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The best-known nonrelativistic energy of the term 1s2s2p *P° of neutral lithium is improved to an ac-
curacy of less than 1 cm™! by using the Rayleigh-Ritz variational method with Slater-type basis func-
tions. The relativistic, mass-polarization, and Lamb-shift effects are calculated perturbatively as first-
order corrections to the nonrelativistic energy. Combined with best-known data from experiment, we at-
tain the ionization potential 56460.0(2) cm ™! for the term 1s2s2p *P° of neutral lithium, compared to
the experimental value of 56 473(5) cm™! by Mannervik and Cederquist [Phys. Scr. 27, 175 (1983)]. The
discrepancy between theory and experiment is discussed. The relative term value of 152s2p *P° for neu-
tral lithium is calculated to be 463062.4(3.3) cm™! above the lithium ground state, compared with
463039(122) cm ™! by Rassi et al. [J. Phys. B 10, 3535 (1977)] from the ejected-electron spectrum. We
have also extended the calculation to Li-like ions up to Z =09, where no experimental values are avail-

able.

PACS number(s): 31.20.Tz, 31.20.Di, 31.30.Jv

I. INTRODUCTION

The quartet system of doubly excited neutral lithium
has been established by studying optical spectra from
beam-foil measurements [1]. For higher members of the
lithium isoelectronic sequence, many of the quartet tran-
sitions have also been observed and assigned. The inter-
play of related theoretical and experimental works has
been reviewed by Berry [2] and more recently by Manner-
vik [3].

The term 1s2s2p *P° is the lowest quartet of Li-like
ions. It is metastable against both radiative deexcitations
and autoionizations. Its relative term value above the
ground term 1s22s %S is therefore of significance in deter-
mining the term values for the quartet system of these
ions.

Optical quartet-to-doublet transitions are difficult to
observe experimentally. The relative term value
57.41(0.015) eV of 1s2s2p *P° for neutral lithium is given
by Rassi et al. [4] from the ejected-electron spectrum.
However, its uncertainty is too large to be used in the
Grotrain diagram because optical levels in the quartet
system of Lil have been explored [1] to within a few
cm ™! (1 cm™!=0.124 meV). Consequently, calculations
with improved accuracy may play an important role in
determining term values of the quartet system.

Theoretically, the challenge is to find a proper way to
account for the correlations between the three electrons,
each of them being in a different subshell. The most ac-
curate calculation on the energy of 1s2s2p *P° for Lil
came from the configuration-interaction method (CI)
with Slater-type orbitals performed by Bunge and Bunge
[5] and later improved by Bunge [6]. In addition to a
variational energy upper bound, they were able to find a
pattern of convergence and estimate truncation-energy
errors with an uncertainty of a few cm™~!. Assuming that
the relativistic, radiative, and mass-polarization correc-
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tions for 1s2sn/ and 1s2pnl states are equal to the corre-
sponding ones for Lill 1s2s3S and Lill 1s2p 3P° cores,
respectively, they calculated the nonrelativistic energies
of the terms 1s2s3s *S and 1s2p3d *D°. Combined with
other theoretical data and experimental transition ener-
gies to 1s2s52p “P°, they determined [6] the relative term
value of 1s2s2p “P° to be at 463062.0(7) cm™! or
57.4128(2) eV above the Li ground state. There are also
term values for 1s2s2p *P° deduced from the quantum-
defect analysis of the 1s2snd *D series. This has been
done for Lil by Berry et al. [2,7] by fitting the experi-
mental term values of 1s2snd *D (n=3,4,5) to the Ritz
formula, and recently by Mannervik and Cederquist [1],
who were able to observe and identify five more terms
(1s2snd *D, n=6-10). The relative term value of
1s2s2p *P° was determined to be at 463 050(5) cm ™! or
57.4113(6) eV, which is lower than that of Bunge [6]. The
contributions from relativistic and mass-polarization
effects were later studied by Chung [8]. One may com-
bine Bunge’s nonrelativistic energy [6] with Chung’s rela-
tivistic corrections to obtain the relative term value of
1s2s2p *P° for LiI at 463 063.0(7) cm ™! or 57.4130(2) eV;
the discrepancy with that of Mannervik and Cederquist
[1] still remains. It was queried [1] that variational calcu-
lations give only upper bounds for the energy and the er-
ror estimate given by Bunge [6] may be too small.

For higher members of the lithium isoelectronic se-
quence, Chung [8] has studied the relativistic effect of
low-lying quartet terms using nonrelativistic CI wave
functions for Z < 12. Because for these ions the first few
terms of 1s2pnl *L lie below the 1s2s >y limi1t and interact
with the 1s2snl *L Rydberg series, it is difficult to deter-
mine the 1s2s 3S limit using the quantum-defect analysis.

In this work we present improved nonrelativistic
1s2s2p “P° term energy for Li-like ions up to Z=9 and
establish its relative term value using the best-known
theoretical and experimental data. In Sec. II we give a
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brief account of our theory. Results are presented in Sec.
III and summarized in Sec. IV.

II. THEORY

For an accurate assessment of the term energies of Li-
like systems, we consider the Hamiltonian (in atomic
units) given by [9]

H=H,+H,+H,+H,+H,, (1)
with
3 3
Hy=3 “%V?—g + 3 —1—, (2)
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and x(123) denotes a quartet spin function. Here m, n,
and k are non-negative integers, and () represents the
coupling [(/;,1,)’L ,,1;]*L and the set of nonlinear pa-
rameters (a,f3,7). We will refer to ¢, as a partial wave.
The trial wave function is given by

Y=A Y bq , (10)
Q

A being the antisymmetrization operator and is con-
structed by systematically increasing the number of par-
tial waves in a manner of improving the angular correla-
tion and radial expansion. Within each partial wave, the
nonlinear parameters are optimized by minimizing the
nonrelativistic energy; this procedure is similar to that
used by Chung [11]. The convergence of energy can be
seen as the number of partial waves in the trial wave
function is increased. The truncation-energy error can
then be estimated. Corrections to the nonrelativistic en-
ergy are calculated as first-order perturbations by using
this wave function. The reduced-mass corrections are
considered, when converting the energy from a.u. to
cm !, by taking the appropriate value R,, from Table I
for the Rydberg constant.

<llm112m2;L12N><L12/*L13m3|LM>Yllml(?l)Yl

131 1;(T;Pi)p;
H,=— — |pip; Tt ;
4 202 w}il ry PP r2 (6)
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where M is the nuclear mass in a.u., and ¢=137.0360.
Here H, is the usual nonrelativistic Hamiltonian, and H,
is the mass-polarization term. The rest come from the
relativistic effect, and they are the mass variation,
Darwin, and orbit-orbit interaction terms. The spin-orbit
and spin-spin interaction operators will not be considered
here because they do not affect the center of gravity of a
term.

To solve Eq. (1), we first calculate the energy eigenval-
ue of H, using the Rayleigh-Ritz variational method.
The term 1s2s2p *P° of Li-like ions lies lower than the
1525 3S ionization threshold, and there is no lower-
quartet continuum to which it can autoionize. Therefore
the Rayleigh-Ritz variational method is applicable for
this calculation because the inner-shell vacancies are im-
plicitly built in [10] as a direct consequence of the Pauli
exclusion principle. In the case of neutral lithium, the
term 1s2s3s *S will also be considered; the Rayleigh-Ritz
variational method is similarly applicable for this term.
The basis functions in the trial wave function are chosen
in the LS-coupling scheme as

Y, (R) )

III. RESULTS AND DISCUSSIONS

A. Li

In recent studies of the relative term value of
1s2s2p *P° for neutral lithium, a discrepancy is found be-
tween theory and experiment. The theoretical value is
based on the variational method, which gives upper
bounds to the eigenvalues of a Hamiltonian. From the
convergence of the upper-bound calculations, one may
also extrapolate or estimate to obtain a more accurate

TABLE I. The Rydberg constant R,, used in this calculation.

z Isotope R,

3 "Li 109 728.734
4 °Be 109 730.634
5 g 109 731.846
6 2c 109 732.298
7 UN 109 733.015
8 150 109 733.552
9 PR 109 734.146
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solution to the eigenvalue equation. Unfortunately,
Bunge’s estimated value [6] lies 12 cm ™! or 5.5X107°
a.u. above the experimental value given by Mannervik
and Cederquist [1]. The discrepancy should be traced
back to the ionization potential, which will be discussed
later.

To study this discrepancy and reduce the possible er-
rors in the extrapolation, the upper-bound calculation
should converge to the level of 10~ % a.u. To avoid spuri-
ous convergence in this work, we perform calculations on
two terms of different symmetry, 1s2s2p *P° and
1s2s3s *S. The latter is chosen because it converges fas-
ter in a full CI-expansion calculations than other quar-
tets, and an accurate experimental transition energy of
1s2s2p *P°—152s3s *S is available for deducing a good
term energy of 1s2s2p *P° from the converged term ener-
gy of 1s2s3s *S (Fig. 1).

The energy convergences for 1s2s3s%S and for
1s2s2p *P° are shown in Tables II and III, respectively.
The wave functions in these tables are divided into two
groups. The partial waves in group I are adopted to ac-
count for the angular correlation, and they are built up
by the CI method. Those in group II are used to saturate
the radial expansion for dominant partial waves in group
I. This is achieved by using the partial wave with the
same angular composition but a different set of nonlinear
parameters. For example, the radial expansion of partial
waves 1 and 2 in Table II is improved with partial waves
19, 20, and 21. The convergences of energies in this cal-
culation can easily be seen from these two tables. The ra-

dial terms %,,,, in each partial wave are chosen as fol-
lows. First, for a certain W, all terms with
(m +n +k)< W are used (see Tables II and III). This

determines an energy contribution AE for the partial
wave. To reduce the number of radial terms used, we
then recalculate the energy contribution by successively
adding each #,,,, term until AE is essentially reached.
Those terms with negligible contribution are thereby
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dropped. In the partial wave of group I, the powers m, n,
and k are started from their respective angular com-
ponent I. This condition is relaxed in the partial waves of
group II. Our upper bound to the term energy of
1s2s2p *P°, —5.367999 a.u., is lower than the value of
—5.367 80 a.u. by Ahlenius and Larsson [12] using Hyl-
leraas coordinates, and —5.367 917 a.u. by Froese Fisch-
er [13] wusing the multiconfiguration Hartree-Fock
method. In Table IV, the nonrelativistic energies are
compared only with the best previous values given by
Bunge and Bunge [6,5]. Nonrelativistic energy upper
bounds calculated here for both 1s2s3s *S and 1s2s2p *P°
are accurate to about 107 a.u. Total term energies of
these two terms are presented in Table IV along with
mass-polarization and relativistic corrections.

The predicted ionization potential (Vp) of 1s2s2p *P°
is, therefore, given by

Vip(1s2s2p *P°)=E (1525 3S)—E (1s252p *P°)

=56459.6(5) cm ™!, (11)
or semiempirically by
Vip(1s2s2p *P°)=E (1525 3S)— E (152535 *S)+v
=56460.1(2) cm ™!, (12)

where v=34071.91(5) cm ™! is the wave number of the
interval 1s2s2p *P°—1s525s3s*S by Feldman et al. [14]
based on the observation by Herzberg and Moore [15].
The total term energy E(1s2s3S) is —1121722.13(1)
cm~! by Accad et al. [16], and the values of
E(1s252p *P°) and E (152535 *S) are calculated in the
present work. These are indicated in Fig. 1. In Egs. (11)
and (12), we have not included the Lamb-shift correction.
The differences in the Lamb-shift contributions between
the two- and three-electron systems are calculated for the
ionization potentials to be +0.7 and —0.1 cm ™!, respec-
tively [17]. The good agreement between the results from

BREAKUP THRESHOLD /// / /[ /[ /L /LSS

Total energy E(1s2s3S)
-1121722.1340.01 cm™?!
Accad et al. (Ref.16)

152538

Term value T'(152s 3S)

519522.44+3.1 cm™!
Herzberg and Moore (Ref.15),
Edlén and Lidén (Ref.18)

-1178181.8+0.4 cm™!
this work

152s2p ‘P°

Total energy E(1s2s2p *P°)

Total energy E(1s2s3s *S)

-1144110.3+0.2 cm™!
this work

lonization potential 7 P(1s2s2p 1P°)

5647315 cm~! Mannervik and Cederquist (Ref.1) 4
56460.6+0.7 cm™" Bunge (Ref.6) 152535 °S
56460.040.2 cm™! this work

Emission line at
34071.9140.05 cm™!

15225 %S

A Term value T'(152s2p P°)
4630391122 cm™! Rassi et al. (Ref.4)
463062.4+3.3 cm™! this work

Herzberg and Moore (Ref.15),
Levitt and Feldman (Ref.14)

FIG. 1. The schematic diagram (not to scale) for the term energies, ionization potentials, and term values of neutral lithium. The
total term energy of 1s2s2p *P° can be obtained by direct calculation or by combining the total energy of 1s2s3s “S with the transition
energy of 1s2s2p *P°—152s3s*S. If we use the 1s2s2p *P° and 1s2s3s *S energies from this work, the transition line would be
34071.5(6) cm™~!. The ionization potentials are given experimentally by Mannervik and Cederquist (Ref. [1]) and calculated by Bunge
(for the J=13/2 level, Ref. [6]) and by the present authors. The term values of 1s2s2p *P° are established from the ejected-electron
spectrum by Rassi ez al. (Ref. [4]) and from Eq. (13) with the ionization potential obtained in this work.
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Egs. (11) and (12) shows the consistency of our calcula-
tion. We conclude the value Vip(1s2s2p *P°)
=56460.0(2) cm ™!, including the Lamb-shift correction
[17], from Eq. (12) because of its smaller uncertainty.

In Fig. 1, we compare the ionization potentials of
1s2s2p *P° from different approaches. The experimental
value 56473(5) cm ™! is deduced from spectroscopic data
by Mannervik and Cederquist [1] using quantum-defect
analysis. The value 56460.6(7) cm ™! is calculated for the
J=3/2 level by Bunge [6] using Eq. (12) with v=34072.9
cm~!. In that work, only nonrelativistic energies are
considered. Replaced by the value [14,15]
v=34071.91(5) cm~! between centers of gravity of
1s2s2p 4p° and 1s2s3s %S, it becomes 56 459.6(7) cm .
Based on the results of Accad et al. [16] and the present
calculation, the mass-polarization corrections for 1s2s 3§
and 1s2s3s %S are 0.30 and 0.33 cm ™}, respectively, and
the relativistic corrections for these two terms are
—135.21 and —136.26 cm ™!, respectively. The net con-
tribution from the mass-polarization, relativistic, and
Lamb-shift corrections [17] to Vip(1s2s2p *P°) as given
by Eq. (12) is 0.92 cm™!. These additional corrections
would bring Bunge’s value to 56 460.5(7) cm ™!, which is
to be compared with our value 56460.0(2) cm™!. The
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0.5-cm ™! difference between the corrected Bunge’s value
and that of this work comes from Bunge’s lower estimate
for the nonrelativistic term energy of 1s2s3s*S. The
disagreement between theory and experiment still
remains. The discrepancy, 13 cm ™!, is too large to be ex-
plained as the truncation error of the theoretical result
arising from the finite number of basis functions used in
the calculation. Mannervik and Cederquist [1] obtained
the ionization potential Vip(1s2s2p *P°) by presenting a
quantum-defect diagram with three series limits, 56 490,
56473, and 56460 cm™!. Our results favor the value
56460 cm ™~ !. It appears that further analysis is needed.

The relative term value T(1s2s2p *P°) to the ground
state 15225 2S can then be determined by

T(1s2s2p *P°)=T (1525 3S)— Vip(1s252p “P°)  (13)

with the relative term value T'(1s2s 3S) established exper-
imentally by

T (1525 38)=Vp(15225 28)+ Vp(15218) — Vp(1s2s 3S)

=519522.4(3.1) cm™ !, (14)

where Vp(1s22s25)=43487.19(2) cm~! by Edlén and
Lidén [18], Vp(1s218)=610079.4(3.0) cm~! and

TABLE II. The nonrelativistic energy upper bound (in a.u.) of 152s3s *S for neutral lithium. Here W is the maximum allowed sum
of the powers, m +n +k, and N is the number of selected radial terms for each partial wave; a, 3, and y are the optimized nonlinear
parameters, and AE is the contribution by adding the partial wave to the trial wave function.

Partial wave Angular coupling w N a B v AE
Group I
1 [(s,5)°S,s] 6 48 2.3250 1.6250 0.3800 —5.204472 30
2 [(s,5)%S,s] 4 32 2.0600 1.0938 0.6300 —0.000013 03
3 [(s,p)*P,p] 7 45 3.1263 1.4175 0.8872 —0.006 85721
4 [(p,p)®S,s] 7 31 2.7000 2.5937 0.5850 —0.001 161 68
5 [(p,s)*P,p] 7 39 1.3154 2.7056 0.7375 —0.000035 33
6 [(s,d)’D,d] 9 20 2.9469 1.2350 1.1475 —0.000027 85
7 [(d,d)?S,s] 9 26 4.3181 3.4543 0.3924 —0.000077 60
8 [(p,d)’P,p] 9 31 3.4650 2.2425 0.6000 —0.000063 77
9 [(p,p)*D,d] 8 20 2.8500 1.1250 1.0455 —0.000000 18
10 [(f, )3S,s] 11 16 4.7381 4.8750 0.3780 —0.000011 11
11 [(s,£)°F, f] 11 16 2.5625 1.2600 1.1610 —0.000004 86
12 [(g,8)%S,s] 13 13 5.4050 5.0625 0.6000 —0.000002 25
13 [(s,8)°G,g] 13 8 2.9900 1.5000 1.5750 —0.000001 18
14 [(h,h)3S,s] 13 13 5.6478 6.1215 0.3150 —0.000 000 62
15 [(s,h)*H,h] 13 13 3.0000 1.7425 1.6500 —0.000000 31
16 [(5,i)S,s] 15 13 6.4050 6.3000 0.3000 —0.00000021
17 [(s,0)*L,i] 17 13 2.8000 1.5000 1.3000 —0.000000 10
18 [(k,k)3S,s) 17 13 6.8000 6.5000 0.4000 —0.000 00008
Group II
19 [(s,5)%S,s] 13 22 6.1000 3.7625 0.6000 —0.000002 18
20 [(s,5)%S,s] 4 10 3.0750 1.4625 1.0000 —0.00000029
21 [(s5,5)3S,5] 4 22 3.3863 1.9168 0.8550 —0.00000007
22 [(p,p)*S,s] 12 22 5.8750 5.3375 0.4725 —0.000004 62
23 [(s,p)*P,p] 6 22 1.1685 3.1500 3.7925 —0.00000013
24 [(d,d)?S,s] 13 20 5.1750 4.3700 0.5850 —0.000000 63
25 [(d,d)’S,s] 10 43 2.1591 1.3325 2.3704 —0.000 000 38
Total 571 —5.212738
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TABLE III. The nonrelativistic energy upper bound (in a.u.) of 1s2s2p *P° for neutral lithium. Here W is the maximum allowed
sum of the powers, m +n +k, and N is the number of selected radial terms for each partial wave; a, 3, and y are the optimized non-
linear parameters, and AE is the contribution by adding the partial wave to the trial wave function.

Partial wave Angular coupling w N a B Y AE
Group I
1 [(s,5)%S,p] 11 131 3.8745 1.5110 1.9373 —5.360583 60
2 [(s,p)*P,s] 4 14 3.0030 0.9332 1.0660 —0.000076 36
3 [(s,p)’P,d] 11 151 2.1450 1.6500 1.7100 —0.006 201 40
4 [(p,d)*P,s] 6 16 2.9880 3.5438 0.7108 —0.00001607
5 [(p,p)’S,p] 8 30 3.6300 2.7830 0.9801 —0.000 760 89
6 [(p,p)*P,p] 6 8 2.0250 1.3860 1.4190 —0.000001 65
7 [(p,p)D,p] 6 5 2.3100 2.8067 1.2870 —0.000000 17
8 [(s,d)’D, f] 10 23 3.0000 1.9562 1.7364 —0.000 129 32
9 ((d,f)P,s] 10 50 4.0590 4.5980 0.6688 —0.000 086 83
10 [(d,d)*S,p] 10 16 4.0000 3.4650 0.8978 —0.00006391
11 [(p,d)*P,d] 8 16 3.1500 2.2000 1.4108 —0.000011 48
12 [(s,/)F,g] 10 16 2.8500 2.1632 1.9500 —0.000024 77
13 [(f,8)’P,s] 10 15 4.5100 4.6200 0.9975 —0.000 006 95
14 (A0S, p] 10 8 3.9600 4.7334 0.8400 —0.000008 41
15 [(p,p)’D,d] 8 11 3.8500 1.6200 1.9200 —0.000005 16
16 [(p,d)’F,g] 10 2 0.9500 4.9500 3.2340 —0.00000021
17 [(d,f)P,d] 10 1 4.5000 2.7600 1.1200 —0.000 000 45
18 [(s,8)°G,h] 12 9 2.9250 2.4200 2.0625 —0.000005 59
19 [(g,h)*P,s] 12 11 5.5000 4.9020 0.9100 —0.000001 75
20 [(g,8)’S,p] 12 6 5.1600 4.6200 0.8550 —0.000001 78
21 [(s,h)*H,i] 14 7 3.0000 2.2000 2.1600 —0.000001 67
22 [(h,i)’P,s] 14 9 6.4000 5.2500 1.0800 —0.000000 57
23 [(h,h)S,p] 14 2 5.9400 5.9800 0.8550 —0.000 00035
24 [(s,i)*L,k] 16 6 2.9925 2.5410 2.6173 —0.000 000 59
25 [(i,k)*P,s] 16 7 6.3250 4.5000 1.2000 —0.000000 18
26 [(5,i)%S,p] 16 1 6.1712 6.1951 0.8494 —0.000000 10
Group II
27 [(s,5)%S,p] 19 63 9.0000 2.3000 5.2465 —0.000002 28
28 [(s,p)*P,d] 19 108 2.0453 7.2518 7.0166 —0.000 004 82
29 [(p,p)’S,p] 19 70 7.7500 5.2875 1.9250 —0.000001 28
Total 812 —5.367999
TABLE IV. Term energies (in a.u.) of 1s252p *P° and 1s2s3s *S for neutral lithium.
1s2s2p *P° 1s2s3s 4S
This work Bunge and Bunge? This work Bunge®
Nonrelativistic energy
E e —5.367 999 —5.367948 —5.212738 —5.212727
E imatea —5.368001(2) —5.367992(37) —5.212739(1) —5.212741(3)
Mass-polarization and relativistic corrections
(H;) —0.0000154 0.000001 5
(H,+H,) —0.000 604 0 —0.0006210
(H,) 0.000009 2 0.000 000 1
E ol —5.368611(2) —5.213358(1)

“Reference [5].
*Reference [6].
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TABLE V. Term energies (in a.u.) of 1s2s2p *P° for Li-like ions, Z =4-9.
9Be+ l]B2+ 12c3+ 14N4+ 1605+ 19F6+
Nonrelativistic energy
E_ .. —10.066 638 —16.267 594 —23.969 537 —33.171990 —43.874745 —56.077 688
E imatea —10.066 640(2) —16.267 596(2) —23.969 539(2) —33.171992(2) —43.874747(2) —56.077 690(2)
Mass-polarization and relativistic corrections

(H,) —0.0000322 —0.000050 8 —0.0000760 —0.000096 5 —0.0001172 —0.000 1308
(H,+H;) —0.0020070 —0.005078 5 —0.010804 4 —0.0204109 —0.0353525 —0.0573148
(H,) 0.000034 5 0.000084 9 0.000 1690 0.0002950 0.0004714 0.000 706 6
Eia —10.068 645(2) —16.272 640(2) —23.980250(2) —33.192204(2) —43.909 745(2) —56.134429(2)

Vip(1s2s 3S)=134044.19(10) cm~ ! by Herzberg and
Moore [15]. The value Vip(1s21S)=610079.6(2) cm ™!
was used by Bunge [6] referring to the value 610079.61
cm™! calculated by Pekeris [19]. This value was also
quoted later by Mannervik and Cederquist [1] and by
Mannervik [3]. However, we retain the Herzberg-Moore
value. From Eq. (13) we obtain the value
T (1s2s2p *P°)=463 062.4(3.3) cm™ !, which is consistent
with the value of 463 039(122) cm™! given by Rassi et al.
[4] from the ejected-electron spectrum. The large uncer-
tainty, 3.3 cm !, in our value is primarily due to the un-
certainty, 3 cm ™!, in Vp(1s21S).

B. Bet up to F¢*

We have also calculated the term energy of 1s2s2p *P°
for ions along the isoelectronic sequence. The trial wave
function is composed of 834 linear parameters in 27 par-
tial waves with the nonlinear parameters optimized for
each Z. The results are presented in Table V. The abso-
lute values of { H,+H;) and of ( H,) are smaller than
the earlier results by Chung [8]. This difference caused
by the larger set of basis functions in the present calcula-
tion becomes larger as Z increases. In the case of F®, it
is 38 X 107% a.u. for the absolute value of ( H,+H) and
4Xx107% a.u. for that of (H,). High-order relativistic
corrections, which are an order of (Za)? smaller than the
first-order correction, could be comparable to the mass-

TABLE VI. Relative term value (in 10° cm™!) of 1s2s2p *P°
to the ground state 1s2s S for Li-like ions, Z =4-9. The un-
certainties in this work do not include higher-order effects dis-
cussed in Sec. III B. The values and the undetermined constants
X, B, and R in the column headed Kelly are quoted directly
from Ref. [20].

This work Kelly
‘Be* 934.511 6(4) 1060.0
g2+ 1570.888 6(4)
12c3t 2372.015 3(4) 23771+ X
LN 3338.150 8(4) 3344.07+B
1605+ 4469.318 7(4) 4670.0+R
pe+ 5765.753 1(4)

polarization correction when Z >9. The intermediate
coupling may also contribute to a shift in the term energy
of high-Z ions.

To determine the relative term value of 1s2s2p *P°
above the ground state 15225 28 for these ions, we cannot
use Eq. (13) because an accurate T'(1s2s 3S) is difficult to
derive from experiment for these ions. Instead, we con-
sider the scheme given by

T(1s2s2p *P°)=Vp(1522s 2S)+ Vp(15% 1)
—E(1s2S)+E (1s2s2p *P°) , (15)

with the one-electron energy in the Dirac theory given by

1/2
E(1s%8)=c? —1] . (16)

The ionization potentials (IP’s) are taken from Kelly’s
compilation [20]. The results are listed in Table VI. The
Lamb-shift corrections to 1s 2S and 1s2s2p *P° are about
the same order of magnitude [17]. Hence Eq. (15) has the
advantage that it reduces the error of ignoring the
Lamb-shift correction. This error, which we do not in-
clude in Table VI, is less than 10 ppm of the relative term
value for each ion. Another source of errors may come
from the uncertainty of the ionization potentials in
Kelly’s compilation [20]. In Table VI, we also list the rel-
ative term values given by Kelly [20], which shows the
difficulty in determining the position of the quartet sys-
tem in current compilation works.

IV. CONCLUSIONS

We have attained an accuracy of 107% a.u. in solving
the nonrelativistic eigenvalue equation for the lowest
quartet term, 1s2s2p *P°, of three-electron systems. To
obtain such an accuracy, we tried to saturate the radial
basis functions and considered all possible angular corre-
lations with / up to 7 for the orbital angular momentum
of individual electrons. Our results showed that relativis-
tic effects are important in making an accurate compar-
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ison with experimental observations for neutral lithium.
The relative term values of 152s2p *P° are determined for
the lithium isolectronic sequence up to Z=9. Our results
will help spectroscopic compilations in reducing the un-
certainty in connecting the quartet system to the doublet
energy spectrum.
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