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Finite-field many-body-perturbation-theory calculation of the static hyperpolarizabilities
and polarizabilities of Mg, Al+, and Ca
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The dipole-dipole-quadrupole (B) and second dipole (y) hyperpolarizabilities and the dipole (a&) and
quadrupole (a2) polarizabilities are calculated for the ground states of the magnesium and calcium
atoms and the aluminum cation. The results are based on finite-field fourth-order many-body perturba-
tion theory using a finite-field self-consistent-field wave function as the zeroth-order wave function.
Our fourth-order results are a, =71.7e aoEH ', az=809e aoEH B=( 7.75X10 )e aoEH, and y
=(1.02X10')e aoEH' for Mg; a, =24.2e aoEH ', ai=124e aoEH ', B= 64—2eiaoEH, and y=!2.37
X10 )e a&E& for Al+; and a&=157e aoEH', +2=(3.02X10 )e a&EH', B=(—3.29X10 )e'aoEH,
and y=(3.83X10')e a&EH' for Ca.

PACS number(s): 31.20.Tz, 31.90.+s, 35.20.My

I. INTRODUCTION

Polarizabilities and hyperpolarizabilities are very use-
ful quantities in many areas of atomic and molecular
physics [1—3]. For example, they are important in stud-
ies of intermolecular forces [4] and related phenomena
[5], nonlinear optics [6,7], and low-energy electron
scattering o(f molecules [8]. Despite their importance, re-
liable values of these properties are known only for a few
elements mainly from the alkali-metal, alkaline-earth,
and rare-gas groups of the Periodic Table. Even within
these groups there are many gaps in our knowledge. For
example, the only one of these properties that has been
measured for Mg, Al+, or Ca is the dipole polarizability
of the calcium atom [9]. Although a few semiempirical
estimates [10—12] and many theoretical calculations
[13—26] have been made for these three species, only the
dipole and quadrupole polarizabilities of Mg and the di-
pole polarizability of Ca have been established reliably in
this manner.

The purpose of this paper is to report a finite-field,
fourth-order many-body perturbation theory calculation
of the dipole and quadrupole polarizabilities, and the
dipole-dipole-quadrupole (B) and second dipole (y') hy-
perpolarizabilities of ground-state Mg, Al+, and Ca. The
B hyperpolarizability is important in a proper description
of the long-range electron-atom interaction, and is need-
ed to estimate the leading coefticients in the long-range
multipole moments of dimers [27]. This paper comple-
ments our recent work [27—29] on the group II species
Be, Li, and B+. The computational methodology is
summarized in Sec. II, and the results are presented, ana-
lyzed, and compared with previous work in Sec. III.
Hartree atomic units are used throughout this paper.

II. COMPUTATIONAL METHOD

A. Finite-Aeld polarizabilities

The change in energy of a neutral, S-state atom upon
introduction of a static, axially symmetric field F„with
gradient F„,is given [2] by

h, E (F„)= aF„/8 —I,F—„—I F„— (3)

in which I „I2, . . . are the first, second, and higher
quadrupole hyperpolarizabilities. The odd terms in Eq.
(3) can be eliminated as follows:

b,E (F„)+DE ( F„)= a2F„/—4—2I 2F—„
(4)

a2 was obtained from Eq. (4) with two terms retained on
the right-hand side. Finally, let b,Ed (F„F„)be the en-
ergy change in the presence of both a homogeneous field
and a quadrupolar field. Equation (1) shows that the ex-
pansion of this quantity contains all powers of F„, all
even powers of F„and all corresponding cross terms. All
terms involving even powers of F„and all pure dipolar
terms can be eliminated by forming the difference
KEdq(F, F ) bEdq(F, F ). It is then easy to elimi-
nate all pure quadrupolar terms as well to find

AE = —a,F, /2 —a2F„ /8 BF,F„—/4

—yF, /24—4

in which a& and 0:z are the dipole and quadrupole polari-
zabilities, respectively, and 8 and y are the dipole-
dipole-quadrupole and second dipole hyperpolarizabili-
ties, respectively. a2 is precisely the aq of Dalgarno [1],
but is twice the C of Buckingham [2].

In the finite-field method [25,30—32], the polarizabili-
ties are obtained from combinations of energies of the
atom perturbed by different fields. If the field is homo-
geneous, then Eq. (1) can be written as

b,Ed (F, )= a iF, /2 y—F, /4! y—4F6/6!—
(2)

in which y4, y6, . . . are the fourth, sixth, and higher di-
pole hyperpolarizabilities. Thus, given the energies of an
atom perturbed by two or more different homogeneous
fields, e& and y can be obtained from truncations of Eq.
(2). In this work five terms were retained in Eq. (2).

In a purely quadrupolar field, Eq. (1) reduces to
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bEgq(F F ) bFgq(F F ) AE (F )+BE ( F ): BF F /2 o~3F F crqiF F (5)

in which o.23, o.
4&, . . . are higher mixed hyperpolarizabili-

ties. In this work, the field strength and gradient were
both weak, and B was obtained from Eq. (5) with only the
leading term retained on the right-hand side.

Violations of the Hellmann-Feynman theorem by ap-
proximate wave functions do not affect the accuracy of
electric properties calculated solely from perturbed ener-
gies [25,31—33]. This is not true for electric properties
obtained from perturbed multipole moments. Hence, our
final results are based on perturbed energies only. How-
ever, a useful check is provided by electric properties ob-
tained from perturbed multipole moments at the self-
consistent-field (SCF) level for which the Hellmann-
Feynman theorem is satisfied. The relevant equations are
summarized below.

In the presence of a homogeneous field, the induced di-
pole (p) and quadrupole (8) moments of an S-state atom
are given by

p(F, ) =a iF, +y F, /3! +y 4F, /5! +y 6F, /7! + (6)

8(F, )=BF, /2+2o4iF, +2o6,F, +2o.
si F, s+ . (7)

az is obtained from Eq. (7) in a manner similar to that
used to obtain it from Eq. (3). B can also be obtained, in
a manner analogous to that used to obtain it from Eq. (5),
from the induced dipole moment in the presence of both
a homogeneous field and a quadrupolar field:

ai and y are obtained from Eq. (6) in a manner analogous
to that used to obtain these quantities from Eq. (2), and B
is obtained similarly from Eq. (7). In a pure quadrupolar
field, the induced quadrupole moment of an S-state atom
is given by

9(F„)=a2F„/2+ 61 iF„+8I zF„+101 3F„+
(8)

B. Field-dependent energies

If field-dependent SCF energies are used, then the
finite-field method is equivalent to the coupled Hartree-
Fock (CHF) procedure and to the static limit of the
random-phase approximation [34,35]. A CHF calcula-
tion is useful for many purposes but cannot yield high-
accuracy results because of the neglect of true correlation
effects. The latter can be accounted for if the field-
dependent energies are calculated by a method that al-
lows for electron correlation and starts with the field-
dependent SCF wave function as the reference function
[35,36]. Early finite-field calculations with correlated en-
ergies include the polarizability calculations of Werner
and Meyer [37], and the hyperpolarizability calculations
of Bartlett and Purvis [38]. Hinchlift'e [31],Urban et al. ,
and Dykstra [25] provide useful reviews of many finite-
field calculations made since then.

In this work the field-dependent correlated energy cal-
culations are based on the Moeller-Plesset (MP) variant
of many-body perturbation theory which has been re-
viewed thoroughly [32,39,40]. A hierarchy of successive-
ly more complete MP energies, and therefore also proper-
ties computed from them, can be written as

EMP2 ESCF +ED2 &

EMP3 —EMP2+ ED

ESDQ-MP4 EMP3 +ES4+ED4+ EQR4

MP4 ESDQ-MP4+ET4 ~

(10)

(12)

(13)

C. Basis sets

where the numeral indicates order, S, D, and T, respec-
tively, stand for contributions from single, double, and
triple substitutions with respect to the zeroth-order func-
tion, and QR denotes the contribution from disconnected
quadruple substitutions plus the renormalization term.

p(F„F„) p(F„F„)=—BF,F„+—2o 23F,F„
+4o4iF, F„— (9)

The selection of a good one-particle basis set is essen-
tial to the success of any polarizability calculation

TABLE I. [14s11p6d3f] basis set for Mg. Five-component d- and seven-component f-GTF were used. Exponents are given in
parentheses and are preceded by contraction coefticients only if the latter are different from 1. All quantities are in atomic units.

( 7s ) /[ 1s]=0.000 124( 1 708 066 ) +0.000 957(255 748.6)+0.004 971(58 200.05 ) +0.020 964( 16485. 12 ) +0.076 23 1( 5378.248 )

+0.246 878(1941.664) +0.722 262(757.2925)+ 13s (314.0328, 136.806, 61.985 69,28.976 43, 13.805 15,6.464 312,2.994 069,

1.364 919,0.616 381,0. 147 513,0.066 715,0.029 514,0.013057)

+ (5p) /[ 1p] =0.001 146(2263. 106)+0.010 160(536.0126)+0.056 960( 174.0500) +0.236 257(66.347 42) +0.769 500(27.859 82)

+ 10p ( 12.500 59, 5.846 649, 2.772 711,1.313476,0.612 521,0.254 030,0.096,0.048,0.024, 0.012)

+6d (1.7,0.425, 0.318,0. 10625,0.0615,0.0243)+3f (0. 12,0.080,0.053)
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TABLE II. [14s1lp6d3f] basis set for Al+. Five-component d- and seven-component f-GTF were used. Exponents are given in
parentheses and are preceded by contraction coefficients only if the latter are different from 1. All quantities are in atomic units.

(6s)/[ Is] =0.000423(2 203 790)+0.002 857{329 944. 1)+0.015 133(75081.71)+0.064024(21 266.41)+0.232 816(6938.077)

+0.754 748(2504. 811)+13s (976.9710,405. 1890, 176.6066, 80. 11946, 37.552 62, 18.022 59, 8.667 077,

3.961 705, 1.828 544, 0.841 712,0.242 606,0. 109 717,0.047 076)

+ (4p)/[ Ip] =0.003 936(3116.242)+ 0.034 650(737.9542)+0. 196234(239.6734)+0.828 440(91.499 85)

+ 10p (38.542 44, 17.365 17,8. 182 553, 3.930 197, 1.897 362,0.911690,0.411 189,0. 175 864,0.073 941,0.030 777)

+6d(13.8, 4.6, 1.53,0.3,0. 13,0.056)+3f(5.8, 1.2,0.25)

[25,31,32]. An extreme example of the sensitivity of hy-
perpolarizabilities to the basis set is provided by our work
on lithium [41].

The basis set for Mg was constructed by starting with
Partridge's (19sllp) set [42] of Gaussian-type function
(GTF), and contracting it to [13s7p]. Then, we added a
diffuse s-GTF with an exponent forming a geometric se-
quence with the exponents of the two most diffuse s-GTF
in the substrate. Next, a set of four even-tempered p-
GTF with exponents chosen to maximize the SCF n& was
added. Then, we added six d-GTF —three with ex-
ponents chosen to maximize o.2 at the SCF level, and
three to maximize the MP2 corrections to o.

&
and the

field-free energy. Finally, three f-GTF chosen to maxim-
ize the MP2 corrections to n2 and the field-free energy
were added. The resulting [14sllp6d3f] basis set, de-
tailed in Table I, contains 98 contracted GTF.

The basis set for Al+ was constructed by contracting
Partridge's (19s14p) set [42] for neutral Al to [14s lip],
and adding six d-GTF and three f-GTF in the manner
described above for Mg. The details are given in Table
II.

The basis set for Ca was constructed by starting with
the (23s15p ) set of Partridge [43] and contracting it to
[13s7p]. Then, we added two diffuse s-GTF with ex-
ponents forming a geometric sequence with those of the

two most diffuse s-GTF in the substrate. Next, three
even-tempered p-GTF chosen to maximize e, at the SCF
level were added. We then added three even-tempered
d-GTF to maximize a, and four d-GTF to maximize a2
at the SCF level. To our surprise, a very tight d-GTF
turned out to be necessary for the latter purpose. One f
GTF was added to maximize az at the MP2 level, and
another one to minimize the field-free second-order ener-

gy correction. Finally, a third f-GTF whose exponent
was the geometric mean of the other two was added. The
resulting [15s10p7d 3f ] basis set contains 101 contracted
GTF, and is listed in Table III.

D. Computational details

The occupancies of the lowest orbital in Mg and Al+
and the five lowest orbitals in Ca were kept frozen during
the MP calculations which were performed with the
GAUSSIAN 86 system [44].

Homogeneous fields were introduced as conventional
finite fields but, as in our previous work [27—29], quasi-
quadrupolar fields were generated by four point charges
of —32Q, Q, Q, and —32Q placed symmetrically about
the atomic origin at the z coordinates —2R, —R,
R, and 2R, respectively; with this arrangement,

TABLE III. [15s10p7d3f] basis set for Ca. Five-component d- and seven-component f-GTF were used. Exponents are given in
parentheses and are preceded by contraction coefficients only if the latter are different from 1. All quantities are in atomic units.

(8s)/[ Is] =0.000035(12 583 230)+0.000318(1 884 722)+0.001 696(429 114.2)+0.007 173(121605.6)+0.026 114(39688.79)

+0.085 268( 14 332.73)+0.254 249( 5591.768) +0.698 294(2320. 138)

+ ( 4s ) /[ 1s] =0. 1 16772( 1012.582 ) +0.262 672( 460.9642 ) +0.501 5 10(217.4029 ) +0.297 741(26. 522 67 )

+ 13s ( 105.6677, 52.638 32, 12.538 96,6.285 493, 3. 166 764, 1.432 853,0.694 955,0.326 331,0.083 411,0.041 602,0.019 838,

0.009 460,0.004 511)

+(6p)/[ lp] =0.000 301(13644. 11)+0.002 672(3229. 337)+0.015 516(1049.011)+0.069024(401.5885)+0.248 563(170.5179)

+0.738 050(77.743 94)

+ (4p)/[ lp] =0.155 887(37.350 84)+0.285 156(18.573 81)+0.377212(9.428 930)+0.300628(4.867 379)

+ 8p (2.505 317,1.260 803,0.621 035,0.298 662, 0. 122 830,0.045,0.020, 0.008 889)

+7d {9.80, 2.5, 1.0,0.40,0.095,0.0296, 0.013)+3f(1.4,0.277,0.055)
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F„F„„F„„„.. . all vanish as does F„„, and

IZ,.I
=12g/&'.

The values of the field strengths and gradients were
chosen just large enough to produce numerically
significant changes in the energies; note that stronger
fields are required when small correlation corrections are
to be computed than would be necessary if only SCF
values were required. Enough terms were retained in the
expansions to ensure that the polarizabilities computed
from the perturbed SCF energies agreed with those corn-
puted from the perturbed SCF multipole moments, and
to ensure stable values of the correlated properties of in-
terest.

III. RESULTS AND DISCUSSION

A. Quality of basis sets

Our SCF energies of Mg and Ca respectively, were
—199.614 611EH and —676.753 098EH; these are
0.025X10 EH and 5. 1X10 EH above the respective
numerical Hartree-Fock limits [45]. Our SCF dipole po-
larizabilities a, (see Tables IV and V) are essentially iden-
tical to the numerical CHF limits [19] of
a, /e aoEH '=81.60, 26.44, and 185.5 for Mg, Al+, and
Ca, respectively. Our SCF quadrupole polarizabilities a2
are within 0.2%%uo of the numerical CHF limits [19] of
a2/e a+H '=928.7, 130.3, and 3604 for Mg, Al+, and
Ca, respectively. The very close agreement between our
SCF polarizabilities and the CHF limits is an indication
of the good quality of our basis sets.

The CHF limits of the B and y hyperpolarizabilities
are unknown; in fact, the only prior coupled SCF calcula-
tion of these quantities for Mg, Al+, and Ca that we are
aware of is the value of B= —l.25 X 10 e a +H ob-
tained by Dykstra [25] for Mg with a (16s 1 lp7d)/
[10s8p7d] basis set. However, his value is likely to be
less accurate than ours judging by the lack of f-GTF in
his basis set and by the 3.8% discrepancy between his az
value of 964.5e a+H ' and the CHF limit. There are un-

SCF
D2
D3
DQ4
S4
T4
MP2
MP3
SDQ MP4-
MP4
P [2/1]

26.444
—2.240
—0.021

0.070
0.056

—0.103
24.204
24.183
24.308
24.206
24.194

2942
—348
—146
—83

2
1

2594
2448
2367
2368
2274

130.4
—9.2

1.1
1.1
0.6

—0.3
121.2
122.2
123.9
123.5
116.9

—808.7
146.5
22.0

3.8
—9.5

4.3
—662.3
—640.3
—646.0
—641.7
—641.6

coupled SCF values of B /e a +H = —2.09 X 10,
—1730, and —1.25X10 for Mg, Al+, and Ca, respec-
tively [14]; however, our SCF results show that these
values are too large by a factor of roughly 2. Similarly,
the uncoupled SCF values of y/e a+H =2.19X10,
5242, and 1.66X10 for Mg, Al+, and Ca, respectively
[13],are too large as well.

B. Kft'ects of electron correlation

The correlated values of the electric properties of Mg,
Al+, and Ca are listed in Tables IV and V. These tables
also list [2/1] Pade approximants [46] to the property
series; the P( [2/1] ) approximants [27,28] obtained by
differentiating [2/1] Pade approximants to the field-
dependent energy could not be calculated reliably be-
cause of the lack of sufficient significant figures in the
order-by-order corrections to the various properties.

The many-body perturbation series are rapidly conver-
gent in all cases except those of B for Ca, and a2 for Al +

The discrepancies among the SDQ-MP4, MP4, and
P[2/I] values give an indication of the residual errors

TABLE V. Correlation corrections to and correlated values

of the electric properties of Al+. All quantities are in atomic
units. Conversion factors to SI units are given in the caption to
Table IV.

Method

TABLE IV. Correlation corrections to and correlated values of the electric properties of Mg and Ca. All quantities are in atomic
units. Atomic units of a& and y are =1.648778&10 ' C m J ' and 6.235378X10—65 C4m J, respectively. Atomic units of a
and 8=4.617048X10 C2m J ' and 1.696733X10 C m J, respectively.

10 y 10 8

Method

SCF
D2

DQ4
S4
T4
MP2
MP3
SDQ MP4-
MP4
P [2/1]

81.585
—9.301
—0.623

0.085
0.263

—0.314
72.285
71.661
72.009
71.695
71.693

185.45
—41.11

7.73
5.55
2.83

—3.82
144.35
152.07
160.45
156.64
163.25

1.491
—0.372
—0.087
—0.033

0.024
—0.004

1.119
1.032
1.024
1.020
1.018

7.974
—3.526
—0.653
—0.380

0.559
—0.142

4.448
3.795
3.973
3.831
3.829

927.7
—121.2

—6.8
5.0
8.0

—3.5
806.5
799.7
812.8
809.3
803.7

3598
—812

130
84
91

—74
2786
2916
3090
3016
3346

—10.75
2.569
0.469
0.110

—0.189
0.044

—8.180
—7.711
—7.790
—7.746
—7.743

—51.00
22.89

—0.93
—1.71
—3.47

1.38
—28.12
—29.05
—34.23
—32.85
—27.81
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due to truncation of the MP series. Note that the compu-
tationally expensive triples contributions cannot be
neglected because they are of the same order of magni-
tude as the other fourth-order contributions.

Correlation effects reduce the magnitudes of each of
the electric properties. The effects increase in the order
Al+, Mg, and Ca for a given property, and, for a given
species, the effects are greater for the hyperpolarizabili-
ties than for the polarizabilities. More specifically, the
magnitudes of the MP4 values of a, , a2, B, and y, respec-
tively, are smaller than their SCF counterparts by 12%,
13%, 28% and 32% for Mg, by 8.5%, 5.3%, 21%, and
20% for Al+, and by 16%, 16%, 36%, and 52% for Ca.

C. Correlated yolarizabilities

Table VI contains a summary of various correlated cal-
culations, experimental values, and semiempirical esti-

mates of the dipole and quadrupole polarizabilities of
magnesium and calcium; Al+ is not included in the table
because there are no such values for Al+ in the literature.
The results of Muller, Flesch, and Meyer [22] show clear-
ly that including only valence correlation leads to values
that are too large. We verified this at the MP2 level, and
all the correlated calculations reported in this work in-
clude correlation of the L and M shells in Mg and Al+,
and the M and N shells in Ca.

First consider the dipole polarizability for Mg. Except
for the old R-matrix calculation of Robb [16],all theoret-
ical results that include core-valence correlation lie be-
tween 70.3 and 72.2e a+H ' The most accurate of these
values are probably the multireference (MR) configura-
tion interaction (CI) value [26] of 71.2e aoEH ' which ap-
peared after the calculations described in this paper had
been completed, and our MP4, or P [2/ I ], result of
71.7e a+H '. All these theoretical predictions are on the
low side of the semiempirical estimates obtained by sum-

TABLE VI. Comparison of correlated and experimental polarizabilities of Mg and Ca. All quantities are in atomic units; see cap-
tion to Table IV for conversion factors to SI units.

Ca

Method'

8-matrix CI
PNO-CEPA'
Natural states pseudo-potential
Variation-perturbation valence CI'
Variation-perturbation valence CI'
Valence CIg
Valence CI +core polarization
Valence CI +core polarization"
Variation-perturbation CI'
Valence CI +core polarization'
CI'
Multireference CI
MP4'
P [2/1]
Oscillator strength sums"
Oscillator strength sums'
Oscillator strength sums
Experimentq

75.4
71.32
70.5
73.52

74.26
70.74
70.7

72.2
70.3
71.2
71.70
7 1.69
75+3
75 ~ 5
72.50

1001

828.0
845 ~ 1

78 1.0
767.8
785.1

809.3
803.7

153.9
1 53.7

168.6
175.5
1 56.0
157
171.7

1 56.6
163.3

153.9
155.9
168.7+ 16.9

2717

3 1 80

3016
3346

All calculations take core-valence correlation into account unless explicitly specified otherwise. CI denotes configuration interac-
tion.
Reference [16].

'Pseudonatural orbital coupled electron pair approximation; Ref. [17].
Reference [18].

'Reference [20].
Reference [21].
sReference [22].
"Reference [23].
'Reference [24].
"Reference [26].
Reference [26]; includes an approximate correction for quadruple substitutions.

'Fourth-order finite-field many-body perturbation theory; this work.
Pade approximant to finite-field many-body perturbation series; this work.

"Reference [10].
"Reference [11].
~Reference [12].
Reference [9].
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ming over a mixture of experimental and theoretical os-
cillator strengths [10—12]. At first sight, this is a bit
surprising because these serniempirical estimates would
be lower bounds if the oscillator strengths used were
sufficiently accurate. However, most of the oscillator
strengths used have uncertainties of 3 —5%%uo, and hence
the estimates cannot be considered true lower bounds.

Next consider the dipole polarizability for Ca. Except
for the calculation of Glass [24], all the theoretical calcu-
lations that include core-valence correlation lie between
153.7 and 157e a+H ', and are in good agreement with
the oscillator strength sum estimates bearing in mind that
the latter need not be lower bounds given the uncertain-
ties in the oscillator strengths. We believe that Glass's
variation perturbation result is too high probably because
of the difficulty, inherent to that method, of achieving a
balanced description of the field-free and perturbed wave
functions. All the theoretical values are within the 10%%uo

error bars of the experimental measurement of Miller and
Bederson [9] although all the calculated values except
that of Glass [24] are on the low side of the experimental
range. The true a, for Ca is likely to be a little higher
than our MP4 value of 157e aoEH ' given that both the
SDQ MP4 and -P [2/I ] values are higher than it.

Consider the quadrupole polarizabilities next. There
are hardly any truly reliable values in the literature. The
results of Maeder and Kutzelnigg [18] are based on a
pseudopotential, and Magnasco and co-workers [20,21]

did not include core-valence correlation. Robb's
matrix calculation [16] for Mg included a small amount
of core-valence correlation but is nevertheless too high.
The true value of o,2 for Mg is likely to be between the
MR CI value [26] of 785e aoEH ' and our MP4 result of
809e aoEH'. The true value of az for calcium is prob-
ably closer to our SDQ MP-4 value of 3.09X10 e aoEH '

than to our MP4 value of 3.02 X 10 e a+H '.

D. Correlated hyperpolarizabilities

There has been virtually no previous work on correlat-
ed hyperpolarizabilities for Mg, A1+, and Ca. There are
no experimental results, and the only previous theoretical
work attempting to go beyond the uncoupled SCF
level is the model potential calculation of Manakov,
Ovsyannikov, and Rapoport [15] who obtained
y=1.7X10 e aoEH for Mg which is much too large.
Our MP4 values are the best available; an optimistic
guess is that they are accurate to within 10%.
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