(2.9)

g IC'"'(x m)K' '(x m) — K' '(x, m)+L' '(m)d

v=p dx

= —U'~'(x, m),

Let us now consider an eigenequation (2.1) where the
potential function U(x, m) does not belong to any of the
six Infeld-Hull factorization types, and let us assume that
this potential function, as well as the associated ladder
and factorization functions K(x, m) and L (m) to be
found, can be expanded in a perturbation series with a
parameter g,

U(x, m)= U' '(x, m)+gU"'(x, m)+rI U' '(x, m)+
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These equations will be solved recursively; i.e., when
considering the determination of K' '(x, m) and
U' '(x, m), it is assumed that all the K' '(x, m), for
v=1,2, . . . ,N —1, have already been found. Their finite-
difference aspect determines the m dependence of the
functions while their differential aspect determines their x
dependence.

In the same way as in paper I, after choosing suitable
expansion basis functions Y, (x) and y, (x) for the per-
turbed ladder and factorization functions K' '(x, m) and
U' '(x, m), the solution of Eqs. (2.9) will be worked out
by means of finite-difference calculus. It is then con-
venient to write again Eqs. (2.9),

d N —1

25[K(o)(x m)K(N)(x m)]+ [K(N)(x m+1)+K(N)(x m)]= QL(N)(m) Q g K(v)(x m)K(N v)(x—
dX v=1

(2.10)

U'"'(x m) = d
dx

N —1—2K' '(x, m) K' '(x, m) —L' '(m) —g K'"'(x, m)K' '(x, m),
v=1

(2.11)

where AF(m)=F(m +1)—F(m) is the usual first
difference 6 operator in m.

Equation (2.10) is used to determine the perturbed
ladder and factorization functions K' '(x, m) and
L' '(m). Once they are known, the associated potential
function U' '(x, m) is given by Eq. (2.11) and finally, one
obtains the total required "factorizing" potential function
U(x, m) of eigenequation (2.1) up to the Nth order of the
perturbation. Thus, one can solve physico-mathematical
problems with a potential function V(x, m), such as

function are [see Eqs. (2.4) and (2.8)]

A (m) =L'o' j+—+—
2 2

+ g g'L" m =j+—+—;p=m
2 2'

N

K(x,m;p}=K' '(x, m)+ g g"K"(x,m;p},
v=1

(2.15)

V(x, m)=U' '(x m)+gV'"(x)+g V' '(x)+

(2.12)

where the V' '(x) have the same dependence on x as the
U' '(x, m) and, in most cases, do not depend on m [11].

In order to match V(x, m) with the factorizing poten-
tial U(x, m), one has to resort to the "artificial" factori-
zation process. The following condition must hold, for
any value of x:

V' '(x)=U' '(x'm =p) (2.13)

Finally, one can factorize an eigenequation (2.1) with a
given potential function V(x, m) by determining the asso-
ciated perturbed ladder and factorization functions,
which are solutions of the difference-differential equation
(2.10) and, as a consequence of Eqs. (2.11) and (2.13),
which satisfy the following condition:

—2K' )(x p) K' '(x p) L' '(p)—
dX

N —1= V' '(x)+ g K"(x,p)K' '(x, p) . (2.14)

Once the perturbed ladder and factorization functions
K' '(x, m;p) and L'"'(m;p), both depending on the
artificial parameter JM, have been found, the perturbed
problem (up to the ¹horder) may be handled in the
same way as the exact factorizable (unperturbed) prob-
lem.

(i) The total perturbed eigenvalue and associated ladder

C. Finite-difference solution of the "perturbed"
factorizability condition

Let us first consider the x dependence of the
difference-differential equation (2.10) and assume that, at
reach order X of the perturbation, the perturbed ladder
function can be written

SN
K' '(x, m)= g y' '(m)Y, (x) . (2.16)

As pointed out in paper I, the Y, (x) basis set, specific
to each factorization type, is to be chosen so that all
terms appearing in Eq. (2.10) can be expanded on a com-
tnon basis set y, (x). Namely, it is assumed that one can

where E= + 1 (or e= —1} according to whether the un-
perturbed factorization function L' '(m) is an increasing
(or decreasing) function of m.

(ii) The ladder equations (2.5) and Eq. (2.6) hold with
K(x, m;p) for the determination of the perturbed eigen-
functions 'P~ (x;p). Once the ladder process is achieved,
one sets p=m and obtains the required 4J (x;m) per-
turbed eigenfunctions. One can also use an alternative
procedure that provides the perturbed eigenfunctions as
linear cotnbinations of the unperturbed eigenfunctions
[8,9].

Let us remark that, when handling the Xth order of
the perturbation instead of handling the first-order N = 1,
the main difference is that one has to carry the term
"lV (x, m;p) =++= ' K K ", which both in Eqs.
(2.11) and (2.14) plays the role of an additional perturbing
potential.
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find suitable associated basis sets Y, (x) and y, (x) such
that
2K' '(x, m) Y,(x)= A, (m)y, (x)+B,(m)y, +,(x),
dY, =a,y, (x)+p,y, +,(x),
dx

Y', (x)Y,(x)=g h(s, t, r)y„(x),

(2.17)

(2.18)

and that, as a consequence of this last equation, one can
set

N —1

y K "(x m)K'"-'(x m)=g W,'"'(m)y, (x), (2.»)
v=1 s

where the W,' '(m) functions originate from the preced-
ing orders of the perturbation.

When conditions (2.17)—(2.19) have been fulfilled, after
substituting for K' ' and g+:)'K( 'K' ' from Eqs.
(2.16) and (2.19) into Eq. (2.10), and by equating the
coefficients of y, (x) in both sides one obtains the follow-
ing finite-di6'erence equations, allowing the determination
of the y,' '(m) and L' '(m) functions,

[B, i(m +1)+P, i]y,' 'i(m +1)—[B, ,(m) —P, , ]y,' ', (m)

= —[A,(m+1)+a, ]y,' '(m +1)+[A,(m) —a, ]y,' '(m) —hW( '(m),
hL( '(m)= —[Ao(m+I)+ao]yo( '(m+1)+[AD(m) —ao]yo '(m) —b. WO( '(m) .

(2.20)

(2.21)

The finite-difference equations (2.20) can be solved recursively, the integer s descending stepwise from s =S)v+1
down to 1. For each value of s, one obtains the general solution (see paper I)

y' '(m)=Q, (m)[k,' '+F' '(m)]

where k,' ' is an arbitrary summation constant and

m —i [B (j)—p, ]
=,+, [B,( +1)+P,]

'

(N)(m) g —1[~(N) (m)/Q (m +1)]
—[A, (m +1)+a, ]y( )(m +1)+[A,(m) —a, ]y(~)(m) —AW( '(m)

S B, i(m +1)+P,

(2.22)

(2.23)

(2.24)

S~+ 1

V()v)(x )
—y b (N)y (x )

s=l
(2.25)

where the b,' ' constants are specific to the physical mod-
el potential under consideration.

Hence, using the artificial factorization device, the
determination of the K( '(x, m;p;b ') ladder function
associated with V' '(x) amounts to the determination of
the K( '(x, m;k„' ') function satisfying condition (2.14).

Once the F,' '(m) functions have been obtained, the re-
quired perturbed ladder function K' '(x, m) is completely
defined by Eqs. (2.16) and (2.22). The associated factoriz-
ing perturbed potential U' '(x, m) is given by Eq. (2.11)
and, as well as K ' '(x, m ), it depends on the arbitrary
constants k„'

Let us now consider the perturbed factorization of
eigenequation (2.1) with a given V(x, m) physical model
potential (2.12). One has to determine the expressions of
the k„' ' constants in terms of the data specific to that
problem by matching V' '(x) with the factorizing pertur-
bation U(+)(x, m; k„( '). From expression (2.11), it is easi-
ly seen that 0' '(x, m;k„' ') can be written as a finite ex-
pansion on the y, (x) basis set. Consequently, in order to
match V' '(x) with U' '(x, m;k„' '), one has first to ex-
pand the V' '(x) on the y, (x) basis and to set

Introducing the expressions (2.16)—(2.19) and (2.25) of the
perturbed ladder and potential functions into the condi-
tion (2.14) and equation the coefficients of y, (x) in both
sides, one obtains the following relations to be satisfied by
the y,' '(m) and L' '(m) functions:

[A, (p) —a, ]y,' '(p)+[B, -)(p) —P, -)]y,'-')(p)
= —b,'"'—W,' '(p, ), (2.26)

L()v)(p) —
[ A (p) a ]y( )(p) W( )(p) (2.27)

S +1
k()v) y C ( )[b(N)+ W(N)( )]

u =s+1

where

(2.28)

As pointed out in paper I, since the F, (m ) functions in-
volved in the expression of y,' '(m) are defined within an
additive arbitrary summation constant, one can impose
the vanishing conditions F,' '(m =p)=0. As a conse-
quence, y', '(p) =Q, (p)k,' ' [see Eq. (2.22)], and by
means of the two-term recursive equations (2.26), one ob-
tains the following closed-form expressions of the arbi-
trary constants k,' ' in terms of p and of the b„' ' expan-
sion coefficients of the V' '(x) potential (see paper I),
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t =$+1 t=$

BriefIy stated, for each factorization type and suitable
basis sets [F,(x),y, (x)], satisfying the ladderlike condi-

Q —1

C„,(p)= — Q [&,()M)
—a, ] Q, (p) g [B,(p) P—, ] .

tions (2.17), the required expression of the ladder func-
tion K' '(x, m;p;b '), associated with a given perturba-
tion V' '(x), is completely defined by means of Eqs.
(2.16), (2.22), and (2.28): its determination amounts to
the solution of the following set of finite-difference equa-
tions [see Eq. (2.24) after some rearrangements]:

[b(A, Q, )+2a, Q, (m)+a, hQ, ][k,' '+F,' '(m)]+[A, (m +1)+a, ]Q, (m +1)EF,' )+AW,' '(m)

Q, ,(m +1)[B, , (m +1)+P, , ]

(2.29)

III. PERTURBED TYPE-F FACTORIZATION

Let us consider the following
(0(x ( oo):

eigenequation

with the associated vanishing condition F,' '(m =p) =0.
These equations will be solved recursively, starting

from s =S& down to s =1. Hence, the associated factori-
zation function L' )(m;)M;bI ') is the solution of the
finite-difference equation (2.21) satisfying condition (2.27),
and a closed-form expression of the perturbed eigenvalue
associated with each given perturbation V' '(x) is
A~( '(m)=L' '(m =j;tu, =m;b, .' '). Finally, the total ei-
genvalue A. (m) associated with the given physical model
potential V(x, m) directly follows from Eq. (2.15). Let us
now apply these general results to the solution of the gen-
eralized central-field eigenequation.

qy(p)( ) ~ +1 9x L2m+)

(3.4)

where L, +'( ) is an associated Laguerre polynomial of
degree v and N is a normalization constant.

As expected, when setting m =1, j =n —1, q = —Z,
&„1(&)=(1/&)'P„)1(r), E=—,'A, one finds again the fa-

miliar hydrogenic results.

B. Determination of the perturbed ladder function

In order to apply the perturbed factorization device, let
us choose the associated basis functions Y, (x)=x'+',
y, (x)=x' and set

d2

dX2
+ V(x)+A 4 (x)=0, (3.1)

X X

SN

IC' '(x, m)= g y,' '(m)x'+'
$=0

(3.5)

where V(x ) =g V' "(x)+g V' '(x) + is a perturba-
tion.

SN+ 1

V(N)(x) y b()v)xs
$=1

(3.6)

A. Exact type-F factorization It is easily checked that the "ladderlike" properties
(2.17)—(2.19) are fulfilled with the following expressions:

When V(x)=0, this eigenequation (3.1) reduces to an
exact Infeld-Hull type-F factorizable equation with the
following factorizing potential, ladder, and factorization
functions [2]:

(p) m (m +1) 2iI
x

N —1 SN

y K"(x m)K' '(x m)= y W' '(m)x'
v=1

where

$=2

A, (m) =2m, B,(m)=, a, =s +1, P, =0,2q (3.7)

(3.8)

IC( )(x,m)= + ~
x m

(3.2) X—1$ —2

W,' '(m)= y y y"(m)y,' '(m)

2
A' '=—,j —m=U

(j+1)
where v is a non-negative integer.

The unperturbed eigenfunctions are [3]

(3.3)

2
L' '(m)=-

m

Since L ' '(m ) is an increasing function of m, the class pa-
rameter is a=+1, and the unperturbed eigenvalue and
quantization condition are

S)v =AS, +2(X —1) . (3.9)

v——1 t=O

At the first order X =1 of the perturbation, W,'"(m)=0
and the upper bound S, that is involved in IC" '(x, m ) can
be arbitrarily chosen. At the higher orders N) 1, the
highest power of x is already fixed as data following from
the preceding orders, and the relation S&=S +S& +2
must hold for v=1 to N —1: the value of Sz depends on
S1 and N. One finds the necessary condition to be
fulfilled,



5508 N. BESSIS AND G. BESSIS

Using Eqs. (2.23) and (2.22), one gets

Q, (m)=m,

y,' '(m)=m [k,' '+F,' )(m)],

(3.10)

(3.11)

ders of the perturbation can be written

S +1—sN
W", '(m)= g w,' '(k)m ",

k=1
(3.19)

and, in terms of the artificial parameter p and of the b,'

expansion coefficients of V' '(x) we have [see Eq. (2.28)]

S~+1 '
Q S

Q =s+1

X [b„' '+ W„' '((M )], (3.12)

where (m)„=m(m —1) . (m —u +1) is a generalized
factorial [12].

Finally, the determination of the required y( '(m)
functions amounts to the solution of the following set of
finite-difference equations [see Eq. (2.29)]:

2q 4F,' ', = —( 2m +s +3 )( m + 1 )hF,'N'

—(2m +1)(s +3)[k, +F, (m)] —b, P,

K '(x, —m)= —K '(x, m),

I.' '( —m)=L' '(m) .
(3.14)

As a consequence, the required F,' '( m ) functions have
to be even functions of m [see Eq. (3.11)]. Since, also the
vanishing condition F,' '(m =p) =0 must be fulfilled, one
sets

(3.13)

These equations hold at any order N of the perturbation.
Before tackling the determination of the F,' '(m) func-

tions, let us recall that the required perturbed ladder and
factorization functions are expected to satisfy the follow-
ing m-parity relationships [6,13]:

with

N —1s —2s —2
'(k) = g g g C' '(u)C' '(k —1 —u)

t=o 0 =0

Relation (3.18) will serve to determine the C,' ', (k)
coefficients in terms of the C,' '(t) coefficients.

Indeed, let us recall that (see Appendix B)

=k!pk + i( m ) +Pk (3.20)

k+1 2k +2
=k+1,~, [

2t
2f

B2(k+1—t)~ (3.21)

Consequently, from Eqs. (3.18) and (3.16), one obtains,
after some rearrangements,

where C k is an arbitrary summation constant and yk(m)
is a Bernoulli polynomial of degree k,

yk(m) = g B„m
0 =0

and remind the reader that except for B,= —
—,', all the

Bernoulli numbers BQ with odd subscript u are zero.
Then, when the additive arbitrary summation constant

Ck is conveniently chosen so that definition (3.16) holds

for Z, i(m), one can write

2k+1+ 2g
—1 2k+1

1
+2(2k + )'%2k+2(m k + 1

B2k+2

F(N)( ) Z(N)( ) Z~N ( )

S~ —s

Z(N)(m) —y C(N)(k)m2k
k=1

(3.15)

(3.16)

(1) w (1)+(s+3)[k Z N(p)]
g

S —sN

+(s +1) g a„iC,'N'(u) (3.22)
Q =1

SN S~ s

IC( '(x, m)= y x'+' y C,'"'(k)m'"+'.
s=0 k=0

(3.17)

Hence, when introducing the unified notation
k,' ' —Z,' )(p)=C,( '(0), the required perturbed ladder
function E' )(x,m) is [see Eqs. (3.5) and (3.11)]

and for k ~ 2

C(N) (k) — (N)(k)+ C(N)(k 1)
2q

S —sN

+(s+1) g a„,C,' '(u) (3.23)

Let us now consider the determination of the C,' '(k)
coefficients. From Eq. (3.13), after some rearrangexnents,
one obtains (see Appendix A)

Q =k

where the a„k coefficients are the following "modified"
Bernoulli numbers with even index:

2'(N) (m) (s +3)[k(N) Z(N)(m)]m2

—2m'Z, '"'(m)
1

aQk =
u+1

2u +2
2k B ("+i k), u k 1 . (3.24)

—(s+1)[mZ( '(m)+26, 'mZ, ' (m)]
—W,'N)(m), (3.18)

where, as a consequence of Eqs. (3.8) and (3.17), the in-
crements W,' '(m) that originated from the preceding or-

Starting from s =SN down to s =1, these relations al-

low a recursive determination of the C,' '(k)
(k = 1,SN —s), in terms of the quantities

[k,' ' —Z,' '((M)]=C( '(0), i.e., via the expression (3.12)
of k,' ', in terms of p and of the expansion coefficients
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b„' ' of the given perturbation V' '(x) [see Eq. (3.6)].
However, it is rewarding to work out alternative and
more e%cient recursive relations, allowing a straightfor-
ward determination of the C,' '(k) in terms of )M and of
the b~»

Since the eigenequation (3.1) depends on m via the
product m (m + 1), and since, within the artificial factori-
zation scheme, the m dependence of the final results
arises when setting p=m, it is expected that, when ex-
pressed in terms of )M and of the b„(+), the required C,' '(k)
coeKcients will depend on p but only via the product
A. =p()cc+1). In order to put in evidence this expected A,

dependence of the C,' '(k) coefficients, let us remember
that Bernoulli polynomials of even order satisfy the sym-
metry property q)2„(m)=yz„(1 —m) and, therefore, can
also be viewed as polynomials of degree n of the product
rn (m —1) (see Appendix C). After noting that
y2„(m +1)=y2„(m)+Aq)2„=q)2„(m)+rn " 'l(2n —1)!,
the expression (3.21) can be alternatively written

k+1 2k +2
2tX 2t 2(k+ 1 —t)1

t=1

1=2(2k 1)!q'2k+2()M+ 1)—p + — 82k+

(3.25)

Hence, using the expression (3.18) of Z,' 'i (m), one gets

2qZ, ' ), ()M)= —(s+3)p, k,' )+(s+1)p, Z,' '(p)

+(s + 1))MZ(+)()M )

Pk(A, )=2(2k —1)!q)2k()M+1)——82k .
1

(3.27)

Then, collecting together the above expressions of
Z,' ', (p) and of k,' '„and keeping in mind that
X=)M()M+1)=P, (A, ), one obtains, in addition to the re-
currence relations (3.22) and (3.23), the required expres-
sion of the C,' ', (0)=k,' ', —Z,' 'i()M) coefficients in
terms of the C,' '(k):

( ()v)(0)
S —sN

b,' ' —(s+1) y C,(")(t)P, ,(X)
2q t=0

(3.29)

Now, let us remark that the expansion coefticients
w,' '(k) of the increments W,' '(m) that originated from
the preceding orders of the perturbation play a role quite
comparable with the expansion coeKcients b,' ' of the
perturbation V' '(x). Thus, let us introduce the unified
notation b,' '=b,' '(0), w,

' '(k)=b,' '(k), and

a,o= —P, +)(A, ). Relations (3.22), (3.23), and (3.29)
reduce to the unique recurrence formula

C(~) (k)= — ' a(")(t )+ '+ "+' C' '(k —1)s —1 2 s
q

On the other hand, using the closed-form expression
(3.12) of the k,' ' constants, one can write

[b( )+ IV( )(p)+p(2p —s —1)k( )]1

q

(3.28)

S —sN—(s + 1) g C, (k)P„,(k) —W, ()M ),
k=1

S —s

+(s+1) g a,kc( '(t)
t=k

(3.30)

where

(3.26) Using this recurrence formula successively for
s =S~+1,S&S~—1, . . . , it is easily inferred that one can
write (see Appendix D)

c,'"' .(k) =
N

max( k, o.—1 ) um

X X
1

2q

' o.+1—u

dj (o —u, k, S)v . u )bs +, „(g), (3.31)

where u =cr —
~j —k~ and the dj(cr, k, s) satisfy the fol-

lowing recurrence formula:

d (o+ l, k, s)= dh(cr, k —l, s)
s —o. +2k+1

C7+J
+(s —o+1) g a,kd (o, t, s) .

t=k
(3.32)

Let us emphasize that the d~(o, k, s) do not depend on the
order of the perturbation and on the particular perturbed
type-E problem under consideration. Therefore, using
the starting value d (0,j,s) =1 and dj(0, k, s) =0 for k &j,
closed-form expressions of the dj(o, k, s) are easily ob-

tainable, once and for all, by means of the recurrence for-
mula (3.32) (see Appendix D).

+m (2m —1)[k' '+F' '(m)], (3.33)

C. Determination of the perturbed eigenvalues

As pointed out in Sec. II, the perturbed factorization
functions L' '(m;p;b ') associated with a given pertur-
bation V' '(x), are the solutions of the finite-difference
equation (2.21), which satisfy condition (2.27). Using the
above expressions of A, (m), a„and y, (m) [see Eqs.
(3.7), (3.11), (3.15), and (3.16)], one gets

bL' '= —(m +1)(2m +3)[k' '+F' '(m + 1)]
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with the associated condition to be fulfilled,

L' '(m =p)= p—(2p 1—)ko ' . (3.34)

Using again expressions (3.21) and (3.25) together with
some rearrangements and setting A, =p(p+1), one ob-
tains the following expression (see Appendix E}:

framework, it follows that the coefficient of bs"+, (0) is
SN+ 1

merely the integral ( jm Ix Ijm ). Consequently, we
have ( jm Ix'I jm ) = —i), (0), i.e.,

s —1

& jm Ix'I jm ) = — — g d, (s —l, k, s —1)
k=O

SN
L(N)(m. p. b(N)) —g C(N)(k)T (m g)

k=0
(3.35)

X Tk+, (j+ l, m (m + 1)) .

(3.40)

where
k

T„+,(m, A, )=P„+,(l(, )
2k +3 2k+2 2t

t=1

(3.36)

Hence, using the artificial factorization scheme, the ex-
pression of the perturbed type-E eigenvalue associated
with V' '(x) is A'. '(m)=L' '(m =j+1;p=m;b' ')
1.e.,

SN

A(N)(m) = y C',"'(k)T„,(J +1,m (m +1)) .
k=0

(3.37)

Now, introducing in Eq. (3.37) the expression (3.31) of
the Cs' ' (k) and making some rearrangements, one gets

N

Particularly, setting j+1=n, m =1, and q = —Z in
this expression, one gets the following closed-form ex-
pression of the hydrogenic radial integrals:

( nl Ir'Inl )

s —1

g do(s —l, k, s —1)Tk+,(n, A, ) (3.41)
k=0

where A, =l(l +1), the Tk+i(n, A, ) polynomials are given
by Eq. (3.36), and the do(s, k, s) coefficients obey the re-
currence formula (3.32). For instance, picking up, in Ap-
pendix D and C, the required expressions of do(s, k, s)
and Tk(n, A, ), one finds again the well-known expressions
of the hydrogenic radial integrals [14]

SN SN u

AJ '(m)= g g b i+(u)V;,+( )u,
0 =0 t=o

where

(3.38)
(, nllrlnl ) = (3n —

A, ),1

2Z

ll(nllr Inl ) = (10n —6K+2),
4Z

1(u)=i+1

t+1 t+1
g d„(t,k, r)

k=0

X Tk+, (j+ l, m (m +1)) .

7l(nllr Inl ) = (35n +25n —30n k+3K, —6A, ),
8Z

(3.42)

(3.39)

Since closed-form expressions of the Tk+((n, A, ) poly-
nomials are known (see Appendix C), closed-form expres-
sions of the Tt+i(u), in terms of j+ 1 and m (m + 1) can
be made available, once and for all, up to any required
values of u and t. Finally, at each order N of the pertur-
bation, the determination of an analytical expression of
the perturbed type-F eigenvalue Ai( '(m}, associated with
the perturbation V' '(x), simply amounts to the compu-
tation of the b,' )(u&0) coefficients. In fact, at each or-
der N of the perturbation, each b,' '(u) is just the
coefficient of x'm " in the expansion of the additional
perturbative pseudo-potential

In the same way, one gets (see Appendix D)
2

(7n +5n —3n A, ),V'~( I )=—

n4
(nllr Inl ) = (63n +105n 70n A,

—
8Z4

+15k, —50K,+12),
n4

(nllr Inl ) = [231n +105n (7—3A. )16Z'

+21n ( 14—25k, +5A. )

—5A(A. —2)(A, —6)] .

X—1

~(N)( .
)
—y ~(v)it (N —v)

'T3(1)=—
3

1
[21n +35n +4n 15n A, —

2Z
generated from the preceding orders of the perturbation
[see Eqs. (3.8) and (3.19), and keep in mind that we have
set b,' '(u)=w, ' '(u)].

Let us note that, as a by-product of the method, one
obtains a closed-form expression of the diagonal integral
(jmlx'I jm ) between the unperturbed (type-p eigenfunc-
tions )p' '(x) [see Eq. (3.4)]. Indeed, when comparing the
first-order (N =1) expression of AJ"(m) with its alterna-
tive expression within the classical Rayleigh-Schrodinger

&4(1)=—

'T2(2) =—

4

+2n A, (A, —2)],
1

2Z
[66n ' +210n + 84n + 18n

'2
70n A+20—n A(A, 3)], , ,

—

2Z
[6n +7n —n —n A, (2A, —1)],

(3.43)
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V3(2) = — [ —", n ' +42n —14n —2n"1 K"'(x,j +1)+K„(x,j +1;p)— O. .(x;~)=0,
dX

—5n A, (2A, —1)

+n A( ,3A— , 4—A+,2 )], and one finds

(3.45)

2

7 (3}=— 1
[ "n' +—9n 7—n +n2 2Z 2

—n A, ( —3A, —2A, +1)] .

T

V~j(x;p) =VJ~'(x)exp fK&(xj +1;p)dx, (3.46)

where 4' '(x) =N.xJ+' exp[qx/(j +1)) is the zeroth-
order normalized key function, which is the solution of
the first-order differential equation

D. Determination of the perturbed eigenfunctions
j+1 q

x J+1
d e1".. '(x) =0 .

dX
(3.47)

Let us now consider the determination of the perturbed
wave functions up to any order of the perturbation and
apply the usual factorization scheme. The total ladder
function is given by Eq. (2.8) and, within the artificial fac-
torization scheme, can be written

Starting from the perturbed key eigenfunction, the com-
plete set of perturbed eigenfunctions can be generated by
successive application of the ladder operation [see Eq.
(2.5)]

K(x, m;p)=K' '(x, m)+K&(x, m;p),
where

(3.44) K(x,m;p)+ 'PJ (x;p)d

K"'(x m)= + ~,
X F72

K~(x, m;p) =gE'"(x,m;p)+g K' '(x, m;1u)+

The "perturbed key" function (m =j) is the solution of
the first-order differential equation [see Eq. (2.6)]

=[L(j+1;p) L( mp)]'i—%. 1(x;p), (3.48)

where L (m; p } is the total factorization function [see Eq.
(2.8)]. Once the %. (x;p) function is obtained, the
artificial parameter p has to be set to its actual value
p=m. For instance, applying Eq. (3.48) once with m =j
gives

2 +1'"
,(x;1M)= . 4'. ' 1+[K1v(j)+Kiev(j +1)]%' ' exp fK&(j +1)dx

1 1+1 (3.49)

where

q(0) 1(x) N(2j+1}1/2 J J +x xjexp q'('+1) x
D —

& j+1

is the zeroth-order normalized eigenfunction and the
shortened notation K&(j+1)=Kiev(x, j+1;tu) is used.

The ladder process (3.48) can be pursued until the
determination of the required VJ (x;p=m) function.
Note that, when dealing with functions far from the key,
an alternative procedure providing the perturbed func-
tions as linear combinations of the unperturbed functions
can also be used [9].

IV. ILLUSTRATIVE APPLICATIONS

Since the main purpose of this paper is to present the
method rather than to give new results or extensive
tables, we give only two illustrative test examples and a
short application.

A. First example

V'"(x)=b,x+b x

V' '(x)=b x +b4x +b~x
(4.1)

The associated perturbed eigenvalues are [set respec-
tively S, = 1 and Sz =4 in Eq. (3.38)].

Ai "(m) =b, 'T, (0)+b2 T2(0),
(4.2)

AJ '(m) =b3 V'3(0)+b~74(0)+b5 V5(0)
4 3

+ g b„' '(1)T„(1)+Q b„' '(2)V„(2)
Q =2 Q =2

+b2 '(3)V2(3) .

Let us first consider the solution of eigenequation (3.1)
up to the second order of the perturbation and, setting
bI '(0)=bz' '(0)=0, let us assume that the perturbation
1s
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Since closed-form expressions of the required V;(u) are
known [see Eqs. (3.42) and (3.43) and remember that, par-
ticularly, V;(0)=(x') )], one needs only the expressions
of the b,' '(uAO) in terms of the b„and of A, . Hence, let
us calculate the additive potential function
'N,' '(x, m)=[K'"(x, m)] generated at the second order
of the perturbation. The first-order ladder function is
[see Eq. (3.17)]

K"'(x, m) = [Co"(0)m +Co '(1)m ]x +C',"(0)mx

where [set S&=1 in Eqs. (Dl)]

c'"(o)=— b,1

2q
''

c'"(o)=— 1 1
0

2 2 2 2 1

Co"(1)= b2 .
1

(4.3) One gets

(It~i~)2= [[C~i~(0)]&m &+2c~i~(0)C~i~(1)m&+[C~i~(1)]&m6]x2

+2C',"(0)[Co"(0)m +C'"(1}m ]x + [C',"(0)] m x (4.4)

and, consequently, picking up the coefficients b, (u) of x 'm ", one gets

b(2) (1 ) g2b2+ gb b + b2 b(2) (2) gb2 b b b(2 I(3) b2

b' '(1)= Ab + b b b' '(2)= — b b' '(1)=
(4.5)

Then, using Eq. (4.2), one obtains

AJ '(m) =b3'T3(0)+b~'T4(D)+b~T5(0)+ b, T2(1)+ Ab, bz[A'T2(1)+q'T3(1) —2T2(2)]
1 2 1

4q 2q

+ bz[A, 'Tz(1)+2qk'T3(1)+q T4(1)—4A'T2(2) —4qT3(2)+4'(3)] .
4q4

(4.6)

Finally, introducing the expressions (3.43) of the 'T, (u) and setting j + 1 =n, A, =l (l + 1), q = —Z, and x =r, the per-
turbed Coulomb energies are found to be

2E„',"= b, (r ) —b, (r'—),

2E~ = b(r ) —b (r —) b(r ) — b n (—7n +5n —3A, ) — b b n [45n +7n (9—2A, )
—5A(2+3K, )]

16Z4 ' 16Z 5

b2n6[143n4+ 15n2(21 —6P)+7(4—18K,—3k~)] .
32Z6 2 (4.7)

B. Second example

Let us now consider the solution of eigenequation (3.1)
up to the third order X =3 of the perturbation and, in or-

der to avoid writing down too many cumbersome expres-

sions, let us choose the low value S1=0 and, therefore,

S2 =2, S3 =4 [see Eq. (3.9)], and setting

b 1
=b 1

=b =b ' ' =0, assume that the perturbed po-
1 1 2 3
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tentials are

V"'(x)=b,x,

V'"(x)=b x'+b, x', (4.8)

C(1)(P)—

C(2)(0)—

C(2) (p)—

1
b

2q

1 b3,
2q

3 1
A,b3 — b2,

4q
V'"(x)=b,x4+b, x' .

The associated perturbed eigenvalues are [see Eq. (3.38)]
C' '(1)= b — b' '(1),5 1

1 4 2 3 2 2

A'"(m) =b, 'T, (0),

A' '(m) =b2'T2(0)+b3'T3(0)+b2 '(1)T2(1),

'4

A,' )(m) =b4'T4(0)+b5'T5(0)+ g b„' '(l)T„(1)
Q =2

(4.9)

C(2)(0}—

C(2)(1)—

C(2) (2)—

One finds

8q 2q 4q

( —12k.+5)b3+ b2 —
2 b2 '(1),

8q q 4q

b3+ b2 '(1) .
8q 4q

3

+ g b„' '(2)'T„(2)+b' '(3)T (3) .
Q =2

and

b' '(1)= b
1

2 4 2 1

q
(4.11}

K' '(x, m)=[C' '(0)m +Co '(1)m +Co '(2)m ]x

+[C' '(0)m+C' '(1)m ]x2

+C2 '(2)mx (4.10}

One has to calculate the additive potentials
'N( '(x, m)=(K"') and "V( )(x,m)=2K'"K' ' generated
at each other (N =2 and 3) of the perturbation. The per-
turbed ladder functions are given by Eq. (3.17) and we
have

K' "(x,m) =C' "(0)mx,

b(3)(1)—

b( )(2)—

b(3)(3)—

b(3)(1)—

(4.12)

b' '(1)= b, b
1

A, b1b3+ A,b, b2+ A, b1,
Sq 2q 16q

1 1 1
4 ( —12k, +5)b b — b b — b3

q
1 3 3 1 2

16 5 1

15 3

Sq 16q
4b1b3 —

5
b

3 1
3

A,b 1 b 3 +
2

b 1 b 2
4q 2g

5 1
3 b1b3+ b1,

4q 8q

where [see Eqs. (3.31) and (D2) or set S&=2 in Eqs. (D 1)] and we have

A' '(m) =b272(0)+b3'T3(0)+ 2 b, 'T2(1)1

4q (4.13)

AJ( '(m)=b&'&T(0) +bz'T( 5)0+
3 Ab)b2[T2(1)+qT3(1) —2'T2(2)]

1

2q

+ 4 b, b3[A, 'T2(1)+6qA, 'T3(1)+4q 'T4(1)—(12K,+5)T2(2)—lpq'T3(2)+15'T2(3)]
4 1 3

+ b) [A, 'T2(1)—T2(2)+2qT3(2) —3T2(3)] .
16q

Now using the expressions (3.43) of the pseudointegrals T, (u) and setting j+ 1 =n, A, = l(l + 1), q = —Z, and x =r, one
finds the following expressions of the perturbed Coulomb energies:
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2Z„(,"= b—, &r &,

2Z(2) = —b, & r'& —b, & r'&

2E„',"= b, —& r'& b,—&
r'

&

1 b'n'(7n'+Sn' —3~')
16Z4 '

bib2n [45n +7n (9—2A, ) —Sk(2+3K, )]16Z' ' '

(4.14)

b, b3n [77n +15n (13 3—A)+, 7n (4—9A, —3A, ) —SA(2 —
A, )]32Z'

1
b, n (33n +75n 7n—k 10—A, ) .

64Z

Expressions (4.7) and (4.14) compare well with previous
results [6].

The computation can be pursued to higher orders of
the perturbation without special difhculty: the critical
point is having at one's disposal analytical expressions of
the & r'& and V; (u ) functions up to higher values of s and
u, as well as the required expressions of the perturbed
ladder functions K( '(x, m) for the computation of the
b,' '( t ) coefficients. Note that both determinations
amount to the computation of the dj(o, k, x) by means of
the rather easy-to-handle recurrence formula (3.32).

In a previous paper [6], it has been shown how expres-
sions such as Eqs. (4.7) or (4.14) can be used to obtain ac-
curate analytical expressions of the bound-state energies
of the screened Kepler problem. In the present paper, in
order to illustrate how the perturbed ladder method
manages when applied to a particular problem, it is in-
teresting to consider again [15], among other possible in-
teresting applications, the analytical determination of the
linear, quadratic and cubic Stark shifts.

tions with a perturbed potential reduced to V(x) =b, x
and [see Eq. (3.1)]

A= —,'8, m(m+1)= —,'(M —1), i.e. , m =
—,
' M~ —

—,
'

(4.19)

(note that m is assumed to be positive or zero within the
factorization scheme). Equation (4.17) is a standard
type-F with

q= —
—,'(1+p), b, = ,'f, J ——m—=k„k,=0, 1,2, . . . .

(4.20)

Equation (4.18) is a standard type F with

q= —
—,'(1 —p), b, = ,'f, j —m —=k2, k2=0, 1,2, . . . .

(4.21)

Setting b2=b3=b4=b5=0 and Z = —
q in the results

of the preceding sections [see Eqs. (3.3) and (4.14)], one
gets

C. Stark effect in hydrogen 2
g(0) q

PZThe Schrodinger equation for the hydrogen atom in a
uniform electrostatic field in the negative z direction,
with relativistic and spin-orbit e6'ects neglected, is A'"= (3n —

A, )
b)

2q

b)n
(7n +Sn —3X ),

16q

b', n'
A' '= (33n +75n —7n k —10K, ),

64q

(4.22)
1——'V' ——+fz —6' 4=0 .

2 p
(4.15)

This equation separates in parabolic coordinates

x = ( f21 )
' cosy,

y =(g2))' sing,
z= —,'(g —21) .

where n =j+1 and A, =m (m+ I).
The problem is to find solutions of Eqs. (4.17) and

(4.18) with same 6 and P. Both A' and P depend on f and
we set

(4.16)

Setting 0'=(grj) '~ F(2l)G(2))e' ~, one gets the two fol-
lowing coupled equations:

M —1 + ' fg+ —'6 F(g)=0, —(4—.17)
4/2 2g 4 2

g —g(0)+f g(1)+f2g(2)+

p p(0)+fp(1)+f2p(2)+d2

dg

d2

dn'
M —1 1 —P+ + ' frI+ ,'e G(21)=0, (4.—18)—

2g

where p is a separation constant.
These equations are both perturbed type-F eigenequa-

Now, putting q = ——'(1+p), b 1
= ' f, and-

n =n, =ki+ —,
' ~M~+ —,

' in Eqs. (4.22), one obtains the ex-

pansion of the eigenvalue 8 of Eq. (4.17) in powers series
in f, where each 8( ' depends on n, and on
P0,P ", . . . , P . Then putting q= —4(1 —P), bi = ,'f, —

and n =n2=k2+ —,'~M~+ —,
' in the same Eqs. (4.22) one
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e'"= —
—,'k(k, —k, ),

8' '= —
—,', k [17k —3(k, —k2) —9M +19],

(4.23)

6' '= —
—,', k (k, —k2)[23k —(k, —k2) +11M +39],

where k =k, +k2+ ~M~+1. These expressions are in ac-
cordance with previous results [16,17].

Let us now consider the determination of the perturbed
wave functions up to the second order (X =2) of the per-
turbation. The total ladder function is given by Eq.
(3.44), where

6)mx
K2(x, m;p) =-

2q

b2

16q4

XI[@(p+1) m+m —3m ]x

+2qm'x'] . (4.24)

Using the standard expressions (3.46) and (3.49), one gets,
after expanding the exponential term in powers series in
b„up to second order, the following expressions of the
key function g

1 — (j +1)x +b&F(xj +1;p=j)(o)

q

(4.25)

where

F(x,m;p) =— 1
[p (@+I)m+m —3m ]x

32q

1 mx+ mx1

24q 32q

Then, the determination of the perturbed eigenfunctions
can be pursued by means of the ladder operation (3.48)

,(x;p)= X' '(x, m)+%2(x, m;p)+ P (x;p).d

(4.26)

Finally, solutions of Eqs. (4.17) and (4.18) are obtained
when giving to b&, q, j, and m their actual respective
values

V. CONCLUSION

Summarizing the main features of the perturbed ladder
method, we can say that, once the perturbed factorization
and ladder functions have been obtained, one finds again,
within the perturbation scheme, all the advantages of the
original Schrodinger-Infeld-Hull factorization method:

obtains an alternative expansion of 6, where the 8'"' de-
pend on n z and P' 'P' ", . . . , P' '. Finally, eliminating
successively P' ',P'", . . . , P' ' between these alternative
expressions of 8" (v=O to 3), one finds the following ex-
pressions of the zeroth-order energy and of the linear,
quadratic, and cubic Stark shifts

1

2k

analytical expressions of the perturbed eigenvalues in
terms of the quantum numbers are readily obtained; the
complete set of the perturbed eigenfunctions can be gen-
erated by repeated application of the ladder operator on
the perturbed key function, which is the solution of a
first-order differential equation. Since the perturbed ei-
genvalues and eigenfunctions are obtained without hav-
ing to calculate explicitly either the excited unperturbed
eigenfunctions or any matrix element, the treatment of
high orders N of the perturbation can be carried out with
a minimum effort: this is not the case with the usual per-
turbative methods. One may add that there is interest in
the computational point of view of the method, which in-
volves only algebraic recursive manipulations.

When dealing with perturbed type-F factorization,
where the unperturbed ladder function is not a linear
function of the quantum number, the main difficulty lies
in the finite-difference solution of the factorizability con-
dition. The straightforward Infeld-Hull [2] extension of
the "unperturbed scheme, " i.e., trying to determine the
perturbed ladder right from the beginning, and even the
use of the general formulas of paper I, lead to rather in-
tricate calculations. In the present paper, it is shown that
the consideration of the symmetry properties together
with the use of a specific and well-adapted m expansion
of the required perturbed ladder and factorization func-
tions greatly simplifies the analytical solution of the x-
perturbed type-F eigenequation. Moreover, it is found
that taking advantage of the interesting finite-difference
and symmetry properties of the Bernoulli polynomials al-
lows a straightforward generation of the expected n and
l(l +1) dependence of the perturbed Coulomb eigenval-
ues. Briefly stated, at each order N of the perturbation,
the perturbed eigenvalue is obtained as a linear combina-
tion of specific type-F functions 7;(u), which play the
same role as the (x') Coulombic integrals and do not de-
pend on the order N of the perturbation. As soon as one
has at one's disposal analytical expressions of the re-
quired 7;(u) functions as well as the analytical expres-
sions of the required diagonal (x') Coulombic integrals,
the determination of the perturbed eigenvalues simply
amounts to the computation of the b,' '(u) expansion
coefFicients of an additional perturbed potential generated
from the preceding orders of the perturbation: their
determination involves only a few algebraic manipula-
tions.

Owing to the present results obtained for perturbed
type-F functions, it appears that the capabilities of the
perturbed factorization scheme have not yet been com-
pletely explored, even for the cases where the unper-
turbed ladder function is a linear function of the quantum
number (2 to D factorization types). Particularly, con-
sidering again the x -perturbed harmonic-oscillator
eigenequation and introducing Bernoulli polynomials for
the m expansion of the perturbed type-D ladder and fac-
torization functions, it is found that the already known
[18] property that the perturbed eigenvalues of order N
are polynomials in (U+ —,') of degree %+ 1 and with parity
( —1) +', for the case of a quartic anharmonic perturba-
tion, is naturally exhibited. This is under study and will
be presented elsewhere.
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APPENDIX A: DETERMINATION
OF THE INTERMEDIATE LADDER FUNCTION Z, ( m )

Let us set G(m +1)=(2m +s+3)(m +1) and use the
following expression of the finite difference of a product
[12]:

(2m +s+3)(m +1)bF=b [(2m +s+1)mF(m)]
—(4m +s +3 )F ( m ), (A2)

and the finite-difFerence equation (3.13) can be written
again

= —(2m +1}(s+3)k~

5[G(m)F( m)]= G( m+1)AF +F(m }b G. (Al)

Setting G(m)=(2m+s+1)m, bG =4m+s+3, one can
write

—b.[m (2m +s+1)F,' '(m)]

—2m(s+1)F,'"'(m) —~~, (X) .

Setting F,' '(m) =Z,' '(m ) —Z,' '(/M, ), one gets

(A3}

2qhz, ' 'i = —(2m+1)(s+3)k,' ' —Z,' i(p)6[m(2m +s+1)]—6[m (2m +s+1)Z,' '(m)]

—2m (s+1)[Z~»(m) —Z~»(~)] —gP '» (A4)

and, since, within an arbitrary summation constant,
'(2m + 1)=m, one finally obtains the expression

(3.18) of 2qZ, ' /i(m}.

l k
tpk(m)=, (m +B)"=, g t B,m"

k! k!, (81)

APPENDIX B: BKRNOULLI POLYNOMIALS
AND BKRNOULLI NUMBERS

The Bernoulli polynomials of the first kind of degree k
are [12]

where, in the expansion of (m +B)",B, is to be used in-
stead of B'.

Values of the B„ i.e., the Bernoulli numbers, can be
found in the tables of Ref. [12]or can be calculated recur-
sively by means of the symbolical equation
(1+B)' B,=0:—

B1=—
—,', B2,+1=0 for any t &0 .

(82)

Particularly, 'm"=k }q/k+i(rn)+Ck, (86)

po(m) =1,
q&, (m) =m —

—,',
q/z( m ) = —,

'
( m —m +—,

' ),
q/, (m) =

—,'(m' —
—,'m2+ —,'m ),

q/~(m) =
—,', (m —2m +m —

—,', ),
1

q5(m)= —,(m5 —52m4+ 53m3 —61m),

1
q/6(m) =—(m 6—3m'+ —', m —

—,'m'+ —,', ),

(83)

b 'q/k(m) =(m —l)q)k(m) —kq/k+i(m)+ pk, (87)

q/k(m)=DIPk(m)=q/k i(m), (88)

where C „ is an arbitrary summation constant. The fol-
lowing symmetry property holds:

yk(1 —m)=( —1) q/k(m) . (89)

The expansion of a function f (m) in terms of Bernoulli
polynomials is

f(m+u)= I f(t)dt+ g yk(m)bD" 'f(m =u) .
k=1

and so on. Note that, for k ) 1,

q/k(0) =I'k( 1 }=Bk ik' (84)
In particular, one gets

(810)

The Bernoulli polynomials satisfy the following
difference and differential properties:

mk —1

q'k = (85)

my/k(m) =(k + 1)yk+, (m)+ —,'pk(m)
k —1

+ X 'P ™Pk+1—
f=1
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and then, using Eq. (B7),

q&k(m) =yk+1(m) —
—,'q&k(m)

k —1

+ g v1(m)uk+1 —i(0) .

Consequently, one obtains

gk ( m ) +2b, '1pk ( m )

(B1 1)

and, more generally,

dj j h(uj)
dMjq k y (2 1)2j—g P2k u

where the h (u, j) obey the recurrence relation

h (u, j)=h (u —l,j —1)—2(2j —u —2)h (u,j—1)

(C2)

28k+ i=2yk+, (m ) +g, q)1 (m ) .k+1—t! (B12) Hence, we have

h (j —1,j)=—j(j—1),

with h(1, 1)=1 .

APPENDIX C: EXPRESSIONS OF THE Pk(A, )

AND TI, (n, A, ) POLYNOMIALS

Since 1p2k ( 1 —m ) =p2k ( m ), the Bernoulli polynomials

y2k (m ) of even degree 2k can also be viewed as polyno-
mials of degree k of M =m (m —1). Using a Taylor ex-
pansion of y2k(m), one can write

h (j —2,j)=(j+1)j(j—1)(j—2)/2!,

h(j —3,j)=—(j+2)6/3!,
and, more generally,

h(j —s,j)=(—1)'(j+s —1)2, /s! . (C3)

'P2k™ IP2k™ ~~ 92k(M Since y„(0)=B„/u!, one gets [see Eqs. (C2) and (C3),
and set m =0]

1 d+— y (M=O)M +. (Cl)

Since d /dM = [1/(2m —1)]d /dm and (d /dm )y2k

,(m ), one gets, successively,

dj
d~j 9'2k

(2j —u —1)!B2k=( —1)'
1 (u —1)!(j —u)!(2k —u)!

(2m —1)
d4 —120 60

dM4 P2k
(2 1)7 V 2k —1

(2 1)6 %2k —2+

1

(2m —1) (2m —1)
+12

d = 1

277(

d —2 1

dM2 9 2k
(2 1)3 'P2k —1 (2 1)2 92k —2+

d3 12 6

dM3 92k(21)5%2k —1(21)492k—2

For k)1, since Bzk „=0 for any odd value of u, one
can write

dj

M=o

!jn! (2j —2t —1) B2„2= ( —1)'
(2t —1)!(j—2t)!(2k —2t).'

where I j/2 J is the integer part of j/2.
For k =1, we have [(d/dM)p2]~ 0= B, =

—,
' and-

y2(m)= —,', + —,'M. For k ) 1, one obtains the following
expansion of 1p2k ( m ) in terms of M =m ( m —1 ):

(2j —2t —1)'B2k —2i
p2k(m)= + 'V (

—1)j
(2k)! . , j!, , (2t —1)!(j —2t)!(2k —2t)!

Setting X=m (m +1) and Pk(k)=2(2k)!y2k(m +1)—(ilk)B2k, one gets, for k & 1, the following expression of
~k +1(~):

k+1
( g)j !ji'2! 2k + 1

Pk+, (A, ) =2 g
g=2

2j —2t —1

j —1 B2k+2 (C5)
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Particularly, we have

P, (A, ) =A, ,

P2(A, }=—,'A,

P,(A, ) =—,'A, ' ——,'A, ',
P4(k) =—'A, ——'A, 3+—'A, 2

4 3 6

P (A. ) =—'A, ' ——'A.4+ —'A, ' ——'g'
5

Now, let us consider the polynomials

(C6)

and one obtains

T, (n, A, )=—3n +A, ,

T~(n, k.}=——', n —
—,'n + —,'A,

(C&)

T (n A, )= '—n—s '—n—6+ 'n—4 —'n—2+ 'A—,4 —'A—,3+ 'A—2
4 6 12 6 4 3 6

T (n A, )= —"n '———'n +—'n —n ——'n +—'A, ——'A,
5 2 5 10 5 2

+ —',A,

k

Tl, +,(n, A, ) =Pl, + l(k)—2k +3
t=1

Using the expression (3.24) of the az, coefficients, one gets

—1 — 1 —5
11 21 22

The computation of the Tz+, (n, A. ) polynomials can be
pursued up to higher values of k without any special
difhculty.

APPENDIX D: DETERMINATION
OF THE T, (u) FUNCTIONS

31 32 33
—1 = —7 =7

= —3 —1 =3a41= ——„, a42=1 a43= —
—,, a44= 2 "

(C7) Using the recursive formulas (3.30) successively for
s =S&+1,S&,S&—1, ... , one gets

1
Cs (0)= bs +l(0)

2q N

l(0)=-
N

Cs l(1)=

1

2q

1

2q

2

(S +lv1)P, b s+,(0)+

(S~+3 )bs +,(0)+

bs (0),1

2q N

bs (1»
2q N

Cs 2(0)=
3

1

2q

1
SN(SN 1)P2bs +1(0}

N 2q

3

1
S~Plbs (0)+ — bs l(0)—

N 2q

(D 1)
1

SlvP2bs (1)
2q N

Cs —2(1}=- — — ((Slv +2)(SR+1)Pl ,'SN(SN+ 3—) lb—s +1(o}

Cs —q(2) =

2
1

bs —l(1)
2q N

1
,'S~bs (1)+—

(Slv+4)
2 Sb (1)+1

2q

'2

(S +2)b (0)+1
SN

(S~+4}(Slv+3)

2q -2 bs +,(0)+
N

1
bs —l(2)

2q N

d. (o'+ 1 —j,k, S~ —j)
S~—o +2k +1

dj(o —j,k —1,S&—j)

+(S~ o+1) g—a«d (o j,t, S~ j), — —
t=k

or, equivalently, formula (3.32).

and so on. More generally, it is easily inferred that ex-
pression (3.31) holds for the Cs (k).

N

Substituting for Cs (k) from Eq. (3.31) into Eq.
N

(3.30) and rearranging the summations, it is found that
the dJ ( o, k, s) coefficients obey the recurrence formula

Particularly, using formula (3.32) together with the ex-
pressions (C7) of the a,l„and keeping in mind that
a,o= —P, +,(A, ), one gets

do(1, 0,s) = —(s + 1)P, ,

do(1, l, s) =(s +3),

do(2, 0,s) =s (s —1)P2,

do(2, l,s) = —(s +2)(s + 1)P,+—,'s (s +3),
do(2, 2,s) =—,'(s +4)(s +3),
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do(3, 0,s) = —
—,'(s —1)(s —2)(s —3)P3

—
—,'(s +1)(s —1)(s —2)P2,

do( 3, l, s) = (s + 1 )s (s —1)P2

—
—,'(s +2)(s + 1}(s—1)P,

+ —,'(s +3)(s —1)(s —2),
do(3, 2, s) = —

—,'(s +3)(s +2)(s + 1)Pi

+ —,'(s +3)(2s +6s —5),
do(3, 3,s) =

—,'(s +5)(s +4)(s +3),

do(4, 0,s) =—,'(s —2)(s —3)(s —4)(s —5)P4

+ —,'(s —2)(s —3)(2s —6s —5)P3

+—,'(s + 1)(s —2)(s —3)P2,

do(4, l, s)= —
—,'s(s —1)(s —2)(s —3)P3

—
—,'(s +2)(s + 1)(s —2)(s —3)Pi

—
—,'(s +3)(s —2)(s —3),

do(4, 2,s)=—,'(s +2)(s + 1)s (s —1)P2

—
—,'(s+2)(s+1)(2s +2s —9)Pi

+ —,', (s+3)(s —2}(13s +21s —84),

do(4, 3,s) = —' (s +4)(s + 3 )(s +2)(s + 1 )Pi

+ —,', (s +4)(s +3)(s +3s —6),
do(4, 4,s) =

—,', (s+6)(s+5)(s +4)(s+3),

di(1, 0,s) = —(s+1)P2,

d, (1, l, s)=—,
' (s + 1),

d, (1,2,s)=—,'(s +5),

d i (2,0,s) =s (s —1)P3,

d, (2, l, s) = —(s +2)(s + 1)Pz+ —,'s(s —1),
di(2, 2,s)= —,'(2s +10s+3),
d, (2, 3,s) =

—,'(s +6)(s +5),

d, (3,0,s) = —
—,'(s —1)(s —2)(s —3)P4

—
—,'(s + 1)(s —1)(s —2)P3,

d i(3, l, s) =(s + 1)s (s —1)P3

——'(s +2)(s + 1)(s —1)Pz

—
3 (s —1)(s —2),

d i(3,2,s) = —
—,'(s +3)(s +2)(s + 1)P2

+—'(s —1)(13s +47s —SO),

d, (3,3,s) =
—,', (s+S)(s +Ss —2),

d, (3,4, s)= —,', (s +7)(s +6)(s +5),

dz(1, 0,s) = —(s + 1)P3,

d2(1, l, s) = —
—,'(s + 1),

d2(1, 2,s)=—,'(s + 1),
d2(1, 3,s)=—,'(s +7),
d2(2, 0,s) =s (s —1)P4,

d2(2, l, s) = —(s +2)(s + 1)P3—
—,'s (s —1),

d2(2, 2,s)= —,', (Ss —13s —4),
d2(2, 3,s) =

—,'(2s +14s+5),
d2(2, 4, s)= —,', (s +8)(s +7),

13(1,0,s) = —(s + 1)Pz,

d3(1, l, s) =
—,'(s + 1),

d3(1,2,s) = —
—,', (s + 1),

d3(1, 3,s) =—',(s + 1),
(D2)

APPENDIX K: DETERMINATION
OF THE PERTURBED TYPE-E FACTORIZATION

FUNCTION L '~'( m; p.b-' ')

Keeping in mind that F(m+1)=F(m)+b, F, the
finite-difference equation (3.33) can be written again,

hL = —3(2m +1)[k' +F' (m)]
—(m +1)(2m +3)EFON' .

Using again Eq. (A 1), one gets

(El)

hL' '= —3(2m+1)k' ' —6[m(2m+1)F' '(m)]
—2mF' '(m),

and, within an additive arbitrary constant,

L (N)( m )
— 3m 2k (N) +2m 2F(N) ( m )

+[mF~ ~+g mF'I ~(m)] .

(E2)

(E3)

Introducing expressions (3.15) and (3.16) of Fo '(m)
and ZP'(m) and using again relation (3.21) together with
the condition (3.34) to be fulfilled, one finds

d3(1,4,s)= —,'(s+9) .

Finally using these expressions together with the expres-
sion (3.39) of Tt(s) and the expressions (C6) of the PI, (A, ),
one obtains the required expressions (3.42) and (3.43) of
the 'T, (s) in terms of the quantum numbers.



5520 N. BESSIS AND Cx. BESSIS

L ()v)(m .it. b(N) )
—[p(ij + I ) 3m 2]k (N) + (3m 2 p2)Z(N) (it ) 2m 2Z()v) (m )

SN C(N), +1 2t +.
0 2J 2J

, t+1jX 2 &z(i+) J)(m )

or, alternatively, after some rearrangements and using again Eqs. (3.21) and (3.25),

L()v)(m .&.b(x)) [&(&+1) 3m2][k()v) Z()v)(p)]

SN—g C(') '(t)[2(2t+I)!()o2,+z(m) —m '+'+2m '+ —2(2t+I)!q)2, +z(m +1)] .

(E4)

(E5)

Keeping in mind that

2(2t+1)(y (m) —m '+'+2m '+—~2t+2 2t +3 I2t+2+ g 2j
2t +2

2t+2 t+1 t+1 2(t+1—j)~j=1
one obtains, after noting that p(p+ 1)=P, (A. ), the required compact expression (3.35) of L' '(m;p; b ').
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