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Analytic value of the atomic three-electron correlation integral with Slater wave functions
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The three-electron atomic correlation integral with Slater-type wave functions is evaluated in closed
analytic form. The result is expressed in terms of rational functions, logarithms and dilogarithms of sim-

ple arguments, whose precise and fast numerical evaluation is straightforward.

PACS number(s): 31.20.Tz, 31.15.+q

I. INTRODUCTION

It is the purpose of this paper to provide a closed ana-
lytic expression for the atomic three-electron correlation
integral
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The integral naturally arises in the study of atoms with
three or more electrons when using Hylleraas wave func-
tions to account for two-electron correlation effects. To
the author's knowledge, in all the practical applications
the integral Eq. (1) is usually evaluated by means of ap-
proximated numerical techniques, by expanding for in-
stance one of the r, —

r~ ~
factors in Legendre polynomi-

als, performing in closed form the integration of the re-
sulting terms, and then summing a suitable number of
terms of the so-obtained infinite series.

The closed analytic formula obtained in this paper in-
volves, besides rational fractions and logarithms, a few
dilogarithmic functions of simple arguments. The basic
properties of the dilogarithm are recalled in Appendix A
for the benefit of the unfamiliar reader; let us just stress
here that the dilogarithm of argument x has the same an-
alytic properties in x as the logarithm of argument (1—x)
and, for practical purposes, its accurate numerical evalu-
ation presents the same problems as the evaluation of the
logarithm. The dilogarithm is often encountered in the
calculation of radiative corrections in @ED [1]; to the
author's pleasure, it turned out that the techniques
developed for the computational problems arising there
can be used, with obvious extensions, also in the analytic
evaluation of the atomic integral Eq. (1).

The result looks (perhaps is) somewhat cumbersome;
but it is in fact astonishingly simple when compared to
the large amount of algebra which was needed to obtain
it, suggesting the existing of some underlying (and yet un-
known) structure. To process the algebra, the use of an
algebra-manipulating program was mandatory. The au-
thor relied, in all the steps of the calculation, on the pro-
gram scHooNscHtp by Veltman [2], which provided the
needed flexibility and computing power.

After the completion of the work, the author learned

II. INTEGRATION
OF THE AUXILIARY INTEGRAL

VIA THE DIFFERENTIATE
AND INTEGRATE ALGORITHM

To start with, let us introduce the auxiliary integral
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It is obvious that the integral (1) and a wide family of re-
lated integrals with the same exponentials and different
powers of the factors r~ and ~r,

—r
~

can be obtained
from it by differentiating with respect to the variables w;
and u; and setting u, =0. In this work, we will limit our-
selves to providing closed analytic formulas for Eq. (2)
and its first u; derivatives only at u, =0, but for arbitrary
values of w;, so that all the integrals with non-negative
powers of r; can also be obtained by differentiation.
There is some hope that the u;WO case, which is of in-
terest for simple molecules, can also be worked out with
similar techniques, but that generalization has not yet

of the existence of the paper of Fromm and Hill [4], in
which a similar, in fact even more general, analytic for-
mula is given. A discussion of the relation between the
present approach and the results of Ref. [4] (which are of
greater generality, but correspondingly of less direct use)
has been added as an independent section.

The plan of the paper is as follows. In Sec. II, which
contains the essential part of the calculation, an auxiliary
"fundamental" integral is introduced and evaluated by
means of the "differentiate and integrate" algorithm,
which is the bulk of the approach. In Sec. III the result
is extended to a number of related integrals, including
that of Eq. (1). Section IV discusses the relation of the
present approach with the results of Ref. [4]. Section V
contains the conclusions, while Appendix A recalls
definition and properties of the dilogarithm and Appen-
dix B the derivation of some of the formulas used in the
text.
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been attempted.
As a first step, we use the Fourier representation

e
—wr

1
d

4~ ip r

p2+w2P e

for the six exponentials appearing in Eq. (2), integrate
over all the dr, , thus obtaining three Dirac 5 functions,
and then integrate the 6 functions in three of the momen-
ta. Equation (2) becomes

c4 (Wj«W2«W3«u j«u2«u3)

To perform the angular integrations, we define
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where p; is the unit vector in the direction of p;, and
similarly for the other denominators. By introducing po-
lar coordinates through dp=p dpdQ(p), Eq. (3) can be
written as

1 ~ 2 1 ~ 2 13 ( WjW«2«W3 «uj«u2«u3) dp3 2 2 dp2 2 2 dpj B(z»z2z3)
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The analytic integration over the spherical angle d Q(p3) can be performed by means of the formula

dQ(p3)
1

(P 1P3
—z»(P.P3 —zj ) +5(z„z2,z)
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ln
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(7)

where z =p, p2 is the cosine of the angle formed by p, and p2, and

5(z„z2,z):—z, +z2+z —2z, z2z —1 .

Note that 5(z, , z2, z) is a second-order polynomial in z, a property which will play an essential role in the following. As
an aside, it is easy to verify that 5(z „z2,z) )0 for w „w2 )0 and ~z~

~ 1.
In terms of z one has d Q(p2) =dzd$2. When z and Eq. (7) are used the integrand of Eq. (6) is seen to be independent

of «II«2 and p „so that
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d
1 1

dZ
P1P2P3 —1 z z3 +5(zj«z2«z)

zjz2 —z+ +5(zj,z2, z)
ln

z z —z —
1«« 5(z ,z ,z)

(9)

At this point one might try direct "brute-force" analytic integration in z of Eq. (9); formulas for doing so exist in the
literature, but the result is a combination of dilogarithmic functions of complicated arguments, which provide no hint
for the subsequent integrations over the p, . Our method consists instead of postponing any explicit analytic integration
for a while, rewriting the required integral in a form which will be found more convenient later. Rather than explicitly
integrating Eq. (9), therefore, we introduce the function

1 1 Q 5(zj z2 z3 ) z jz2 —z ++5(zj,z2, z)
C(zj z2 z3 )= — dz ln—1 Z Z3 +5(zj«Z2«Z) Z1Z2 —Z —+5(zj«Z2«Z)

(10)
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(12)

8(zl, zz, z3) is positive definite, as z3) 1 Z; 5(zl, zz, z3),
on the other hand, has no definite sign, and the choice of
the minus sign in front of it in Eq. (10) is suggested only
by aesthetics.

Let us also introduce

b.(p»p z ~p 3 ) — 4p lp zp 35(Z 1 r Zz&Z3 )
2 2 2 — 2 2 2

i.e., on account of Eqs. (4)

(p3p—', wzpz—)(w', +w', —w', ) .

Note again that 4(p „pz,p3) is a quadratic form on each
of the three variables p, (as we11 as on the w;, not explic-
itly written in the arguments of b, for simplicity). With
these symbols, Eq. (9) becomes

32~38 (Zl, Z2, Z3 ) C (Zl, ZzpZ3 )
I ~(pi Pz P3)'"

Corresponding, Eq. (5) reads
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We further introduce the functions
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We will now show that the above way of rewriting the
integrals is indeed of help for obtaining a convenient ex-
pression for the derivatives with respect to the variables
w; of the function P ( w „w wz3; u „u2, u 3 ). Quite gen-
erally, let

S (a,x) —=$0+s, (x —b)+ —,'$2(x b)—
be a second-order polynomial in the variable x, with the
coefficients depending on some unspecified parameter a,
so that s; =$;(a), i=0, 1,2, and consider the integral

dp 3
P3+u3 [b( —u, , —uz, P3)]' E (a):—I dx ' H (a,x),1 &S(a,b)

S(a,x)
(20)

XQ(wl, wz, w3yp3)

where, for the sake of brevity only, the variables u; are
not explicitly written among the arguments of some of
the above functions. Equation (14) then becomes

where the otherwise unspecified function H(a, x) depends
on both a and x, while x, , x2, and b are independent of a.
Thanks to the presence of the factor &S(a,b) in the
numerator of Eq. (20), one finds the following formula for
the a derivative of IC (a):

K(a)= J dx ' H(a, x)
8 "2 1 &S(a,b) B

Ba ~1 x bS(g,—x) Ba
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8$0 2 a$1 2 a$2+ (SpS2 $1 )+Sp Sl Sp
Ba Ba Ba

X 5(x —xz) —5(x —xl) —— H(a, x) . (21)
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Its derivation, which is elementary, is reported in Appen-
dix 8 for the convenience of the reader: its usefulness re-
lies on the fact that it expresses the a derivative of E(a)
in terms of quantities which can be evaluated without ex-
plicitly carrying out the original integral, namely the end
points of the function H (a,x), given by to the two Dirac
5 functions 5(x —x;) in Eq. (21), and an integral involv-
ing the x derivative of H(a, x).

Equation (21) can be used for obtaining the w; deriva-
tives of P(w„wz, w3;u„uz, u3) [Eq. (17)], with p3,
(p3+u3), and Q(w„wz, w3, p3) in the role of x, (x —a),
and of the unspecified function H(a, x), while
b, ( —u „—uz, p3) is the second-order polynomial in p3
corresponding to S (a, x). A closer inspection of the
definition of Q (w „wz, w3, p 3 ) shows that the end-point
values actually vanish, so that the required m,. derivatives
of P(wi, wz, w3, ui uz, u3) are expressed as the integral
on p3 of a combination of rational functions of p3 times
the corresponding m, and p 3 derivatives of

2
Q (w ),wz, w3, p3 ).

Equation (21) can be used again for evaluating the
derivatives of Q(w„wz, w3,p3) because b( —u, ,pz, p3),
which appears on the right-hand-side (rhs) of Eq. (16), is
also a second-order polynomial in p2. As in the previous
case the end-point contributions are found to vanish and
the required w; and p3 derivatives of Q(w„wz, w3 p3)
are expressed in terms of the various derivatives of

2 2T( wl~w ~zw3qp ~zp3

The process can be iterated once more, so that a11 the
I

w; and p,. derivatives of C (z„zz,z3 ) are eventually need-
ed. C(z, zz, z3) depends on the w; and the p; only
through the three variables z; [Eq. (4)], it is in fact
sufhcient to evaluate its three z; derivatives. The deriva-
tives with respect to z

&
and z2 can also be worked out by

means of formula (21) because 5(z„zz,z), as already ob-
served, is a second-order polynomial in z [the change of
sign in the argument of the square root in the numerator
of Eq. (10) is an overall constant factor which does not
affect the applicability of the formula]. The case of the z3
derivative is slightly different —its easiest derivation is
perhaps through Eq. (37), which will be introduced
below —but the result is similar and explicitly exhibits
the expected symmetry of C(zi, zz, z3) for the exchange
of the arguments.

%'hen carrying out the above procedure, the factor
(s, —2sosz) appearing in the denominator of Eq. (21)
takes the value 4(z f

—1)(zz —1), while the "unspecified
function" on the rhs of the definition of C(zt, zz, z3) [Eq.
(10)], is in fact the explicitly known logarithm of Eq. (10).
Its derivative, a fraction, contains, among others, terms
in 1/+5(z„zz, z), which get multiplied by the same
square-root factor appearing in Eq. (21) to generate the
denominator 1/5(z„zz, z). After some fully straightfor-
ward albeit lengthy algebra, that denominator is found to
disappear; the z integration is then elementary and the
explicit analytic values of the required z, derivative are
rather simple. One finds, for instance,

BC(z„zz,z3)
BZ

$ Zf yz2pz3

Z ]Z2 Z3
ln

z) —1

Z2+1
z2 —1

Z1Z3 Z2+
2

ln
z2

1

z3+1
z —13

z i + 1—ln
z —11

Due to the already recalled symmetry of C(zi, zz, z3) in
its arguments, it is not necessary to write explicitly the
derivatives with respect to z2 and z3.

Once the derivatives of C(zi, zz, z3) are evaluated, one
can proceed backward to evaluate the derivatives of
T(wi, wz, w3, pz, p3), which were seen to be an integral
over pi of the derivatives of C(zi, zz, z3) times suitable
rational factors. At this stage, to simplify the calcula-
tion, we put u, =0 in the denominator (p i +u, ) of Eq.
(15). When Eqs. (4) and (12) are used for eliniinating the
z;, everything is expressed in terms of the p; and to;, and
the denominator 1/6(p f,pz, p3 ) appears in the same way
that 1/5(z„zz, z) appeared in the previous case. After a
very lengthy algebraic manipulation, that denominator
also disappears (such a result is always expected in this
kind of calculations, although a satisfactory forrnal proof
of this fact is missing; the elimination of the denominator
provides in practice one of the most important guidelines
in the organization of the whole calculation). One is
eventually left with a relatively simple expression, say
about 100 terms, or less, for each of the derivatives. That
expression generally has the form of a ratio of polynomi-
als in the integration variable p, as well as in the other
variables, times the three logarithms appearing in Eq.

(22). More explicitly, one finds that an essential role is
played by the three polynomials of second order in the ar-
guments p, q, m,

R (p2l~pz~ W3) &

2 2 2

2 2 2
Rz(pz~p3& w 1 )

2 2 2Rz(p3 pi —Wz»

(23)

where

Rz(p, q, —w )—=p +q +w —2p q +2w p +2w q

(24)

Remarkably, the actual value of the factor (s, —2sosz)
appearing in Eq. (21) is in this case

2 2 2 2 2 2Rz(w 1~ W2, W3 )Rz(pz~p3, W 1 ).
All the p& integrals consist of an algebraic factor,

whose possible denominators are 1/p &, which corre-
sponds to 1/(p, +u, ) of Eq. (15) at u, =0,
1/Rz(P f,Pz, —w3), and 1/Rz(P3, P „—wz), times one of
the logarithms of Eq. (22). A closer inspection shows
that, in general, any p integral involving a factor
1/Rz(p, q, —w ) can be conveniently written in terms
of the four basic combinations
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Rz(p, q, —w ) R2(p, q, —w )

w(p +q +w ) q(p —
q

—w )

R2(p, q, —w ) R2(p, q2, —w )

(25)

2 2 2
P ) P2+W3 Z2+ 1

z2 —1

When that is done, one obtains a limited number of p &
in-

tegrals such as

P3W2 Z3+1

R2(p 3,p i, —w2 ) z3 —1

(26)

2 2 2
Wl ~ p3(p2 p3 Wl )

p3+wi o R2(p2 p3
2 2 2

P& P2+N3

r

Z2+ 1

Z2
—1

LU) +W2+ W3=
—,'w3ln

3w&+w2+N3
(28)

overall factor 1/Yh(0, 0,0)=1/(w, wzw3). The deriva-
tives consist of a limited number (a couple of dozens) of
integrals such as

Terms in ln[(z&+1)/(z& —1)] also exist; as this logarithm
does not depend on p &, those terms can be integrated at
once; the integrals that occur are

dp
o Rz(p, q, —w ) 4w

(27)
oo 1 1

dp
o Rz(p, q, —w ) 4w q +w

For continuation of the calculation it is not necessary
to evaluate explicitly the other p& integrals, but it is in
fact convenient to keep them in the form of Eq. (26), giv-

ing them ad hoc names, or just "protecting" them with
suitable brackets in the subsequent steps. To summarize,
each of the 50—100 terms occurring in the expressions of
the derivatives of T(w„w2, w3, p2, p3) with respect to
any of its five arguments is therefore the product of one
of the above p& integrals times a rational fraction in the
five variables pz, p3, and w, , times the overall factor

1/[6(O,p2, p~ )]', generated by use of Eq. (21) for deter-
mining the derivatives of T( „w~w, wp3z, p )3[Eq. (15)].

With the so-obtained expression for the derivatives of
T(w„w2, w3, p2, p3) we can again use Eq. (21) to obtain
the derivatives of Q(w„wz, w3, p3 ) [Eq. (16)], at uz=0.
The pattern is the same, the denominator 1/b, (O,pz, p3)
is generated, but actually disappears following some alge-
bra, all the p2 integrals involving R2(p2, p3, —w, ) can be
written in one of the four forms of Eq. (25), the explicit
integration in p2 is neither necessary nor convenient, and
an overall denominator 1/[b(0, 0,p3 )]'~ appears.

With one more iteration of the algorithm one obtains
the three w; derivatives of P (w, , wz, w3, 0,0,0). The
denominator 1/b, (0,0,p 3 ) is generated, but found to
disappear, while everything is multiplied by the simple

P3

P3+N2 z3+12 2 2

T

W)+W2+W3=~ ln
3w&+w2+w3

(29)

A11 the appearing triple integrals are in general equal to a
factor of m times a logarithm whose arguments are linear
combinations of the w; with simple integer coefficients,
such as (wi+3w2+w3), (2wi+w3) (w2+w3), etc. To
establish the above results, one can differentiate the in-
tegral in p3 with respect to one of arguments w; by using
formulas which are the extension of Eq. (21) to the
present case (two of them are reported in Appendix B), so
obtaining end-point values and derivative with respect to
w; and p3 of the p3 integrand, which is an integral in p2.
By repeated use of the same formulas, one can propagate
the derivatives through the subsequent p2 and p, integra-
tions, until only the derivatives of the logarithm are need-
ed. In doing so one finds that the p&, p2, and p3 integra-
tions are elementary [ironically, only the two integrals of
Eq. (27) occur], and the required w, derivative of the tri-
ple integral over p3,p2, p& is found to be equal to ~ times
simple rational denominators in w;. The rhs of Eqs. (28)
and (29) can then be obtained by quadrature. The other-
wise arbitrary additive constant of the quadrature is fixed
by checking that the left-hand-side (lhs) and rhs coincide
for some special set of values of the w, . The lhs and rhs
and Eqs. (28) and (29), for instance, both vanish at
w2 = ~. Collecting results, one finally obtains

P (w, , w~, w3, 0,0,0) =32m'
BWi W) +W2 LU3

W) +W2
ln

W3 W) W2+W3

N2+W3
1n

Wi

W ) LU2+ W3

1

W~ +W2+W3

LU3+ LU)
ln

W) +W2 W2+W3 W3+Wi
ln +ln +ln

W3 N 1„ W2
(30)
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and similar formulas for the other derivatives, which are not written explicitly due to the symmetry for exchange of the
W;.

From inspection, one sees that one can easily evaluate the integral Eq. (2), at u; =0 and in the limit w3 ))w „w2, by
performing the change of variable r3~r, r=w3r3, and then approximating Ir, —r3I =«1, Ir2 —r3I =«2 In. that limit the
integration is elementary, giving the result

64m2 (w1, w2 w3, 0,0,0) = w, ln
WI W2N 3

W1+ W2 + N2ln
LU1 + LU2

W3 ))LU1) LU2 (31)

We can at last integrate Eq. (30) by quadrature in w„ fixing the otherwise undetermined additive constant by compar-
ison with Eq. (31) at large w3. The result is

P ( w» w2, w3, 0,0,0)=32m. D ( w „w2, w3 )

where

(32)

D (w„w2, w3 ) =ln
Wi +W2

ln
W&+W2+W3

W) +W2
—Li2

W3

N1+ W2

—Li 1—
2 W1+ LU2

W2+ W3 LU ( +W2+ W3
ln

N) W) +W3
—Li2

W2

LU) +W3

—Li 1—
2

LU2

LU) + W3

+ln
W) +LU2+ W3

W2+W3
—Li2

LU2+ N3

N)—Li 1—
2 W2+ LU3

(33)

The function Li2(x) appearing in Eq. (33) is the Euler dilogarithm, whose definition and main properties are recalled in
Appendix A for the convenience of the reader; it su%ees to repeat once more here that it can be numerically evaluated
as quickly and accurately as the logarithm.

According to Eqs. (2), (12), and (18) one can also write

A (w1, w2, W3, 0,0,0) = 1
P(w„w2, w3, 0, 0,0)

LU ( W2W3

1.e.)

1 1 2 2 3 3
—w r —w r —N r

dr, dr2dr3
r& r2 r3

32 '
D (W1, W2, W3)

N(W2W3
(34)

III. EXTENSION TQ RELATED INTEGRALS

In order to proceed from Eq. (34) towards the integral Eq. (1), let us differentiate Eq. (2) twice with respect to u, and
then set u, =0 for all i; in so doing we obtain

a2
A (W1, W2, W3, Q1, Q2, Q3)

1 1 2 2
1= fdr, d r2d r3 — e '"'

Ir2 —r3 I

«, «, Ir, —r, l Ir, —«2I

According to Eq. (14), for finite u, one also has

a2 2p (
2 2

12 ( W, 1W, 2WQ31, tl2, tl3)= f dp3 f dp2 2 f dp1 2 2 3 2 2 2 1~2 C(Z1,Z2, Z3) .
Bu ( p3+~ 3 p2+~2 (pl +~1) I ~(pl p2~p3))

(36)

To evaluate such an integral, let us observe that if S(x) is, in the notation of Eqs. (19) and (20) (but dropping the depen-
dence on the parameters a, which play no role here), a second-order polynomial in x, the following "integration-by-
parts" formula holds:
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f 'dx H(x)
(x b—)" &S(x)

1 1 1 2n 3 fl 2
dx SI+ $2

n —1 S(b) x& 2v'S(x) (x —b)&
—' (x —b)&

—~

+ „, 5(x —x~ ) —5(x —x, )—&S(x)
(x b)"— H(x) . (37)

Equation (37) can be used to express the p 1 integral of Eq. (36) in terms of the integral with a single inverse power of
(p, +u, ), essentially equivalent to Eq. (15), plus terms involving the derivatives of C(z„zz,z3), which are explicitly
known and are given in Eq. (22), plus end-point values which are easy to obtain (in the considered case they actually
vanish). After the integration by parts the u, —+0 limit is trivial. Setting also uz =u3 =0, one immediately identifies a
term proportional to D (w, , wz, w3 ), plus a number of terms which, after some by-now-standard algebra, can be brought
in the form of the integrals already encountered in the w; derivatives of D (w, , wz, w3), such as those listed in Eqs. (28)
and (29). The result reads

1 1 2 2 3 3N f M f W

f dr, drzdr3
1 1

r, —r2 r3 —
r&

64m.

W LU2 3

w2+N2 w2
2 3 1

D( w» w~, W3)—
2N I W2N3 W) +W2

1

WI +W3

WI W2+ ln
WI W2

LU) +W2 WI W3+ ln
W)N3

W2+N3 W2 W3+ ln
W3+N)

(38)

The whole procedure can be repeated for the variable u3, which multiplies ~r, —rz~ in the exponential of Eq. (2) to ob-
tain the formula

a2 a2
14 (Witwgtw37uiyug7u3)

Bu3 Bu I 0,- =0

6u3 2p3 oo 1 oo 6u
&

—2pI2 2 2 2
2

~
3

~
2
3

3

1

0 (P3+113) 0 P&+u& O (P, +u, )' [b'(P, ,PZP3)]

(39)

LU P' tt3 P' LO
1 1 2 2 3 3 1

rl 12 I'2f e
d r )d I'2d I 3 r)

364~
—,[w, (2w, +w, +2W, ) —3(w, —w, ) ]D(w, ywpyw3)

LU IN2N 3

After integrating by parts over u, and u 3, the u; =0 case is trivial and the result reads

+w, [(w3 —wz)w~+3W3(w, +W3)+3wz(w, —w3)]ln
N2+W3

Wi

+w 3 [ ( w
1

—w ~ )w ~ + 3 w 1 ( w 1 + w 3 ) 3w p ( w 1 w 3 ) ]1n
W3

+wp(wi + w3 )[3(w, —
w3 ) wp ]111

N3+ W1

W, +3NIW3+W32 2

+2W ) W3 W2 LU2
(W, +W3)

2w &+w&N3+2N3 w2 2 3
W3

3

+ + —N +W —N
W)+W3 LUI +W2 W2+W3

(40)

We can now turn to the evaluation of the integral Eq. (1), which is the main purpose of this paper. We have obviously

Z(w„w~, w3) =— A (Wi)WP, W3, 91,QP, B3)
LU1 ~W2 ()W3 ~u 3 ~u 0,. =0

(41)
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As Eqs. (39) and (40) are exact in all the w;, to obtain the value of the desired integral in closed analytic form it is
sufficient to differentiate Eq. (40) three times with respect to w„w2, and w3, and then change the overall sign. The
derivatives of D (w l, w2, W3) are already known [see Eq. (30)], so that the actual differentiation of Eq. (40) is completely
straightforward, especially when an algebraic program is used. As matter of fact, it was much easier to perform the
derivatives than to properly retype the terms obtained to exhibit the obvious properties of symmetry for the exchange
of w& with w3 and of regularity at w3 =w, +w2, etc. The result can be written as

LU
1 &1 toy P'P f83 T3 1

drldr2dr3e ' 'e ' 'e ' '~r, —
r2~ (r2 —

r3~r, —r,

64
—,'[3wz+6(wl+w3)wz+5(3w, +2w, w3+3w3)]D(w„w2, W3)

W )W2W3

ln2[( w, + N2 )/w3 ]
+8W )W2W3

(LU, + W2
—

W3 )

ln2[(w2+ w3 )/wl ]

(w, —w2 —w3)

ln2[(w l +w3 )/w2 ]

(w, —w2+w3)

Sln( w l, W2, w3 )

( W, +W2+.W3 )

lnl[(wl+N2)IL03] ln1[(N2+L03)/wl ]
+12W, W2W3(w l +lD3 ) 2

+
(wl+w2 —w3) (w, —

W2
—w3)

lnl[(LU, +w3)/w2] Sln(w„w2, W3)
2

+ 2
(W, —W2+lD3) (Nl+W2+W3)

ln[(w l +W2)/w3 ]
+12W2[(wl+W3)(w, +N3)' —3wlw3]

W) +W2 W3

ln[(w2+ W3 )/w, ]

W) W2 W3

ln[(wl+w3)/w2] Sln(w„w2, w3)—12w2[(wl+w3)(wl —W3) —
3wlw3 ] +

( Wl —lD2+ W3 ) W 1 W2 W3

+3N3 [3(w, —W2) w2 —(9w l +7N 3 )w2 —15(w, + w3 )w, ]ln
Wi +W2

W3

+3w, [3(w3 —W2)W2 —(7w l +9w 3 )w2 —15(w, +w 3 )L03]ln
W)

—3N2 [3( w l +w 3 )w 2 +7N l +9N lN3 +9N l w 3 +7N 3 ]ln
W3 JW)

—2(2W, —9w, w3+2N3)wz+80N, N3(wl+w, )+2(8W, +13w,w3+13W, N3+8lD3)w2

2

+8 (Wl +Wlw3+W3) —4 (4w, +3w, w3+5w, w3+3wlw3+4N3 )
W)W2W3 2 W2 4 3 2 2 3

(LO, + W2+ N3 ) W) JW2 JW3

3 3 3 2 2
W j W2W3 W )W2W3 W j W2W3

+48 J24 (w2+2wlw3)+8 (3w2 —2w, w3)
(w, +w3) (w, +W3) W)+W3

u'
1

W'
3

u4
1

u4
3

8W) W3 3+ +48w& w3 +
(Wl+W2) (W2+L03) (W, +W2) (W2+LO3)

W 1 W 3
120W

& W3 +
W~+W2 W2+W3

(42)
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For ease of typing, we have introduced in Eq. (40) the
quantities

Sln(x, y, z)—:ln
x+y +ln

z
x+z y+z+ln

x

IV. COMPARISON WITH PREVIOUS WORK

After the completion of this work, the author
discovered the existence of the work of Fromm and Hill
[4], where the analytic evaluation of three-electron in-
tegrals was also worked out; the result of Ref. [4] is in
fact more general, as it provides a formula valid for any
value of the parameters u;, not just at the point u; =0
(notation of this paper). In the common region of appli-
cability, the results are in perfect numerical agreement.
In the terminology of Ref. [4], at the auxiliary reference
point (ARP) wi=w2=w3=1, u, =uz=u3=0, the nu-
merical values of Eqs. (34), (38), and (40) are
4.382 174 441 144 X 10, 1.204 780 633 933X 10, and
8.S04 405 304 091 X 10, coinciding with the entries
(000000,000 200,000 220) of Table III of Ref. [4], while at
the same ARP for Eq. (42) we find
9.155447160887X10 =2' m X2.883566S95319, to be
compared with 2.883 566 595, as quoted in Ref. [5].

The approach of Ref. [4] and of the present paper is
the same, i.e., Fourier transform for the auxiliary integral
Eq. (2), called the generating function in Ref. [4]. Refer-
ence [4], however, differs strongly in the technique fol-
lowed for performing the quadruple de6nite integral cor-
responding to Eq. (14); rather than using the
"differentiate and integrate" algorithm of this paper, the
first integration corresponding to Eq. (9) is performed by
brute force by means of Eq. (4.34) of Ref. [4]. The result
is [see the remarks after Eq. (9) of this paper] a combina-
tion of dilogarithmic functions of complicated argu-
ments, whose subsequent integration on the three mo-
menta is then ingeniously carried out in Ref. [4] by con-

ln, (x)=ln(x) —(x —1),
ln2(x )—:ln(x ) —(x —1 ) +—,

' (x —1 )

Equation (40) looks, and perhaps is, somewhat cumber-
some, but in fact its structure is remarkably simple. It in-

volves only the dilogarithmic combination D(w „w2, w3)
defined in Eq. (33), the three logarithms
in[(w, +t02) /w3] 1 n[{W$ +M 3) /la2] in[(lD2+t83)/to, ],
and simple rational functions of the w;. Furthermore, it
is ready for the actual numerical evaluation, being in par-
ticular regular (as expected, of course) at, say,
w J +w 2 w 3 because the numerators of all the terms
with 1/(w, +iii2 —w3)" vanish as (w, +iii2 —w3)" (the
same is true for the other two denominators without
definite sign).

It is clear from the derivation why Eq. (42) is larger
than Eqs. (40), (38), and the really compact Eq. (34). It is
also clear that similar formulas can be obtained, when
needed, for all the related three electron-correlation in-
tegrals with higher positive powers of the r, and ~r; —r,. ~

in the numerator, so that the algorithm presented in this
paper is by no means restricted to s-wave functions only.

V. CONCLUSIONS

The use of Eq. (42) as well as of the related formulas
for the three-electron correlation integrals with higher
positive powers of the r; and ~r; —rj in the numerator is
expected to speed up considerably the computational
time required for the proper accounting of two-electron
correlation effects in atoms, thus making high-precision
calculations easier. It is being investigated whether and
how the techniques introduced here can be of use for the
analytic evaluation of atomic integ rais with many-
electron-correlation efFects or of two-electron-correlation
effects in ab initio calculations of simple molecules.
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APPENDIX A

The Euler dilogarithm Li2(y), sometimes also called
the Spence function, appears naturally when integrating a
logarithm multiplied by a rational expression, in the same
way that logarithms appear when integrating rational ex-
pressions. It is defined by

Li,(y)=——f dt ln(1 yt)=——f d—t—ln(1 t) . —y 1

o t o t
(A 1)

It is real for real y ~ 1 and develops an imaginary part for
real y) 1. From Eq. (Al) one has the power-series ex-
pansion

tour integration. As a consequence of the original brute-
force integration, the key result, Eq. (2.1) of Ref. [4] and
following formulas, is obtained in a form somewhat
discouraging to the reader, as it contains many diloga-
rithms of complicated and complex (i.e., not real) argu-
ments, exhibiting a variety of spurious singularities which
cancel out in the final result, and whose actual numerical
evaluation requires among the other subtleties a careful
preliminary branch tracking. That contrasts with the
plainness of Eq. (33) and those thereafter of this paper,
where the results are expressed as a combination of real
functions of real variables, whose numerical evaluation is
immediate, in the whole range of variability of the argu-
ments w;.

Without underestimating the complications inherent in
the much more general u;%0 case, it is likely that also
Eq. (2.1) of Ref. [4], after a major rewriting effort, can be
recast in the form of a simpler expression, and of much
greater practical use, in which the compensating singu-
larities do not appear at all. Once expressed in that way,
the result of Ref. [4] could receive the acknowledgment
that it deserves and produce the expected impact in
high-precision correlation calculations.
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oo m

Li2(y) = g z
m=i m' (A2)

which converges for y ~ 1, Li2(0)=0, and the values at
y= 1

Liz( 1 ) = —j dt —ln( 1 —t ) =g( 2),
o t

(A3)

where g(p) =g",1/m ~ is the Riemann g function of ar-
gument p. From the definition, one has also

d . 1
Liz(y) = ——ln(1 —y) . (A4)

1

J dt —ln(1+t) = —Li2( —1)= —,'g(2) . (A6)

By the same technique one can also obtain identities be-
tween dilogarithms whose arguments are related by the
transformations y ~1/y, y ~(1—y), and combinations
thereof. All the identities can best be established by
checking their validity at some convenient particular
value of y and then differentiating with respect to y,
thereby obtaining an identity between logarithms whose
validity is trivial to ascertain. One finds, for real y & 0,

By elementary use of the above equations one can easi-

ly obtain a number of relations between dilogarithms of
related arguments. One has, for instance,

—,
' Li,(y') =Li, (y)+ Li, ( —y ) . (A5)

The relation holds at y=0, while the derivatives on the
lhs and the rhs are equal for any y; therefore Eq. (A5) is
true for any value of y. From (A5) at y = —1 one obtains

proper combination of Eqs. (A7) and (A8) to express the
required value of Li2(x) in terms of a dilogarithm whose
argument x is in the range —1&x & —,'; in that interval
the dilogarithm is analytic and can be evaluated by a
quickly convergent power expansion (see Ref. [3] for an
implementation of the method).

APPENDIX 8

Only in the term with Bso/Ba the denominator 1/(x b)—
appearing in Eq. (20) is still present; to process it one can
use the algebraic identity

1 1 1

S(a,x) x bS(a, b—) x —b

s, + —,'si(x b)—
S(a,x)

We sketch here a proof of Eq. (21). When
di6'erentiating K(a) [Eq. (20)] with respect to a, one ob-
tains, on the rhs, three terms, corresponding to (i) the
derivative of the function H(a, x), (ii) the derivative of
i/S(a, b) in the numerator, and (iii) the derivative of
i/S(a, x) in the denominator. For the third term, with
the definition of S(a,x) [Eq. (19)]one has obviously

a 1

Ba v'S(a, x)
1 1 1

2 i/S(a, x) S(a,x)

Bs Bs, Bso
X + (x b) +—— (x b)—

Ba Ba 2 Ba

Li2(y) = —Li2(1 —y) —lny ln(1 —y)+g(2),

Li2( —y ) = —Li2 ————' ln y —g(2 ),1

(A7)

(A8)

and the first term on the rhs is found to cancel out exact-

ly with the contribution (ii) above. One can then in-

tegrate by parts the remaining terms

By analytic continuation of Eq. (A8) to y = —1, as
ln ( —1)= none der—ives the known relation g(2)
=m /6.

With the above formulas, it is quite easy to evaluate
numerically Li2(y); for small y one can directly use the
expansion (A2). More systematically, one can use the

I

dx dx (x b)—
[i/S (a, x) ] [i/S (a, x) ]

and then collect results until Eq. (21) is obtained.
By a similar approach one can deal with the integrals

involving the factors of Eq. (25). As the analog of Eq.
(21) one finds, for instance, for any function F (p, q, w),

J R2(p, q, —w )

R2(p, q, —w )

BF(p, q, w)

Bq

Pp + +N—J dp' . . . , ~(p —p2) —&(p —pi )—
Rz(p, q, —w ) 2q dP

Rz(p, q, —w )

z wq BF(p, q, w)
GjD

Rz(p, q, —w )

F(p, q, w), (B1)

dp
Wg P —

g
—~

Rz(p, q, —w ) 2w
@p p2) &(p pl ) —— —F (p q w—) .a

(B2)

Similar formulas hold for all the other terms listed in Eq. (25).
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