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Cooperative atomic effects in two-photon spontaneous emission and resonance Auorescence
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In this paper, we study cooperative two-photon transitions in a system of two (nonoverlapping) atoms
for two processes: two-photon spontaneous emission and two-photon resonance Auorescence. Expres-
sions are obtained for the energy shifts and decay rates due to the interaction of the atoms with and via
the field. The altered decay rates signal the existence of superradiance and subradiance in the two-atom
system. The energy shifts of the single-excitation states are found to be proportional to R for small
atomic separations R, and to R for large separations.

I. INTRODUCTION

The subject of cooperative radiative transitions by a
system of two or more identical atoms (or molecules) has
received considerable attention over the years, beginning
with an initial study by Dicke [I]. Many authors since
have dealt with coherent single-quantum electric dipole
excitations of systems of two [2,3] or more [3,4] atoms. A
few exact analytical studies exist of the collective spon-
taneous emission by fully inverted systems [5], and a very
large literature exists involving approximate (and usually
numerical) treatments of "Dicke superradiance" [6]. The
effects of the atomic interaction include in general the
splitting of each atomic energy level into a number of
sublevels, the shift of each sublevel from the single-atom
energy, and a change in the lifetime of each sublevel from
the single-atom radiative lifetime.

With the exception of a single paper dealing with
cooperative electric quadrupole transitions in atoms [7],
all the work performed to date has dealt with single-
photon, electric dipole transitions. It is our purpose in
this paper to address the question of cooperative two-
photon (2-y ) spontaneous emission and resonance
Auorescence in multiatom systems. We study the sim-
plest example of such a system: two identical atoms,
separated by a distance R (large compared to the atomic
diameter so that overlap can be ignored), interacting with
a common radiation field, each atom capable of making a
2-y transition between two of its levels (of the same pari-
ty) via nonresonant intermediate levels (of the opposite
parity). Two cases are studied: (i) the atomic system ini-
tially in a single-excitation level, interacting with the vac-
uum field (2-y spontaneous emission); and (ii) the atomic
system initially in its ground level, interacting with the
vacuum field and with a weak probe field (2-Y resonance
fiuorescence).

In studying the evolution in time of the atoms-plus-
field system, we do not make the rotating-wave approxi-
mation [8], and we include two types of "essential states":
states that are resonant in energy with the initial state,
which both alter the decay rates and shift the energies of
the atomic single-excitation levels; and nonresonant
essential states, which contribute only to the energy shifts

through the exchange of virtual photons. We find that
the effects of the atomic interaction are analogous to its
effects for (two-atom) single-photon transitions [2,3].

(i) The energy level corresponding to a single atomic
excitation is split into two sublevels, corresponding to the
symmetric ( ~

+ ) ) and antisymmetric ( ~

—) ) states of the
two-atom system.

(ii) The decay rates of the sublevels are functions of
koR, where A'koc is the energy difference between the
single-atom levels ~b ) and a ) (see Fig. I). These decay
rates first appear as the convolution of two functions,
representing the retarded dipole-dipole interaction be-
tween the two pairs of oscillating dipoles that character-
ize each atomic (2-y) transition. Integration yields a gen-
eral expression which consists of oscillating functions of
koR, multiplied by inverse powers of koR ranging from
(koR ) to (koR ) . For small koR, the + ) state is
superradiant, with a decay rate double that of the single
atom yo; the

~

—) state is subradiant, with a decay rate of
order (koR) yo [9]. For large koR, the effects of the
atomic interaction become negligible, and the sublevels
merge into a single level with frequency and decay rate
identical to those of a single atom.

ib)

hck

FIG. 1. Three-level atom, with a 2-y transition between lev-
els

~
a ) and

~
b ) via the intermediate state

~
m ) .
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(iii) The energies of the sublevels are shifted from the
single-atom energy. The shifts are also oscillating func-
tions of koR, with leading terms proportional to (koR )

for small koR and to (koR) for large koR.
(iv) In 2-y resonance fiuorescence, the total probability

of absorption from the ground state is the sum of the
probabilities of absorption to the levels I+ & (I —&),
which are shifted in energy and broadened (narrowed) by
the vacuum field as they are in spontaneous emission.
The energy of the ground state is shifted by the laser-
induced shift as well as by the second-order Casimir-
London dispersion energy [10].

In Sec. II, we present the theory of two-atom, 2-y
spontaneous emission. In Secs. III—V we evaluate the de-
cay rates and shifts of the two-atom energy levels, and
the distribution of energy in the system as a function of
time. In Sec. VI, we present the theory of resonance
fluorescence by the two-atom system irradiated by a weak
probe beam. In Sec. VII, we discuss the results of this pa-
per. Finally, in the Appendix, we give details regarding
the evaluation of some of the integrals in the paper.

II. SPONTANEOUS EMISSION

The calculations in this paper are based on the
Heitler-Ma (HM) treatment of 2-y transitions [11],
developed as part of a program to extend radiation
theory to 2-y processes.

We consider two identical atoms, centered at R,
(s=1,2) with IR&

—R2I=R. Atom s can make a 2-y
transition between its levels lb, & and la, & via a non-
resonant intermediate level lm, & (see Fig. 1) [12]. We
denote by C & (with energy Ec) states of the two-atom
system,

l»=lb, &lb, &, E, =2E,
IM&=lm, &lm, &, EM=2E

I+&= —(Ia, &lb, &+ b, &lap&), E+=E, +Eb,
2

and we include as well the nonresonant state IM & (with
E )Eb) E, ), which contributes to the energy shifts.
The states

I
C & satisfy the eigenvalue equation

' 1/2

E(R)=i g [e(k)a e'"' —e*(k)akte '"
]

The eigenstates of Ho are the product states
IC&l . . nk &. In particular, we will be involved with
the states ICO&—= IC&l .

Ok &, where
I Ok

is the vacuum state of the field, and the states Ickl &

[with energy Eck&=Ec+A'c(k+l)], in which the atoms
are in the state

I
C & and one photon is present in each of

modes k and l. We shall omit IO & from
I
CO & when no

confusion can result.
We take for the initial state II & of our system the

single-excitation state

II &=c I+0&+c
I

—0&, Ic I
+ Ic I

=1 . (7)

(For example, if one atom is initially in state
I
b & and the

other in state
I
a &, c+ = 1/&2. ) In HM, we study

G(E)II&, the Fourier transform of the wave function
lg(t) & of the atom-field system,

~g/i(t) &
= —(2mi) ' f dE G(E)II & exp( —iEt/fi) . (8)

The basic (exact) equation of the HM method for 2-y
processes is [11]

[E Ho K(E—)]G(E—)II &
= [1+V(E —HO) ']ll &, (9)

where the effective operator K is given by
2

K(E)—:g V'(E H„—H~) —'V'
s,s'=1

(10)

Our objective is to find the dependence on the interatom-
ic separation 8 of the decay rates and energy shifts of the
system, to the lowest nonvanishing order in V. The diag-
onal elements of K(E) (e.g., K++) are found to give
second-order R-independent (single-atom) shifts and are
absorbed into the corresponding energies (E+). Multi-
plying Eq. (9) by ( Cl and by (Ckl I

in turn, and denoting
( Cl GII & by Gc and so on, we obtain the equations

(E Ec )Gc —g K—c D GD —g Kc Dk&GDkl
= ( clI &,

DWC D, k, l

where V' is the interaction of atom s with the field (in the
electric dipole approximation),

V'= —p(s) E(R, ),

H&IC&=(H +H, , )IC&=EclC&, (2)

where Hz is the atomic Hamiltonian, which is the sum of
those of the two atoms. The Hamiltonian of the field is
denoted by HF, with the eigenvalue equation

ECk! GCkl g KCkl, Dkl Dkl g KCkl, D D
DWC D

(12)

8
I

. . n . &= ~+Pike(n + —,') I

. nF k k k (3)

Here I

. nk .
& is the state in which nk photons are

present in field mode k, and so on. The Hamiltonian of
the combined atom-field system is

In Eq. (12) we have neglected the coupling between Gckr
and GDkIk I, which gives rise to higher-order corrections.

If the initial state II & is I+0&(c+= 1,c+ =0), we can
proceed exactly as in HM [11]. For the more general
state II & of Eq. (7), however, a modified approach is re-
quired. We make the substitution

H =Ho ~- V =H~ +HF+ V'+ V (4) GckI (E)= UckI (E)g(E ECkI)—(13)
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in Eqs. (11) and (12) (i.e., Gckl cannot be taken propor-
tional to GI in this case), where g(x)=P(1/x) i—pro(x)
We thus obtain a system of linear, inhomogeneous equa-
tions for Gc and U&k&..

(E Ec—)Gc —g Kc D GD

(~kllq( ))=
EAkl E+ ~++(l /'2)~r+

+
c —KAkl, —(EAkl )

E~ki E——6 +(i /2)fig
(24)

—gK, „g(E E—„,)U „, &C—II),
Dkl

UCkl g KCkl, DklP EDki )UDkl g KCkl, DGD
DWC D

(14)

Equations (20), (21), and (24) describe the effects of the
atomic interaction on the decay rates, energy shifts, and
photon distribution for two-atom 2-y spontaneous emis-
sion processes.

To evaluate these quantities, we need the matrix ele-
ments of the effective operator K(E). We define the
single-atom operators K'(E) (s =1,2) by

which we solve using the continued-fraction (CF) rules of
Swain [13],obtaining the results

G+(E)=
E E+ + (

—i /2 )A'I"+(E)

K'(E) = V' V',1

F

and the two-atom operators K" (E)(s&s') by

(25)

U~kl(E)=K„k, +(E)G+(E)+K„kl (E)G (E),
2i IK+,c«) I'

I ~(E)=—

+2 IK+,Ckl(E)l PE ECkl )

CkI

Furthermore, using Eq. (7), we write GI in the form

GI(E)=c+G+(E)+c G (E) .

(17)

(18)

K" (E)= V' V'
E —H —HF

Using Eqs. (1) and (10), we find

1
K+, Akl(E+- ) —IKb, akl(. Eb ) Kb, akl(E—b ) ]

1
K+,Bki E+ ) I.Ka, bkl a )—Ka, bkl Ea )]

K k, (E ) =K —„l(E )

(27)

(28)

The decay rates y+ and energy shifts b.+ of levels I+ )
are obtained, respectively, from the real and imaginary
parts of I +(E), evaluated at E =E+ (the pole approxima-
tion [14]):

=2~=«[I+«+)]=
~ g IK+ ski«+)I'&«+ —Egkl),

k, l

' IK', kl(E —)+. Kb, bkl(Eb)

+KbI bkl(Eb)+K2. «(E. )],
= 1 I

K+,M. «+)= — X [K b, M. «+)
SWS

+Kb', M„(E+ )],

(29)

(30)

IK+,bt«+ ) I'
b+ = —Im[ I +(E+ ) ]=—

2

(20) where In') is either the vacuum state IO) or the two pho-
ton state Ikl ). The single-atom matrix elements K„'«,(E)
are evaluated in terms of the matrix elements of V in Eq.
(5):

+ g IK+, Ckl «+ )
I

C, k, l (E+ Eckl )
(21) K„',kl(E) =— +El (k)E;(1)&kl a'„', (E,k, 1;s)I 3 J

(+If(t)) =c exp — t — (E +b. )—7+ it
2

(22)

in which the factors 1/(E+Eckl) are und. —erstood as
principal values. In Eq. (21), we have dropped the quan-
tities IK+ cl /(E+ Ec) (for C=+,8, A—), which con-
tribute R-independent (fourth-order) shifts.

The time evolution of the system can be obtained from
the Fourier transform (8) and the solutions for the G
functions. The amplitudes (+lp(t)) and (II t(ti)l) are
found to be

i(k+I) R,Xe (31)

ijj (s)p', (s) p'„(s)pi, (s)

E E Pick E —E —ficl— —

~a( El, ks ), (32)

where I r, t] = [a, b ], i and j are the [x,y, z] directions,
and lLb„(s)=(r, lp'lm, ). The matrix elements of the
two-atom operator L" are evaluated similarly.

&Ilg(t) &=c &+ I&(t) &+c &
—lil'r(t)), (23) III. DECAY RATES

and the probability amplitude for the state
I
Akl ) for

times t ))1/y+, 1/y is
We square K+ „kl(E+ ) of Eq. (27) and divide Eq. (20)

into two terms:
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T+ ='Yo+ T &2 (33) ko
yo= g f dk k (ko —k) ~a~g', (Eb, k, ko —k)~z, (37)

l,j
yo 2 ~+bakl(Eb )

~
5(Eh Eakl )

S, k, l

=2~ 1 2
y 12 g

e X +b, akl Eb +akl, b Eb )5 Eb Eakl )
k, l

(35)

and a factor ( —,') is included to prevent double counting
over the frequencies of the photons [15]. The expression
(34) for yo is independent of R; after performing the sum-
mations over the polarizations and integrations over the
solid angles and l, we obtain the expression

The summation gk over the field modes is then replaced
in the usual way:

3

fdkk dQk g,2K c{kj

where we have set ko=(Eb E,—)/Ac, and omitted s in
o;jb', because the two atoms are identical. The quantity yo
is recognized as the 2-y decay rate of the excited state for
an isolated atom (c.f. Ref. [11] and references therein).
The quantity y &2, on the other hand, is R dependent, and
gives the eA'ect of the cooperative atomic interaction on
the damping rate of the system:

C ko

y, z(R)= —Re g f dk k (ko —k) F~q(kR)
& jP9'

XF, ((ko —k)R )

x ajb', (Eb, k, ko —k;2)

Xag{Eb,k, ko —k;1) . (38)

Here the function F q(kR) is given by

F (kR)=— f dQk(5.~ kjk~)ex—p(+ik R)
4m

sinks
k R

=5 [—', jo(kR) ,'j z(kR)]—+—RR j z(kR), (39)

where j„(x) is the spherical Bessel function {of the first

kind) of order n, and R (k ) is the jth component of
R/R (k/k). The expression gz z k pl(2)Fjq(kR)p~(1)
represents the retarded interaction of a transition dipole
at R&, oscillating with frequency kc, with a transition di-

pole at Rz [3]. Thus it is seen that yiz is the convolution
of two such dipole-dipole interaction expressions, one
each at frequencies kc and (ko —k)c. We recall that the

decay rates of the two-atom system for single-photon
transitions are expressed as yo+y', 2, where @&2 is propor-
tional to F (koR) [2,3. ]. Thus yiz is the analog for 2-y
transitions of y', 2.

Equations (37) and (38) are valid for all separations of
the atoms; the general expressions involve exponential in-

tegrals. To obtain a closed approximate result, we re-
place the denominators in the o. functions by their values
at k =ko/2 [16]. We are then able to immediately evalu-

ate Eq. (37) for yo:

4ko, &o &o
70 3~~ ~ ba b& 2

~

2
E

7T

(40)

To evaluate y &2, we introduce the A integrals:

A (n, n')= A(n', n )

=—f dx x (xo —x ) j„(x)j„(xo—x )

X()
dx x (xo x ) J +iyz(x)

0

XJ '+izz(xo x) (41)

where J„(x) is a (cylindrical) Bessel function, and

xo =koR. In terms of these integrals, we rewrite Eq. (38)
in the form

2c ko ko ko ko
y, z(R)= 7

Re g a~b, Eb. . '. 2 ag Eb,
9R

X (45,,5, A (0,0)+(5,, 3R,R, )(5; —3R—;~ ) & (2, 2)

—2[5 (5; —3R,P )+5; (5 —3R R )]A(2,0)] .

The integrals A (n, n') are evaluated using the recurrence relation

=3Ji yz (X ) = J3yz (X ) J5 yz (X )

and the tabulated integral (for p, , v & —
—,
'

) [l7]

Xo I ( p. + —,
' )I ( v+ —,

'
)

'dx xp(xo —x)"Jp(x)J.{xo—x)= — —
' '

xpo +'"Jp+-+1/z(xo)
o " 2m. l (@+v+I)

(42)
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where I (p) is the gamma function. We thus obtain

2&2c ko ko ko ko
y)2(R)= —

7 Re g ajb', Eb. . .2 ag, Eb. . . 1

(k()R)" J„i2(koR )
X oqqop(k()R) Jq)2(k()R )+(5 q'R R)('/l' R R)'

20

(k()R) Jqi2(koR )—[5 (5; R,R—)+/l, (5, —R R )]
4 (45)

In genera1, y&2 involves terms oscillating at frequency
koR, multiplied by inverse powers of koR ranging from
(koR ) to (koR ) . In the two limiting cases of
koR ((1 and koR ))1,we find

y()[1 —O(k()R) ] (k()R «1)
D(koR—) cos(koR) (koR »1),

where the coeKcient D is given by

(46)

cko ko ko , ko koD= Re g a~b', Eb. . .2 ag Eb, , ', 1

X (5/q R Rq )(5 ' 'R R)'
Thus the decay rates for the ~+) states become

2y, (k,R «1)
y+

y() (k()R » 1),

O(k()R) y() (k()R «1)

(47)

(48)

(49)
y() (k()R »1) .

We see that the symmetric single-excitation state of the
two-atom system is superradiant and the antisymmetric
state subradiant for small atomic separations, exactly as
is the case for one-photon processes. For large atomic
separations, the efFects of the atomic interaction on the
decay rates vanish as (koR ), in analogy with the

+, Akl +~rC (E ))'

(E+ (51)

[rC (E )/' /SC „,(E )/'

+ ~ c~~ u( + «(
The shifts )5,+ arise from 2-y transitions from ~+) to the
states

~
Ak/ ), which are resonant for k+/ =ko, while 6+'

arise from transitions to other nonresonant states. Sub-
stituting into the matrix elements of K(E), denoting kb(, )

by

kb(, )
=E b(, )

lh'c:—(E Eb(, ) }/fic, — (53)

and making use of the symmetry properties of
F.q(kR)F&(/R) with respect to exchanges of the indices
and of k and I, we calculate the R-dependent terms in 5+
and )5,+' to lowest (fourth) order in V:

I

(koR) ' behavior of the corresponding quantity for one-
photon emission.

IV. LEVEL SHIFTS

In this section, we calculate the contribution of the
atomic interaction to the level shifts. All single-atom
shifts (which involve terms independent of the separation
R) are absorbed into the atomic energies E, and Eb. We
divide the shifts in Eq. (21) into b.+ and b, + ..

4~=6~+5~, (5O)

/I(~=+ Re g f f dkd/k3/ F (kR)F, (/R).2 p'b (2)p', (2)
m' Ac

p~ (1)p'b(1) p,'(1)p~b(1)
k+kq

+
I +k~

(54)

gnr p', (1)p) (2) p~~ (2)p', (1)+ +(1 2)k+k, +g f dkk F (k, R)
2w ))ic(k, +kb) ~

0

f f dk d/ k'/'F, ,(kR )F, (/R )
n Ac

2pb (2)p' b(2) p~ (1)p'.(1) p,' ( 1 )p~, (l )
X +(k+kb)(k+/) k+k. I+k,

(2) ~ (1)+ (k+k )(/+kb) ™2 p-b I
k+kb

+ /+k

p, (2)p~b(2) pb (1)p,(l) p) (1)p (1)
(k +k, )(k+/+k() ) k +k, + l+k,

k k /+k+ b

(55)
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The integrals in 6+ are similar to those in the calculation
of the Casimir-Polder (CP) dispersion interaction energy
between two atoms in the ground state [10,15]; the only
real difference is that one of our atoms is in an excited
state ~b &. The integral in b.+ is new in that the integrand
contains the factor P/(k+1 —ka), which has poles at
k+l —k0+i cr =0. Because all integrals extend from 0 to
~, we cannot in general approximate the k's and l's in
their denominators by —,'k0, as we did for the decay rates.
However, the integrals can all be expressed in terms of
three types of integrals:

I, (k„k~,k, )

—= f f ™dkdl k'1'F, (kR)F, (1R)
0 0

1

2(E,+E b)R

g[p', (l)p) (2)+pj (2)p) (1)]

X(5. —3R R ) (59)

V, = g p~(1)p~(2)(5 —3R R ), (60)

are the leading results at short distances, at which retar-
dation of the interaction should be negligible. Indeed, if
we replace the retarded interaction of Eq. (5) by the in-
stantaneous (Coulomb) dipole-dipole coupling

(k +k, )(k+ k2)(k +1+ k3)

I~(k „k2,k3 )

= f f dk dl k313F (kR)F, (IR)
0 0

1

(k +k, )(1+k~)(k +1+k3)

(56}

(57)
E~ —E~

(61)

and use second-order perturbation theory [18],we obtain
the results

and I3 (k
&

) or the square of I3, where

I3(k, )=—f dk k F (kR)
0 1

(58)

with (k„k2] = [k„kb] and k3= [0,+k0]. We have,
therefore, to evaluate the integrals in Eqs. (56)—(58). For
positive values of k3, these integrals are evaluated rou-
tinely by contour integration in the complex k and l
planes; for negative and zero values of k3, additional care
must be taken for poles of the integrands. We have suc-
ceeded in finding analytical expressions for these integrals
for the limiting cases of small and large k0R. Details of
the evaluation are given in the Appendix. Here we
present the main results and give expressions for the lead-
ing terms in 6+ for small and for large atomic separa-
tions.

At small separations, the integrals I j and I2 are of or-
der R, I3 of order R . The terms involving I], I2,
and I3 are therefore negligible compared to the terms in-
volving the square of I3(k, ) in 6+, which are of orderR; the latter thus provide the dominant contributions
to the shifts at small R. The resulting shifts 6+,

which are found to be identical with Eq. (59), as expected.
These shifts are of the same order of magnitude as the
London —van der Waals dispersion energies [10], which
have been extensively investigated experimentally [19].

For large atomic separations, it is found (as with CP)
that 6+ yields shifts whose leading terms are proportion-
al to R, given by terms involving the integrals

I~(kb, k„O) and I2(k&, k„O). In our system, however,
these are found to be negligible compared to 5+, which is
of order R at large R. The shifts 6+, involving

I, (kz, kb, —k0) and I2(kb, kb, —k0), are absent in the CP
theory of the dispersion interaction; they are analogous
to the first-order (resonance) dispersion energies arising
between an atom in an excited state and an identical atom
in the ground state in one-photon transitions (see e.g. ,
Stephen, Ref. 2). The contribution of the shifts b, + at
large atomic separations is much larger than that of the
6+ for reasons which can be viewed in the following way:
Photons that fail to conserve energy by an amount AE
can survive only for a time A'/b, E, which is of the order of
magnitude (kac )

' in the present case. In that time, they
can propagate a distance of order k0 '. Thus, for dis-
tances R ))k0 ', the contribution of these virtual pho-
tons is negligible, and the shifts are dominated by 6+,

2fickt sin(kQR) p~b (2)p', (2}[p& (1)p~ b(1}+pq (1}pJ'b(1)]
15m' (kQR)2 (E,+E b}

(62)

These shifts vanish as (k0R), and are analogous to
those occurring in the corresponding one-photon case,
which involve functions oscillating at frequency k0R and
vanishing as (kDR) for large atomic separations

V. ENERGY DISTRIBUTION OF THE SYSTEM

In this section we calculate the probability of excita-
tion as a function of time of the atomic system, and the
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frequency distribution of the photons in the radiation
field.

A. Probability of excitation

When the two-atom system is prepared in the state
I+), the population of the initial state decays exponen-
tially with a decay rate y+. For the general initial state
II ), the population does not decay with a single exponen-
tial; the probability of finding one of the atoms in the ex-
cited state, P(t), is found to be

P(t) = l(~, b, ly(t) ) I'+ l(b, a, Iq(t) ) I'

=
I c+ I'e '+ +

I
c

that is, all the energy is released into the field. For
koR ((1, most of the energy is emitted into the peak
having cuk+cuI=Ao+5+. For koR &)1,both y, 2 and 6+
approach zero, and the two peaks merge to give the pho-
ton distribution corresponding to that from an isolated
atom [11].

The spectrum P(cu) of the emitted radiation can be ob-
tained by suitably summing and integrating the square of
the probability amplitude in Eq. (65), in the same way as
in Ref. 11. The results are similar: For the initial state
I+ ), the spectrum is proportional to the factor
co (00+5+—co) . For general initial states, the spectrum
is a superposition of terms proportional to
e~ (Go+5+ —co) and co (00+5 —co) .

In the special but interesting case in which one of the
atoms is initially in the excited state and the other in the
ground state, the excitation probability becomes

P (t) =exp( yot )cosh(y—,it ) . (64)

B. Photon frequency distribution

Substitution of the matrix elements of K into Eq. (24)
yields the probability amplitude for

I
Akl ):

We see that the lifetime of the excitation in the two-atom
system is apparently lengthened. This occurs because the
photons emitted from the excited atom can be absorbed
by the atom in the ground state, so that the photons do
not escape immediately from the system. For small
atomic separations, y is very small, and the antisym-
metric state

I

—) is metastable. For times t such that
y+'« t «y ', (approximately) half of the energy still
remains in the atomic system, and half is emitted into the
field. For t ))y+', P(t) approaches zero, and all the en-
ergy is emitted into the field.

VI. RESONANCE FLUORESCENCE

In this section, we consider the atomic system in the
ground state

I
A ), irradiated by a weak probe beam that

is nearly 2-y resonant. The atoms are excited to I+) by
the absorption of two photons from the beam, and subse-
quently emit two photons into modes k and l, returning
to

I
A ). At the same time, the probability also exists for

ground state atoms to emit virtual photons and become
"excited. " To calculate the shift of the ground state
properly, we must take both these processes into account.
(We continue, of course, to include emission of virtual
photons from I+) as well, so that their shifts too are in-
cluded properly. )

The Hamiltonian HF of the vacuum field is given by
Eq. (3), including all modes but that of the (laser) probe
beam. We denote by Hl, AckL, and n the Hamiltonian,
one-photon energy, and initial occupation number, re-
spectively, of the (single) mode of the probe beam. The
intensity of the beam is so low that we need to consider in
our calculation only a single (2-y) absorption-emission
event. We separate the interaction Hamiltonian into two
parts: V=+, V', as defined in Eqs. (5) and (6) (with all
modes but that of the probe); and the interaction of the
atoms with the probe, W =g, W', defined similarly by

( erkily( e~/z

C+ [Kaki, b (Eak! ) Kaki, b (Eak! ) )

cok +co!—AQ —5++ ( i /2)y+

C —[Kaki, b(Eak! ) Kak!,b(Eak! )]+
cok +ei!—flo —5 + (i /2)y

where 5+=4+/A, ~1, =kc, and Ao=koc. Maxima occur
in the distribution for coA. +col =Go+6+, with widths y+
and heights K,k! b(E,„!)+K,'k! b(E,„!).For t &&y+', we
see that

(66)

(67)W'= —p(s). EL (R, ),
1/2

ikL R ~ g
—ikI .R

(GtaLe —ELaLe ) .
2~AckL

L
EL (R)=i

(68)

The effective 2-y interaction of the atoms with the vacu-
um field is given by Eq. (10) and with the probe beam by

2
K'(E) = g W'(E H„—Ht )

' W'—
s, s'=1

(69)

The effective interaction operator with the whole field is
given by

K(E)= ( V+ W)(E —Mo) '( V+ W),

~here a, =a, +a~+aL.
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The basic equation of the HM method for 2-y reso-
nance fluorescence becomes

[E H——K(E)]G (E)fI )

=[1+(~+~)(E —Ho) ]II),
(71)

where fI ) =
f
An ) . The "essential states" in this problem

are tlC n), fC n —2), lC n kl), and fC n —2 kl)],
where

f
C n ) represent states in which n photons are

present in the probe field, and
f
C n kl ) states in which

one additional photon is present in each of modes k and l,
etc. The application of Eq. (71) yields

EC, n )GC, n rf r KC;D, ' D, n'
D n'=n, n —2

tions, the results

G„„(E)=E E—„—5A —n Ac@I +(iiii/2)y A

21 fKA. ;c,.—2«A. ) f'
yA =Re-

c + E„E—c a—'c+2W~L+(iA/2)yc

~A=X '' +XIKA;C, 2(EA—.)
'

IKA, c«A ) I'

c E~ Ec+2~coL c

IKA, c!«(EA ) f

EA Ec Ac(k +I)

where y+ is given by Eq. (33) and 6+ is given by

(82)

(83)

(84)

X KC, n;D, n, klGD, nkl , 5C, A

D;k, l

(72) +
fK' . (E+n —2;C n +n —2

+ + E+ —Ec—2AcoL
(85)

Cn —2)GCn —2 X X KCn —2Dn'GD, n'
D n'=n, n —2

KC, n —2; D, n —2, k!GD, n —2, kl
D;k, l

, k! )Gc, , kl

(73)

Here 6+ is given by Eq. (50). We see that y „and b, A are
the width and shift, respectively, of the ground state

f
A ); y+ and b, + are the width and shift, respectively, of

the state f+).
The calculation of the matrix elements of K'(E) gives

D n ' =n; n —2, kl; n, kl
+C n kl D n'GD n' (74) a, b a —2ikL R2 —2ik& R&illa' (E )

An, +n —2 An . e —e ) ~v2
EC, n —2, kl )GC, n —2, kl

—X' X +C, n —2, kl; D, n 'GD, n' (75) where

G „=U,„g(E E, „)G, (D—»),
GD, .= UD, .4« —ED,.)GI

(n'=n 2;n —2—, kl;n, kl) .

(76)

The substitution into Eq. (72) yields

(GA„)

=E —E„„—g
D n'=n, n —2

K A n; D, n, kl g( E ED, n, kl ) UD, n, kl
D;k, l

(78)

and the substitution into Eqs. (72)—(75) yields the equa-
tions for the U functions, which we solve by the
continued-fraction method. Noting that the matrix ele-
ments of the operator K(E) [Eq. (70)] can be expressed in
terms of the matrix elements of K (E) and K'(E),

D n'=n —2;n —2, kl;n, kl

where the primes on the summations indicate that the di-
agonal elements of K (e.g. , Kc „.c „)have been absorbed
into the corresponding energies (Ec„). We introduce the
U functions by the equations

(I .
P, b(E, )= — n (n —1) (87)

With these results, Eq. (83) can be rewritten in the form

y+[1+cos(2kL R)]
(flo+5'+ —2iol )'+y+/4

y [1—cos(2kL R)]
(00+5' —2col ) +y /4

(88)

where 5+=6+/A. The width of level A consists of two
terms, corresponding to the probabilities of absorption
from level

f
A ) to the levels f+). For small R, the ab-

sorption to level f+ ) is predominant; for large R, y A be-
comes the absorption probability for two noninteracting
atoms.

The shift of level A in Eq. (84) is interpreted as follows.
The last two terms are the shifts due to (virtual) 2-y ex-
change between the two (ground-state) atoms; as in the
calculation of Sec. IV, they produce exactly the
London —van der Waals dispersion energy for small R and
Casimir-Polder energy for large R [10]. The first term is
the laser-induced (fourth-order) shift, which can be writ-
ten in the form

Kc „D„(EC„)=Kc D(EC. ),
Kc, ', D,. 2«c,.) =Kc,.;D,.——2«c,.»

(79)

(80) 2~ fP. ,(E.)f2
2coL +o

KC, n;D, n, kl(EC, n ) KC;D, kl(EC ) (81)

we obtain, from Eq. (78) and the solutions for the U func-
lPa.., (E, )l [1+cos(2kI R)]

26)L
(89)
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iii(cok+o~i) —2hcoL —b A+(iA'/2)yA

x g- +Akl, C(+Akl )+Cn —2, An(+An )

Ii(cDk +col ) AQo Ac + (i@/2)yc
(90)

We see that, in general, two (resonance) scattering chan-
nels exist:

~
An ) ~~+n —2) ~

~
An —2kl ). These have

difFerent probability amplitudes, being proportional to
2ikL R1+e, in complete analogy with the scattering in

two-atom single-photon fluorescence [3]. For small R,
the channel

~
An ) ~~+n —2) —+~ An —2kl ) dominates;

for large R, both channels contribute, and Eq. (90)
efFectively describes the scattering by two independent
atoms.

VII. DISCUSSION

We have used the Heitler-Ma method to study a sys-
tem of two atoms undergoing cooperative 2-y transitions
for two cases: (i) the atomic system initially in a single-
excitation state, interacting with the vacuum field (2-y
spontaneous emission); and (ii) the atomic system initially
in the ground state, interacting with the vacuum field and
with a weak probe field (2-y resonance fluorescence). In
both cases, cooperative atomic effects are found analo-
gous to those which are well known for single-photon
transitions.

(i) The lifetimes of the ~+) states are altered by the
atomic interaction, having the values y+=y0+y&2. The
cooperative decay rate y&z consists of oscillating func-
tions of k0R, multiplied by inverse powers of k0R rang-
ing from (koR ) to (koR ) . For small atomic separa-
tions, the ~+ ) state is superradiant, with y+~2yo,
while the

~

—) state is subradiant, with y ~O(koR) yo.
For large seParations, yi2 vanishes as (koR ) yo, and the
sublevels merge into a single level with a decay rate iden-
tical with that of an isolated atom.

(ii) The energies of the ~+) sublevels are shifted from
the single-atom energy by an amount b, + (or b, '+ for the
case of resonance fIuorescence that approaches 6+ in a
weak probe field), which in general also consists of oscil-
lating functions of k0R multiplied by inverse powers of
k0R. The leading terms in 6+ are proportional to
(koR) for small separations, and to (koR) for large
separations. The shift of the ground state A ) in 2-y res-
onance Auorescence is given by the sum of the laser-
induced shift and the Casimir-London energy.

We have studied cooperative atomic effects in a two-
atom system undergoing 2-y transitions, predicting the
existence of and obtaining expressions for energy shifts
and altered decay rates due to the interaction of the
atoms with the radiation field. The two-atom system is,

and is smaller than the other terms for a weak probe field.
A similar interpretation applies to the second term of Eq.
(85).

Finally, the frequency distribution in modes k and l of
the scattered photons is the square of the amplitude

)& [»],
( An 2k—&~q( ))

however, merely the simplest example of an ¹ tom sys-
tem. The results obtained for the two-atom system can
clearly be extended to an ¹atom system.
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APPENDIX: EVALUATION OF THK I INTKGRALS

1

(k+k, )(k +k2)
1

(k+ 0, )(i +k2)

The integrals I; are then expressed in the form

~I, (k„k2, k3)

I2(k„k2, k, ),

(A2)

Re[f~~(kR)e'""]Re[f~(lR)e" ]
dk dl

o o (k+l+k3)
X A (k, l;k„k2),

I3(k, )= Ref dk[f (kR)e'" ]
0

1

(A3)

(A4)

We evaluate them by contour integration in the complex
k and l planes, choosing a contour in the first quadrant
for terms involving e', and in the fourth for those in-
volving e '" . For an integrand of the form 8(k)e'
we write (where % are residues)

f dk e'" 8(k)+ f dk e'" 8(k)=2vri g% (A5)
0 i oo

Q)

or

f dk e'""8(k)=i f du e " 8(iu)+2~i g%; (A6)
0 0

Q)

similarly, for terms involving e '", we obtain the result

f dke '" 8(k)= —i f due "8(—iu) —2mi gA,
0 0

Q4

(A7)

where Qi (Q&) is the set of poles of the integrand occur-

In this appendix we evaluate the integrals I, (i =1—3)
of Eqs. (56)—(58) for small and large atomic separations
R.

It is convenient to introduce the functions

f,,(x)= (&,, R, R—, )( —lx')+(o,—, 3R,R, )(x—+i),
(Al)

A, (k;k„k2)
A (k7lykiyk2)= A (k i k
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ring in the first (fourth) quadrant. Since
tk„kzI = [k„kb I )0, the function A (k, l;k&, kz) and
the integrand of I3 contain no poles in the first and
fourth quadrants; only the factor 1/(k +I +k3) in I& and

I2 may contain poles, depending on the value of k3.
We begin with the case k3 =kp, for which the in-

tegrands of I& and I2 contain no poles in the first and
fourth quadrants. We introduce the (real) function

B~q(x) by the equation

Bzq(x) if'(ix ) (5' R R')x

+(5)q —3R R )(x+1), (A8)

and change variables k and l into u and u' as in Eqs. (A6)
and (A7). For later reference, we define the integral
Yp(k& k2 kp) as

A (lu, iu; ki, k2 )
Yp(ki k2kp)= 6 f f du du'e " " B (uR)B. ; (u'R )

4R IQ +lQ +kp

+B, (
—uR)B, (u'R )

A ( —iu, iu ', k&, k2 )

—iu + iu'+ kp

A (iu, —iu', k&, kz)
+B (uR)B; ( —u'R )

lQ EQ +kp

in terms of which we express Eq. (A3) as

Ii(k) k2 kp)

I (k k k )
—Yp(k„k2, kp) .

2 1~ 2~ 0

+B (
—uR)B; ( —u'R )

A ( iu, ——iu', k&, k2)
lQ lQ +kp

(A9)

(A10)

For k3 =0, we first apply Eqs. (A6) and (A7) to the integration over l, and express the right-hand side of Eq. (A3) in

the form

f dk[f (kR) '" +f*(kR) '"
]

2R 6 0 J9 Jq

A (k, iu', k„k2) A (k, iu';k—„k2)
p Q R +8 p Q R

0 k+ru' k —iu' (A 1 1)

The factors (k+iu') ' represent poles at k =+iu', on the imaginary axis. Performing the integration for k as in Eqs.
(A6) and (A7), we obtain

I, (k„k~,O
= Yp(k„k~, O)+ f du'e " [B, (u'R )B, ( —u'R )A(iu', iu', k„k~)—

+B ( —u'R)B; (u'R ) A ( iu', iu',—k„k2)], (A12)

where Yp(k „k2,0) is given by Eq. (A9) with kp =0, and the factor 1/(u —u ) occurring in Yp is understood as a princi-

pal value.
For k3 = —kp, we first rewrite the factor P/(k +l —kp) as

1 1 1+
2 k +l —kp+E'o. k +l —kp —i o.

with poles at l = kp —k+i 0.. The substitutions l =+iu ' in the l integrations then cause poles to occur in the k integra-
tion at k =kp+iu . Taking these into account, we obtain

I, (k„k~, —kp)

(l k k )
Yp(ki k2 kp)

+ Re e ' f du'e " f ((kp+iu')R)f ( —iu'R)A (kp+iu', iu', k„kz)—R'

i~+ f dk[f (kR)e'" +c.c. ][f, ((kp —
k. )R )e —c.c. ]A (k, kp —k;k&, k2),4R'

(A13)
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where Yo(ki, kz, —ko) is given by Eq. (A9) with ko re-
placed by —ko.

Finally, it is straightforward to rewrite Eq. (A4) as
r

I&(k, ) = — J du e " B/~(uR)2R' iu +k,

+B (
—uR)

1

lu +k)

1I, (k„k z, k 0)
.0

R
(A17)

For Iz(k„kz, ko), we factor Az

A z(iu, iu'; ki, kz)

and then perform the resulting integrations, obtaining as
the leading term of the result

(A14)

It is noted that the upper limits on u and u' in the in-
tegrals I, —I3 are electively of the same order of magni-
tude as either 1/R (due to the exponential factors) or ko
[due to factors such as 1/(u +ko )], whichever is small-
er. This allows us to simplify the integrations for two
limiting cases: small separations and large separations.

1. Small separations: k, R «1

1 1 1

iu +k, iu'+kz i (u +u')+k, +kz

and complete the integrations, obtaining

1Iz(k„kz, ko) 0
R

(A18)

(A19)

In this case, only very small uR and u'R contribute
significantly to the integrals. It is then sufficient to retain
only the leading terms of Biz (+uR )B,z (+ u 'R ) and

e " ",namely (5 —3R R )(5, —3R;R ) and 1, re-
spectively. The symmetry of the resulting integrands al-
lows us to extend the integrations to —~. For instance,
from Eqs. (A9) and (A10), we have

I3(k, ) —:—-- (5. —3R)Rq ) .
2R 3 A' (A20)

Proceeding in the same way for Eqs. (A12)—(A14), we find
that the leading terms of I, (k&, k zO), Iz(ki, kz, O),
I, (ki, kz, —ko), and Iz(k, , kz, —ko) are all 0(1/R'),
while the leading term of I3(k, ) is

Ii(k„kz, ko)

Iz(k „kz,ko )
(5 —3R R )(5,„—3R, R )

4R

3 (iu, iu';k&, kz)
X du du'

oo QO iu +iu'+k

It is the square of I3(ki) that provides the dominant
(R ) contribution to the shifts for small atomic separa-
tions.

For I, ( k, , kz, ko ), we first factor 2,
(A15) 2. Large separations: koR»1

A, (iu;k„k )=z.
1 1

k2 —k, iu+ki

1

dk, iu +k,

iu+k2

(k, =kz),

(k, Wkz)

(A16)

The presence of the exponential in the I integrals en-
sures that only u, u' & 1/R, or u, u' « ko, contribute
significantly to the integrals. %'e then approximate the
integrals by neglecting u and u' in the denominators in
comparison with k &, k2, and ko.

We consider k3=ko first. From Eqs. (A9) and (A10),
we find

I,(k„k„ko),I,(k„k„ko)=:,I I dx dy e " ~[B,,(x)+B,, (
—x)][B; (y)+B~( —y)]

4k, k2koR o o

(35jq 5R R)(35' 5R Rp)'' (A21)

Similarly, I3( k i ) is found to be

(A22)

and the square of I3(k, ) is thus proportional to 1/R for large separations.
In the same way, we calculate I, (ki, kz, O) and Iz(k, , kz, O): these are found to approach zero as 1/R for large R.

We note that it is precisely these terms that yield the well-known R results of Casimir and Polder, in direct analogy
with their calculations.

There is no analog in the CP calculation, however, to the integrals Ii(ki, kz, —ko) and Iz(ki, kz —ko) in Eq. (A13).
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These arise from 2-y transitions from the states ~+ ) to the states
~
Akl ), resonant for k + I =ko. The results are sum-

marized as follows: (i) The term Yo(k„kz, —ko) is evaluated in the same way as is Yo(k„kz, ko), yielding terms van-
ishing as R . (ii) The integrations of the second term produce results whose leading term is proportional to
(koR) cos(koR). (iii) The last term is calculated as is y+, the results are valid for all atomic separations:

4dR

(koR )'

15
sin(k&R )(5 R—Rq )(5,z R;—Rz )

(koR ) 2(koR ) 3(koR) 3koR
+ cos(koR ) — sin(koR)+ cos(koR )

— sin(koR )
6 3 2 0

[(5jq Rj~q )(5'q 3R Rp )+(5' 3R R)(5'' R R)]'
(koR )

3
sin(k~R)+2(koR) cos(koR ) 2koR—sin(k~R ) (5 q

—3R Aq )(5z —3R;Rz) (A23)

where d =(k, +ko/2)(kz+ko/2). These terms oscillate at frequency koR and are multiplied by powers of koR rang-
ing from (koR) to (koR ) . For small separations, the leading terms of Eq. (A23) are proportional to R, and, as
discussed in Sec. A I, are negligible compared to the R contribution of the square of Is(k, ). It is the first term of Eq.
(A23) that gives, for large separations, the leading results of Eq. (62) for the shifts, with

qrko sin(koR)
I, (k, , kz, —ko), Iz(k„kz, —ko)=. (5jq R& Rq )(5,p 'R Rp )'

15(2k, +ko)(2kz+ko)R
(A24)
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