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Electron-spin polarization in the Thomas-Fermi and Thomas-Fermi-Dirac atoms

Marek Cinal
Institute of Physical Chemistry ofPolish Academy of Sciences, ul K.asprzaka 44/52, 01-224 Warszawa, Poland

(Received 11 December 1990; revised manuscript received 18 July 1991)

The Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD) statistical models are extended by the
electron-spin interaction with an external uniform magnetic field B. The statistical atom, which is spher-
ical, is then described with the aid of two distributions: the electron density n(r ) and the relative magne-
tization g(r). In the TF atom the magnetic field polarizes the electron spins totally (/=1) in a region
near the atomic boundary, while the rest of the TF atom is only partially polarized; however, g(r) and
n(r ) are continuous. A convenient description of this atom is done with the aid of a suitably defined re-
duced potential f(x ) to which n (r ) and g(r ) are related. At B )0 the neutral TF atom remains infinite.
Its magnetic moment shows unphysical 8' proportionality for small B. The inclusion of the exchange
in the TFD model for B & 0 results in two possible types of atom: the atom of the type I—which exists
only for B 1.3X10 CJ—has continuous n(r) and g(r); in the type-II atom there is a discontinuity in
both n(r) and g(r) that makes this atom unusable in physical applications. The type-I atoms have finite
radii and are assumed to represent approximately the crystal atomic cells. The appropriate differential
equation and boundary conditions for g(r), together with the relationship between g(r) and n (r), have
been derived for this atom. The solutions of the equations and the atomic radii have been obtained for a
wide range of atomic numbers and magnetic fields. On the basis of these solutions, the coefficients for
the volume magnetostriction, the spin susceptibilities, and the ionization energies have been calculated
for elements of the whole periodic table. Qualitatively, the experimental tendencies are found to be
represented well by the type-I TFD atoms. A modified virial theorem for the spin-polarized TF and
TFD atoms has been proved.

PACS number(s): 31.20.Lr

I. INTRODUCTION

The statistical approach to physical problems usually
leads to approximate solutions. Although some of the
system properties are then described only qualitatively,
the statistical method is still a widely used tool in the cal-
culation of the properties of matter [1—13]. The advan-
tage of the method lies in its great simplicity in compar-
ison with the other more sophisticated quantum-
mechanical approaches. In fact, in the statistical method
the solution is usually obtained from an ordinary (one-
dimensional) differential equation. Nevertheless, the
method gives a physically clear and usually a qualitative-
ly correct description of the system.

As our system we assume a single atom built up from a
point nucleus of charge Z and a spherical cloud of X elec-
trons (we use throughout the paper the atomic units in
which ~e

~

=iri=m, = 1). In the absence of external fields
the energy functional is the sum of kinetic and Coulomb
parts giving the well-known Thomas-Fermi (TF) statisti-
cal model; when the exchange energy is included the
Thomas-Fermi-Dirac (TFD) model is obtained [14—17].
The purpose of the paper is to raise the question of what
happens to the TF atom and, especially, to the TFD atom
when these atoms are placed in uniform magnetic field
B=(O,O, B ); the problem of the TF atom put in an exter-
nal electric field was examined recently [12]. If the field
8 is very strong, it completely governs the transverse (i.e.,
perpendicular to 8) motion of electrons. On the other

hand, the Coulomb forces inAuence only the longitudinal
motion, which was the case analyzed in detail within the
framework of the statistical method by Banerjee, Con-
stantinescu, and Rehak [18]; an improved treatment of
exchange was presented recently [19]. These authors
considered both the TF and TFD models. The magnetic
fields were within the range 10' —10' G, but the TFD
atom remained spherical even in such strong fields; how-
ever, its radius (ro) shrank proportionally to 8
which was found to be an accurate relation. In such
strong fields all electron spins were assumed to be anti-
parallel to the field and played no role in the problem. In
the present paper the electron-spin distribution is includ-
ed in the original TF and TFD models. A detailed solu-
tion of the resulting equations is done for the whole range
of the strength of the magnetic field beginning with very
weak fields. The orbital effects are neglected similarly to
their absence in the local-spin-density approximation of
the density-functional theory [20]. We neglect these
effects because we assume they are either quenched by the
crystal field, or they can be roughly separated from the
spin effects, so that we may concentrate on the latter
ones.

In this paper we obtain a simple ab initio theory of an
atom in a magnetic field. The simplicity of the approach,
and especially the little amount of numerical labor in-
volved in it, allows us to examine the atomic properties
over large ranges of Z and B. Because we find that the
TFD atom has a finite radius also in the case of an exter-
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nal magnetic field, this atom can be thought to be a single
Wigner-Seitz cell of a perfect solid approximated by a
sphere cell. In this case most of the properties of the
solid state can be interpreted in terms of the properties
obtained for atoms.

where n t(r) and ni(r) are, respectively, spin-up and
spin-down electron densities, the spin-quantization axis
being in the direction of the field B. The magnetic state
of the statistical atom is then characterized by the rela-
tive magnetization g(r) defined as

II. MODEL ni(r) —
n t (r)

(r)=
n &(r)+ n &(r)

(3)

A. Formulation

Similarly to the original TF and TFD models, the elec-
tron cloud around the atomic nucleus is described by the
non-negative electron density n (r) dependent on the dis-
tance r from the nucleus. The integral of n (r) over the
whole space gives the total number X of electrons:

f n(r)dr=A .

We assume that the magnetic field polarizes the density
n (r) into

It is evident that g(r) is the ratio of the actual magnetiza-
tion density

m(r) = ps [n—t (r) n—&(r)] =psn (r)g(r)

to the maximum value of the magnetization density at the
point r equal to pion(r). Since n&(r) and nt(r) are non-
negative densities, g(r) fulfills the relation

—1&((r)&1 .

n(r)=n&(r)+n&(r), (2) The energy functional depends on both n (r) and g(r):

I

E[n, g]= f«k(g(r))n (r)dr f «, (g—(r))n ~ (r)dr+ —,
' ff, dr dr' —f n(r)dr f—p&B—n(r)g(r)dr

=Ek;„+E +E„+E,„+E~ . (6)

B. General considerations

At the first step we rewrite Eq. (6):

E[n, g]= fF{n(r),g(r))dr

+ —,
' ff, dr dr' —f n(r)dr, —n(r)n(r'), Z

/r —r'/ r
(9)

«k (g) =
—,
' [(1+g) ~ + (1—g) ~ ]«ko,

«, (g) =
—,
' [(1+g) ~ + (1—g) ]«,o,

(7)
where

F(n, g)= pci, (g)n —~ —«, (g)n ~3 p~Bng;— (10)

The first two terms of the functional are, respectively, the
kinetic energy Ek;„and the exchange energy E; the later
term is absent in the TF case. Their densities are as-
sumed to depend locally on n (r) and g(r) in the same way
as for the homogeneous electron gas. The dependence on
g(r) is defined by [21]

where «ko= —,3, (3' )
~ =«1, (0) are «.,0= —,'(3/vr)'

=«, (0). The next terms in the functional (6) are the clas-
sical Coulomb interaction energies E„and E,„and the
energy Ez associated with the magnetic interaction of the
electron spins with the field B. As was mentioned above,
we neglect the direct inAuence of the field on the electron
motion, i.e., the orbital effects: We assume them to be ei-
ther very small or separable from the spin effects. In the
nonmagnetic state, i.e., for g(r) =0, the energy functional
(6) coincides with the original TFD (or TF for E, =0)
functional [17].

Following the density-functional theory, our task is to
minimize the energy functional (6) with respect to both
n (r) and g(r) subjected to the constraints (1) and (5). We
assume that both n (r) and g(r) depend solely on r = ~r~,

which means that the external magnetic field B does not
change the spherical symmetry of the original TFD atom.
This is an immediate consequence of the rotational in-
variance of the energy functional (6) on the condition that
the minimizing distributions n (r) and g(r) are unique.

BF
a

(n(r), g(r))=0 (12)

must be fulfilled.
The minimization of E[n, g] with respect to n (r) sub-

the term —«, (g)n is absent in the TF case.
The functional E[n, g] depends on g(r) only through

the volume integral of the function F(n(r), g(r)}. There-
fore the distribution g(r) that minimizes E[n, g] must
correspond —at any r —to the minimum of the function
F(n(r), g)

F(n (r), g(r) ) = min F(n (r), g),—1&/(:1

obtained for the correct, although not yet known, elec-
tron density n(r) minimizing E[n, g]. In general, de-
pending on the form of the function F and the value of
n (r), this minimum can be attained either at the edges of
the interval of g, i.e., at the points g(r) =g= + 1, or inside
the interval ( —1, + 1). If ~g(r)

~

( 1, the extremum condi-
tion
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BF(n(r), g(r)) —V(r) —p, =0 .
Bn

(13)

Here p is the chemical potential, which is the Lagrange
multiplier associated with the condition (1}, and V(r}
denotes the classical electrostatic potential:

jected to the normalization condition (1) yields the equa-
tion

that the external pressure equal to

—(4irro ) 'BE(Z,N, B,ro)/Bra

vanishes. The expression (19) is the same as for the pres-
sure in the homogeneous electron gas. From Eqs. (19)
and (12) one can find both n (ro ) and g(ro ). These, com-
bined with Eqs. (13) and (16), give the value of the chemi-
cal potential:

V(r)= ——f, dr'= —+V, (r),Z n(r'), Z
r r —r' r

(14) +F(n(ro), g(ro) }
rp

(20)

V, (r) being a part due to electron interaction.
The solution of the minimization problem is done with

the aid of the Poisson equation:

V( )
d V(r) + 2 dV(r)

dr2 r dr
(15)

which holds for r)0 and follows from Eq. (14). Its
right-hand side can be expressed in terms of V(r)+p
with the aid of Eqs. (13) and (12), where the latter formu-
la is useful in the region(s) where ~g(r)

~

& 1. Thus we ob-
tain a differential equation for the potential V(r). The
values of the potential and its derivative are known at the
edge of our spherical atom:

depending on ro The. n, solving Eqs. (15) with the bound-
ary conditions (16) and (17), one obtains ro and V(r) cor-
responding to the minimum of the energy functional.

If g(r) changes its character at some internal boundary
point r=r, (ri &ro), eg. , ~g(r)~ &1 for r &r, and g(r)=1
for r ) r „we need the matching conditions at this point:

(21)

they express the continuity of the potential and the elec-
tric field. To find the value of r& that corresponds to the
minimum of the atomic energy, we demand that BE/Br,
vanish. This finally leads to the equation

Z —X dV Z —X
V(ro) = (ro)=-

rp dr rp
(16)

Moreover, V(r) fulfills another condition at r =0, viz. ,

i B F(n, g)
n

Bn n n =n(r
&

), g=g(r
&

)

rV(r) ~„O=Z (17) =n B

Bn

F(n, g)
n =n(r

&
), g=g(r

&
)

(22)

[cf. Eq. (14)].
In the case where

~ g(r) ~
& 1 in the whole atom [Eq. (12)

holds there], we are able to solve Eq. (15) for a given
atomic radius rp, simultaneously finding p and the distri-
bution V(r) At the n.ext step we can obtain n (r) and
g(r}, which allows us to calculate the corresponding
atomic energy E[n, g] denoted as E(Z, N, B,ro). The
atomic radius rp has to be chosen in such a way that the
atomic energy E(Z,N, B,ro) is minimal. The necessary
condition is

BE(Z,N, B,ro) =0.
ro

(18)

BE(Z,N, B ro) 2 B F(n, g)= —n
4~r 2 Bro Bn n I'p

The derivative 5E(Z, N, B,ro)IBro can be calculated in
the same way as in the original TF and TFD models [17].
We differentiate Eq. (9) with respect to ro, remembering
that the value of ro affects the distributions n (r), g(r) not
only by restricting their argument to the interval
0&r &ro, but also by infiuencing their shapes (which
leads to nonzero Bn/Bro and Bg/Bro). Next, Eqs. (12)
and (13) are employed together with the normalization
condition (1) differentiated with respect to ro Finally, we.
arrive at the result

which is derived in a way similar to Eq. (19). Equation
(22) can be interpreted as the condition of equal pressure
on both sides of the surface r =r, . Employing this equa-
tion, together with Eq. (12) and another condition

BF BF(n(ri ),g(ri ))= (n(ri ), g(r i))
Bn Bn

(23)

implied by the first of Eqs. (21) and Eq. (13), we can find
all the values n(ri ), g(ri ) and n(r,+ ), g(r, ). Then,
since Eq. (19) holds also for the presently considered type
of atom [thus n(ro) and g(ro) are known], both the radii
ro and ri can be determined by solving Eq. (15) with the
associated boundary and matching conditions; simultane-
ously. we find V(r), and, consequently, also n (r) and g(r)

III. MAGNETIC THQMAS-FERMI ATQM

This atom, considered as a preliminary case in our
model, is obtained by setting a, =0 in Eq. (10) in order to
neglect exchange. The TF atom cannot magnetize spon-
taneously (i.e., it has /=0 at 8 =0), since in the absence
of exchange the energy functional E[n, g] for B=0 de-
pends on g only through ~k(g), which is a monotonically
increasing function of g. For B)0, with the TF function

(19) F( g)n=~k(g)n p~Bng, — (24)

physically, this equation is equivalent to the statement [cf. Eq. (10)] we find from the condition (11) that
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1/2

g(r)=1 if y(r) &y
PB

~k(l)
(25)

where y:—n ' and the prime denotes the derivative with
respect to g. On the other hand, Eq. (19) yields

y(ro)=0 . (26)

Thus we conclude that in the magnetic TF atom there ex-
ists a fully spin-polarized (/= 1) region near the atomic
edge (r=ro). The region spreads from ro to some r&

( & ro); for r & r& the value of y (r) becomes greater than
y, so g(») becomes less than 1. At the boundary point
r =r„we have Eqs. (22) and (23), which, for the TF
atom, implies that

f(xo)=0, xo (xo)= q
Jx W

1f(0)=—,
w

(37)

(38)

where q =(Z —X)/Z is the degree of the atomic ioniza-
tion and

place Eqs. (35) and (36) with the resulting differential
equation for g(x) itself, since this equation is divergent at
x =x &, where g(x)=1 [cf. Eq. (42)]; however, an equa-
tion for g(r) will be suitable in the TFD case (see Sec.
IV B).

The boundary conditions are provided by Eqs. (16),
(17), and (26), which in terms of f(x) can be rewritten as
follows:

(27) b 3/4

Z
(39)

b 1/4
X—

a
(28)

(29)

we call them the reduced radius and the reduced poten-
tial, correspondingly. The parameters b and a are

pBB

a =—'(4~) ' '~k(1) .

(30)

(31)

In the outer atomic region, x& &x &xo (xo=—b' ro/a,
x& =b' r&/a), w—here g(x)=1, Eq. (13) allows us to ex-
press y in terms off (and x):

1/2

y b 1 /2[ 5 & ( 1 }a ]
1 /2 f (32)

Thus the Poisson equation (15) takes the form of the stan-
dard Thomas-Fermi equation:

d f(x) f (x)
2 1/2 (33)

let us note that both x and f (x) are defined somewhat
differently than their original TF counterparts. For
0 & x & x „y is related to g through Eq. (12) yielding

y
—b 1/2[ & (g)]

—1/2 (34)

so both g(r) and n (r) are continuous at this point.
In the considered model it is convenient to introduce

new, suitably scaled, variables:

After adding to them the matching conditions at x =x1

f(x, ) =f(x,+ ) =2ax, ,

df df( +)
Qx Gx

(40)

obtained from Eqs. (21), (27), (29), and (32), we are able to
integrate Eqs. (33) and (35) (backwards, starting at
x =xo), and, in effect, find xo, x&, and the distribution

f (x). This solution depends on the three model parame-
ters Z, N, and B only through their two combinations, q
and w.

For neutral atoms (Z =X), we conclude from Eqs. (37)
and (33) that xo= ~, just as in the original TF model;
moreover, the expansion of f(x) for large x emerging
from Eq. (33) has the original TF form

f(x)= (1+u+f2u +f3u +. . . ), (41)

where u =f,x ~, 13=(—7+073)/2, and f2,f3, . . . are
known numbers (cf. e.g., Ref. [5]). This expansion is then
employed to start the integration of Eq. (33) at some large
x. Thus, in the Z=N case we look for f, and x, that
lead to the distribution f(x) satisfying the conditions (38)
and (40).

Once the reduced potential f(x) is determined, one can
calculate n =y and g, as functions of x, from Eqs. (32),
(34), and (36). The plot of g(x) in the neutral TF atom is
presented for several values of w in Fig. 1. The function
g(x) and its derivative dg(x)/dx are continuous, also at
x =x1, as is seen in the enlarged part of Fig. 1; cf. also
Eq. (27). One can prove that for x & x,

Then Eq. (15) gives the differential equation for f (x):

d (x) =4ma x[~k(g)]
dx

(35) g(x)=1— 2a — (x, )
df
Gx

(2'"ax, )

3/2

(x, —x)

where g is determined from the relation +O((x, —x) ) . (42)

ax
(36)

which emerges from Eq. (13). It is not convenient to re-

This expansion implies that the higher derivatives
d g(x)/dx2, . . . diverge at x=x&., for x=x&+ they all
vanish. Near the atomic nucleus (x =0) g depends
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FIG. 1. The relative magnetization g as a function of x in the
neutral TF atom for w =0 (curve 1), w = 10 (curve 2),
w =10 (curve 3), w=10 ' (curve 4), and w =1 (curve 5);
Z=N=20. The enlarged part shows the behavior of g(x) in the
neighborhood of the boundary point x, [=x,(w )] for curves 1

and 2.

r {a.u. )

FIG. 2. The change of the electron density n (r) —no(r) relat-
ed to B,due to the magnetic field B in the neutral TF atom
[no(r) is the corresponding TF electron density at B=0];
B=10 G (curve 1), B=2X10 G (curve 2), B=10 G (curve 3),
B=10 G (curve 4); Z =N=20. The vertical arrows show the
positions of r, . The atomic unit (a.u. ) of the distance r is the

0
Bohr radius a0=0.529 A; the atomic unit (a.u. ) of the electron
density is ao 6.75 A

linearly on x (and also on r), although this is not evident
in Fig. 1 because of the figure's scale [see also Eq. (57)
and Fig. 7 referring to the magnetic TFD atom in Sec. IV
where this linear dependence of g(r) is preserved when
the exchange is switched on]. For Z =N the distribution
g(x) tends to some boundary form as w approaches 0;
simultaneously, f, and x, attain the following limits:

rO

M = f m (r)dr=4m f pIin (r)g(r)r dr . (45)

The distribution of the radial magnetization density
4mrm(r) in th. e neutral TF atom is shown in Fig. 3. The
introduction of x instead of r as an integration variable in
Eq. (45) and employment of the relations (32) and (34) al-
low us to express M as follows:

f i(w =0)=—2.050786278009,

xi(w =0)=2.070608230048
(43)

[it should be noted that to solve the problem for q =0,
w =0 we have to replace Eq. (38) by the condition
f(x)~—3'm. a let, ox for x~0, derived from Eqs.
(35) and (36) for this case]. This implies that in the limit
of small B we have

16

r, =x, (w =0)ab (44) Cf

CD

On the other hand, in the Z) N case, when ro(B =0)
is finite, r, is close to rp at small B: Tp T ]
=2bro(Z —N )

If the electron density n is considered as a function of
r, it differs from the original (B=0) TF electron density
no(r) only very slightly, even at fields B of millions of Cx.

The di6'erence between these densities is found to be of
the order of B;the proportionality n (r) —no(r) o-B ~

holds especially well at small r, where g(r) is small; cf.
Fig. 2. At very small r the density dift'erence diverges as
r ', but it is still a very small fraction of n&&(r), which,
in turn, is proportional to r . For a more detailed dis-
cussion of this unphysical behavior, see Sec. IV D 2 treat-
ing the TFD atom.

The obtained distributions n (r) and g(r) can be used to
calculate the magnetic moment of the atom

E

12

r (a.u. j

FIG. 3. The radial magnetization density 4mr m(r) in the
neutral TF atom plotted as a function of r for several magnetic
fields: B= 10 G (curve 1), B=5 X 10 G (curve 2), B= 10 G
(curve 3), B=2X10 G (curve 4); Z=N=20. The vertical ar-
rows show the positions of r &. The atomic unit (a.u. ) of the radi-
al magnetization density is (2/a)p&ao ' =518p& A; a is the
fine-structure constant.
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x1
M=b 4vrI"za J g(x)[a'k(g(x))] ~x dx

0

+b p~ f x' f (x)dx . (46)

well-known fact that no negative ions (with
Z N—= —1, —2, } are present in the original TFD
atom. .

Thus, for the neutral magnetic TF atom, where xp
we obtain M proportional to B at small B, since x, and
the distributions g(x) and f(x), appearing in the above
two integrals, have finite m =0 limits. This unphysical
dependence of M on B, giving infinite susceptibility at
B =0, is connected with the incorrect behavior of the TF
potential V(r) at large r, where V(r) ~r [cf. Eq. (41)],
which leads to r& ~B ' . Some other features of the
magnetic TF atom will be mentioned below in the discus-
sion of the TFD case.

IV. MAGNETIC THOMAS-FERMI-DIRAC ATOM

A. Problem of spontaneous magnetization

F(n, l)&F(n, O), ifn'~ &
(2' +1)~„

(47)

A fully magnetic atom can be excluded at once„since the
condition (47) is not fulfilled in the neighborhood of the
atomic nucleus where n(r) is large; it is implied by Eqs.
(13) and (14). Another possibility is that the TFD atom
in zero magnetic field is built up from two regions:
0(r &ri, where /=0; and r& &r &ro, where /=1, so
that g(r) is a discontinuous function. To analyze this
rather unphysical case, we solve Eqs. (19), (22), and (23)
in order to find n(r ),on(r, ), and n(r i ). These values
fulfill the inequality

This problem can be specified for the TFD atom as-
suming F(n, g) equal to (10). We find that there is no
spontaneous magnetization of the TFD atom, i.e., (=0 if
B=0. To prove this let us first notice that F(n, g) for
B =0 is a symmetric function of g, which allows us to
limit our considerations to non-negative g. It can be
shown that F(n'g) ~' 0 attains its absolute minimum
only either at (=0 or g= 1 depending on the value of n

The latter case is realized at low densities n for

B. TFD atom perturbed by an external magnetic field

The onset of the magnetic field B)0 implies that the
function F(n, g) given in Eq. (21) is no longer symmetric
and attains its absolute minimum somewhere within the
interval 0& / 1. A local minimum inside this interval
may exist, provided that y =—n ' is large enough to satis-
fy the equation

~; +[(a,') +4@&Bak]'

2Kk
(49)

sgn[B'F/Bg'(n, g(y))] = —sgn[ Y'(g(y))],

we always choose the smaller g(y) for which Y'(g(y) } is
negative, so the minimum condition 8 F/Bg (n, g(y) ) )0
is fulfilled.

1 ~ 05

for some g. Equation (49) follows directly from Eq. (12)
for B)0 and y ~ 0.

Since mino&&&, Y(g):—Y;„is positive, the minimum of
F(n, g) for y&Y;„ is at /=1. However, even for
y) Y;„ the absolute minimum is still at g=l until y
achieves some critical value y, ()Y;„). For y )y, the
local minimum g(y), obtained from Eq. (49), becomes the
absolute minimum of F(n, g). The critical density n, —:y,
fulfills the following equation:

F(n„g(y, )}=F(n„g=1) .

We solve Eq. (50) for g, —:g(y, ) by substituting Y (g, ) for
n„ then we find n, = Y' (g, ) (cf. curve 2 in Fig. 4). It
should be noticed that for Y-;„(y(Y(/=1) there are
two solutions g(y) satisfying Eq. (49). Since one can
prove that

n(r,+ ) (n(ro) . (48) 1 ~ 00

It also holds in case we allow for more /=0 and 1 regions
placed in an alternating order in the atom (then r, is the
internal boundary point nearest r =ro) But n(r) is f.ound
to be, at least in the interval r& & r (rp, a monotonically
decreasing function with the increase of r for any Z ~ N,
so the inequality (48) cannot be satisfied unless r, =ro.
[The monotonic behavior of n(r} comes from the fact
that V(r) decreases with the increase of r in the atom,
while n (r) found from Eq. (13)—and having the correct
value n(ro) obtained from Eq. (19)—is a monotonically
increasing function of the potential V(r).] This means
that /=0 and 1 regions cannot coexist inside the atom
for B=0 and Z) N. Thus g(r) =0 remains a solely ac-
ceptable solution in the whole atom.

Let us note that the condition Z ~ N agrees with the

0.95

0.90

0.85—

0.80
0

I

10

B (10 6)

Bc2

15 20

FIG. 4. The boundary value g(rp)—:y(rp)/ypp (curve 1) for
the type-I TFD atom compared with the critical value

p, =y, /ypp (curve 2); g(r p) and y, depend only on 8; the critical
fields S,&

and $,2 are given in Eqs. (59) and (60); ypp =
~ ~,p/~kp .
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At small distances r the TFD density n (r) becomes
large because of V(r)=Z/r appearing in Eq. (13). This
implies 0&((r) &1 for small r. Thus, as the simplest
case, we consider an atom with 0 &((r) & 1 everywhere
inside the atom; both Eqs. (12) and (13) are then satisfied.
We call it the type-I atom.

According to the relation (49), Eq. (13) leads to the fol-
lowing dependence:

g(r) = g g;r'
I =2

3pgB
2Z

' 3Kgp

5KkoZ'

24m 2Kao
3

+
15Z'

paB» +4»

1/2

Pa B

V(r)+p =6(g(» ) ),
where

(51)

6(P=-3Kk(0) I' (0) 3K.(0)I'(0) PBBC . (52)

6'(g(r)) +— +6"(Pr))
dr r dr dr

2

Equations (49) and (51) combined with the Poisson equa-
tion (15) give the second-order differential equation for
(r):

3Kgp
2

+
5KkoZ

1/2
5/2

S4 (57)

further terms can be found from Eq. (53) when the small-
expansions of I"(g) and 6 ( g ) are employed. The

coefficients (2 and g3 are fully defined by Z and 8, while

g& as well as higher coefficients depend also on gz. The
value of g4 can be determined only after the full problem
of the differential equation with its boundary conditions
is solved. This situation is similar to that for the
coefficient itj2 entering the expansion

=4' l' (g(r )), (53) 1tj(x ) = 1+$2x + itj3x + (58)

K, (go)
I'(0o) =y(ro) =

2Kk o
(54)

where the derivatives 6'(g) and G "(g) are known analyt-
ical expressions because of Eqs. (52) and (49). The bound-
ary value g(ro)=go(8) depends only on 8 and can be
determined by combining Eq. (49) with the dependence of
y(ro ) on go obtained from Eq. (19):

of the reduced potential 1((x) in the original TF and TFD
model [5,17]. Note that the expansion (57) holds also in
the TF case, provided K,o entering g s is set equal to 0.

Equation (54) has two solutions for go. The larger of
them cannot be accepted because the boundary value
y(ro) = Y'(go) is then less than y, . On the other hand,
the smaller go satisfies the required condition
y(ro ) = I'(go) &y„provided that 8 is less than

The other boundary condition at r =rp is obtained from
the second equation (16) which, in view of Eq. (51), be-
comes

(ro)= —[6'(go)]
dr rp

(55)

Since 6'(g) is less than zero for 0&/&go, Eq. (51)—
along with the negative value of d V(r )/dr for Z & X—
implies the monotonic increase of g(r) with r within the
whole atom. To find the unknown atomic radius rp we
need the third boundary condition

r~p r
3p~B

2Z (56)

equivalent to Eq. (17). Equation (56) is readily obtained
from Eq. (12) provided that we use the expansion
Kk (g)= 9 Kkog+ 0(g ) and simultaneously put
y(r)=[3Z/(5Kko)]' r '» . The latter relation, valid for
very small r, follows from Eq. (13), where V(r)=Z/r.
[~e assumed g(r) =0 at r~0, which, in fact, is a result
obtained from Eq. (12) when y(r) increases infinitely as
r ~0.]

Starting at r =ro and then integrating Eq. (53) back-
wards to r =0 we can find such ro that the condition (56)
will be fulfilled. Equation (56) provides the leading term
of the small-r expansion

B 1=1 ~ 232038 295X 10 G (59)

(cf. Fig. 4). In some interval of 8 &B,i we still have the
solution for the type-I atom, but then certainly it does
not correspond to the absolute minimum of the energy
functional E[n, g]. For 8 exceeding the critical value

B,2 = 1.296 057 327 X 10 G, (60)

Eq. (54) has no solution for go, so the type-I atom ceases
to exist. Therefore, we are led to the concept of the
atoms other than those of the type I that have some
region(s) with constant g= l.

The simplest atom of this kind, discussed generally in
Sec. IIB, is the type II atom for whi-ch we assume g(r)=1
in some region r1&r &ro near the atomic boundary,
while 0& g(r) & 1 is in the remaining part of the atom
(0 & r & r, ). It resembles the magnetic TF atom present-
ed in Sec. III. However, in the present atom, unlike in
the TF atom, g( r) is not continuous at r =r, for 8 & 0, as
it follows from Eqs. (22), (23), and (12) yielding g(r i ) & l.
Also the electron density n(r) shows the discontinuity at
this point. This is the combined effect of the local-density
approximations adopted for the kinetic and exchange en-

ergies in the TFD model. For the same reason the TFD
density is discontinuous at r =rp. The finite boundary
density may be, however, a desirable feature if we treat
the TFD atom as a part of a solid (cf. Sec. IVD). But
even in this case, the discontinuity of the density inside
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the type-II atom (at r =r, ) is hardly acceptable from the
physical point of view. Therefore, we will discuss this un-
physical type of atom only briefly. Now, let us mention
that the type-II model can be solved following the general
lines presented in Sec. IIB. Similarly, as in the type-I
case, it is convenient to replace for 0&r &ri [where
g(r) & 1] Eq. (15) for V(r) by the corresponding equation
(53) for g(r).

There exist no other atomic types than I and II in our
model. If they existed, the atom would contain some re-
gion r, & r & rf, where g(r ) = 1, which would be surround-
ed by two other regions with 0&/(r) &1. Then, one
could find from Eqs. (22), (23), and (12), applied at r =r,
and r =rf, that the values of y(r,+ ) and y(rf ) are equal.
This, however, contradicts the monotonicity of y (r) in
the interval r, &r (rf. The latter property is a conse-
quence of the monotonic decrease of the potential V(r)
within an atom (for Z ~1V) and the monotonic depen-
dence of y(r) on V(r) obtained from Eq. (13) with
g(r) =1.

C. Expansion for small 8
Now we would like to determine the response of the

TFD atom to a weak magnetic field B. For such a field, g
is small in the whole volume of the type-I atom and de-
pends linearly on B:

g(r) =[ 'vkoyo ——k ohio(r)] 'p&B

(61)

as it, follows from Eq. (12). Here yp(r) denotes the cubic
root of the unperturbed density no(r) in the original TFD
model (8 =0). Gther quantities, viz. , y(r), V(r), p, and
ro, also show a simple dependence on B. Since they do
not change when B changes its sign, these quantities
should depend quadratically on B:

y(r)=yp(r)+A, (r)8

V(r) = Vo(r)+A, i,(r )8
(62)

ro =Too+ X„B

p —go+ kpB

provided that they are analytical functions of B; the sym-
bols Vp(r), r~, and pp denote the corresponding quanti-
ties in the original TFD model. For the type-I atom the
relations (62) can be rigorously proved with the aid of
Eqs. (61), (13), and (15). These equations lead to the fol-
lowing relation between the coefficient functions A~(r)
and A. i,(r):

Ay(r)= Ao '(r)[A, i,(r)+A,„]
+S a~o '(r)~o '(r)

which leads to the second-order differential equation for

I (r) =r[A, v(r)+A,„], (65)

viz. ,

d r(r) =12iryp(r) A p (r)r(r)
dT

+12nIJ,pre p (r)

X [ 3Kkoyo(r) 3K~oyo{r)] (66)

The quantity I (r) fulfills the boundary conditions:

r(r=o)=o,
9Kko, Z —N

PBToo + Agl

Kgo Too

3

(67)

dI Kao
(r~) —r(r~) = —4

dr Kico
Tooer

which can be found on the basis of Eqs. (17), (63), (54),
and {16).Together with Eq. (66), the three boundary con-
ditions (67) allow us to find the distribution I (r) and the
coefficient A,„.Then we can calculate A, (r) with the help

of Eq. (63), and also obtain A, i,(r ) = I (r )!r—A,„,since A,„
can be expressed in terms of A.„and Z, N, and B.

The range of fields B, where the approximation of a
weak magnetic field can be applied, may be estimated
from the requirement that g(r) should be small. Since
g( r) has its largest value at the atomic boundary r =rp we
calculate g(rp)=g(roo) with the help of Eq. {61) and
yp(rpo)= &K p/Kko [cf. Eq. (54)]. To satisfy the require-
ment that g(ro) = 18akyc, p p~B should be less than 0.1, it
is sufficient for B not to exceed 4.8 X 10 G, which is a
very large value from the experimental point of view.

The type-II atom is qualitatively different from the
type-I atom. The essence of the difference is that a cer-
tain boundary region having a totally spin-polarized elec-
tron density (g=1) exists even for very weak B. This
leads to a different behavior of physical quantities than in
the type-I atom. The relations (62) are, in general, not
fulfilled. Especially, for small B the increase of the atom-
ic radllls pp rpp (approximately equal to roo —ri) is
found to be proportional to B' for Z =N and to B for
Z & N. This is in contradiction with the quadratic depen-
dence vp(8 ) —vp(B =0) ~ 8 obtained experimentally
[22,23] for the atomic volume vo=4, pro. This provides
further evidence that the type-II atom cannot be applied
to represent real atoms. For this purpose we will use
only the type-I atom, also because the interval of B for
which the type-I atom exists covers the region of the
presently experimentally accessible magnetic fields —at
least the static ones.

X [—',akoyo(r) ——3~,ohio(r)], (63) D. Results and applications

i(r)=12myo(r. )A, (r), (64)

where Ao(r) = 3'xkoyo(r) —43m, p. Fr—om the Po—isson equa-
tion (15) it follows that

The model TFD atom can be interpreted as a part of a
metal. This assumption emerges naturally when the ener-
gy functional of the form given in Eq. (6) is applied to the
whole of the metal; Z/r is then replaced by the sum of



5442 MAREK CINAL

the potentials Z/~r —RJ ~
produced by the nuclei located

at points R.. In fact, with the spherical-cell approxima-
tion the total metal energy falls down into the sum of the
energies of the spherical cells, since, being electrically
neutral (Z=N), these cells do not interact. Then we can
deal with a single atomic cell described by the energy
functional (6). Such a cell has a finite radius and the van-
ishing density gradient V'n(r) at its boundary (r =re), as
it should. A theoretical positive ion (Z)N) can be
thought to describe a single metal cell just after the ion-
ization act, i.e., before the neighboring cells polarize their
densities according to the potential created by the ion.

N 12
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1. Atomic radius

The radius ro of the type-I atom increases with B in the
whole allowed region: 0 ~B ~B,2 (cf. Fig. 5). The max-
imum value of ro —roc does not exceed 1.5% of roc,
which is the atomic radius for B =0. For a given B and
neutral atoms (Z =N), the value of ro —roc is almost in-
dependent of Z: it changes by less than 3% in the inter-
val 10&Z ~100. On the other hand, for positive ions
(Z )N) this dependence on Z is much stronger. In Fig.
5 the exact ro is compared with the approximate
ro=roo+A. „B obtained from the expansion for small B

0

[cf. Eq. (62)]. We see that the approximation is valid with
a good accuracy for B less than 5 X 10 G. From the ex-
perimental point of view this is a very strong field, so the
results of the approximate theory can be compared with
experiment. In particular, we obtain the following
coefficient for the volume magnetostriction:

Uo Uoo

UooB
2 "oo

(68)

4.35—

i

/

/
/

/
/

/

o 4.34-

where voo =vo(B =0)=—
, mroo. The th—eoretical coefficient

(68) slowly decreases with the increase of Z. A similar

FIG. 6. The coeKcient for the volume magnetostriction
(vo —voo)/(vooB') [cf. Eq. (68)] vs the atomic number Z calcu-
lated in the type-I TFD-atom model (Z=X) and compared
with the experimental data [22,23] (cross points). The dashed
line IVb links the experimental points corresponding to the ele-
ments from the subgroup IVb of the periodic table [Ti (Z =22)
and Zr (Z =40)], the line Vb, from the subgroup Vb [V
(Z =23), Nb (Z =41), and Ta (Z =73)] and the line VIb, from
the subgroup VIb [Mo (42), W (74)]. The unlinked cross points
correspond to Sc (Z =21) and Pd (Z =46).

decrease is observed for the experimental data when they
are compared within the subgroups of the periodic table
(cf. Fig. 6). The comparison within the subgroups seems
to be realistic because the model does not describe the
atomic shell structure, but this structure does not change
essentially for elements belonging to the same subgroup.
The shell structure is of importance, however, when the
absolute values of the atomic properties are considered.
This may be the case for the magnetostriction coefficient
whose theoretical values are generally not satisfactory (cf.
Fig. 6).

The type-II model gives an unphysical dependence of
ro —roo=roo —

r& on the weak field B; cf. Sec. IV C. For
very strong B, the type-II atom tends to the totally mag-
netic state ((=1), which means that r, approaches zero.
In this case ro tends to the finite value ro((=1), which is
the radius of the atom having g(r)=(= 1 everywhere
constant [the TFD atom with constant g(r) is discussed
in Refs. [24 and 25]].

CD
I

4.33—
2. Distribution of spin-polarized density:

Spin susceptibility

4.32

B (10 G)

12

Bc2

FICx. 5. The radius ro [in atomic units (a.u. )] of the type-I
TFD atom plotted in the interval of allowed B [0~B ~ B,2,

' cf.
Eq. (60)]; Z =X=20. Solid line, exact calculations; dashed line,
the results of the quadratic approximation of the theory
developed for small 8; cf. Eq. (62). The atomic unit (a.u. ) is the
Bohr radius ao =0.529 A.

Here we examine the influence of the magnetic field B
on the distributions g(r) and n(r). The dependences of
g(r) in a neutral type-I atom for several values of B are
presented in Fig. 7. As was proved before, for any B we
have a monotonic increase of g(r) in the whole atom
(0 & r ~ ro). The increase of g(r) is larger, the closer r is
to the atomic edge. For very small r the quantity g(r)
falls down linearly to zero [cf. Eq. (56)], as is seen in the
enlarged part of Fig. 7. To the first approximation, g(r)
depends linearly on B at any r [cf. Eq. (61)]; the ratio
g(r)/B tends then to the distribution A.&(r) [cf. Eq. (61)].
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FIG. 7. The dependence of g on r in the type-I TFD atom for
several magnetic fields: B= 10 G (curve 1), B= 5 X 10 G
(curve 2), B=8X10 G (curve 3), B=10 G (curve 4), B=B,z
(curve 5); Z=20; r is given in a.u. equal to the Bohr radius ao.
The enlarged part shows the behavior of g(r) near the atomic
nucleus, where g(r) is proportional to Br; cf. Eq. (57).

FIG. 8. The decrease of the electron density n (r) —no(r) due
to the magnetic field B in the type-I TFD atom. B=2X 10 G
(curve 1), B= 5 X 10 G (curve 2), B= 8 X 10 G (curve 3),
B=10 G (curve 4), B =B,2 (curve 5); Z=N=20. The atomic
unit (a.u. ) of the electron density is ao ' =6.75 A

For 0~ B ~ 5 X 10 G the difference g(r)/B —k&(r) is less
than 3% of A, &(r) in the whole atomic volume. This
presents another premise for the use of the theory for
small B in applications. The dependence g(r) is similar
for different Z. It is simply pushed to the right with little
distortion when Z increases. This is so because the
boundary value g(ro) is independent of Z, while the
atomic radius r p increases with Z. In positive ions
(Z) N) the distributions g(r) are, in general, similar to
those obtained in the Z =X case, but the region of large
g(r) occurring near the atomic edge (r =ro) is narrower,
which makes the distribution steeper in this region.

The expansion of an atom due to magnetic field implies
some decrease of the electron density inside the atom. In
fact, in the whole volume of the type-I atom n (r) calcu-
lated for B)0 is less than the original density no(r) (see
Fig. 8); more precisely, this is true for 0~ r & roc, where
no(r) )0. The absolute value of the difference
n(r) —no(r) is the largest in the immediate neighborhood
of the nucleus and it diverges at r =0. This is an unphys-
ical effect caused by the unphysical divergences of n(r)
and no(r). For small r both the densities behave, in the
first approximation, like the term r multiplied by the
same coefficient, and their difference is

3Z 2Kap
n(r) —no(r) =3

5Kkp 1 5KgpZ 3p~B 101~ko

1/2
9 3Z dP (r=0)Bz r ir2
10 5K~~p dr

(69)

The result at the first step is attained from the expansion
of n (r) for small r done with the aid of Eqs. (49) and (57);
the expansion of no(r) is obtained from the expansion (58)
of the reduced potential in the original TFD model [the
first equality in Eq. (69) also holds in the TF atom con-
sidered in Sec. III if we set ir, o=0]. The second step in
Eq. (69) is derived from the approximations of the theory
for small B. Although the difference n (r) —no(r) is large
near the nucleus, it is negligible in comparison with no(r)
or n (r). In consequence, the magnitude of the relative
density difference [n(r) no(r)]Inc(r) is the la—rgest at
the atomic edge (r =ro) and decreases rapidly for r (ro,
attaining zero at r =0. However, for any B admitted for
the type-I atom, the difference n (r) —no(r) is everywhere

a very small fraction of the original density no(r), so the
general shape of the electron distribution remains un-
changed under the inhuence of a magnetic field. Similar-
ly to the case of g(r), the approximation of small B repro-
duces very well the exact n (r) —no(r) in the whole atom-
ic volume for fields O~B ~ 5X10 G. The distributions
n (r) no(r) do—not change qualitatively with Z. They are
also similar to those obtained in the case of the positive
type-I ions (Z )N), though the boundary region where
the difference is large is, as for g(r), much narrower for
ions than for neutral atoms.

In Fig. 9 we present the distributions of 4~r2m(r),
where m (r) is the magnetization density [cf. Eq. (4)].
The largest contribution to the magnetic moment M,
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FIG. 9. The radial magnetization density 4~r m, (r) in the
type-I TFD atom plotted as a function of r for several magnetic
fields: B=10 G (curve 1), B=SX10 G (curve 2), B=8X10
G (curve 3), B=10" G (curve 4), B=B,& (curve 5); Z=N=20.
The atomic unit (a.u. ) of the radial magnetization density is

o

(2/a)pzao ' =518'& A; a is the fine-structure constant.

defined in Eq. (45), comes from the outer regions of the
atom, i.e., from the least-bound electrons. The substitu-
tion of 7 &(r)B for g(r), no(r) for n(r), and ron for ro in
Eq. (45) gives the linear dependence of M(B), viz. ,

M(B)=y',~B,

its coefFicient being

no (r)2/3

y',", =36mp~ rdr.
10Kko 0 (7) 4 ao

(70)

(71)

Again, the approximation of small B turns out to be quite
accurate.

The quantity y',~ is a theoretical magnetic susceptibility
coming from the electron spins of a single atom. For the

E. Energy relations

There exist relations among the components of the to-
tal energy appearing in Eq. (6). First, the equation

Eee 6Ekin 3 Ex 2 Een 2 EB +Tp+ (72)

is obtained by expressing the electronic potential
V, (r) = —fn(r') ~r r'~ '—dr ' with the help of the varia-

tional equation (13). The other energy relation is the so-
called Uirial theorem:

E= —Ez;„+E (73)

Its present form di6'ers from that obtained originally for
the TFD atom by the term Ez. On the other hand, we
can define the internal energy E =E—E~, which is the
total energy apart from the component representing the
direct interaction of the spin-polarized electron density
with the external field. Then the virial theorem in the
form of the equation E = —Ek;„holds equally for B =0
and %0. The proof of Eq. (73) can be carried out with
the standard procedure [17] first introduced by Fock [26].
Thus we consider the distributions

molar spin susceptibility y'~,
&

of a metal we take X~y'„,
where X„ is the Avogadro number. The calculated y',

&

is always positive and increases monotonically with the
atomic number Z. This agrees with the behavior of the
experimental values of the spin susceptibility obtained for
the subgroup of the alkali metals (cf. Fig. 10); on average
the theory overestimates y'",

&
by about 30% of the exper-

imental value.
In the case of the neutral type-II atom, its magnetic

moment M is proportional to B' at weak B, since the
same dependence holds for the width of the interval
&& & r ( ro, where g(r) = 1. Thus the spin susceptibility of
this atom diverges at B~0, which is another unphysical
feature. For large fields B the magnetic moment M tends
to its maximum value p&X. In fact, the atom becomes al-
most magnetically saturated only for B of the order of
10' G: For such a strong field M attains 99%%uo of its max-
imum value.

100
nz(r ) =A. n(Ar ), gz(r) =g(Ar ), (74)
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E(A, )=A, E„;„+A,E +LE,„+RE„+E~, (75)

obtained by scaling of n (r) and g(r) with the help of the
parameter A, & 0. Consequently, the atomic radius is
equally scaled to roz=ro/A. . Nevertheless, the scaled
atom has the unchanged electron number N, and gz(r)
fulfills the condition (5). Therefore we can use nz(r) and

gz(r) as the trial distributions in the energy functional (6).
If n and g correspond to the minimum of the functional
(6), then the energy E(A, ) = [En~, g&] attains its minimum
at A, =1. Since

FIG. 10. The Z dependence of the spin susceptibility y'~,
~

calculated for the neutral type-I TFD atoms (solid line) corn-
pared with the experimental data [31] for alkali metals: Li
(Z=3), Na (Z=11), K (Z=19), Rb (Z=37), Cs (Z=55)
(cross points linked with a dashed line).

where all the energy components on the right-hand side
are calculated for A, =1, the necessary minimum condi-
tion dE/d A(A, =1)=0immediately leads to Eq. (73). The
virial theorem (73) is valid for the TFD atoms of both
types I and II. This is so because the trial distributions
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n&(r), gi (r) represent the same type of atom as the origi-
nal n(r), g(r); therefore we can apply the variational
principle for each atomic type separately. The virial
theorem applies also to the magnetic TF atom discussed
in Sec. III; to prove this, it is enough to omit E„ in the
above discussion.

Let us note that the value of E(B) E(B—=0) for weak
B can be obtained from the well-known relation

' = —M(8),
dB

(76)

which is an example of the Hellmann-Feynman theorem
[27,28]. In order to prove Eq. (76) within our density-
functional theory, let us consider as trial distributions in
the energy functional E[n, g;8] for field 8 the distribu-
tions n(r;8'), g(r;8') corresponding to the minimum of
the energy functional E[n, (,B'] for a different value 8'
of the magnetic field than the field B. The energy

obtained in our model for the unphysical type-II atom by
the local-density approximation used for both the kinetic
and exchange energies in the energy functional (6). If we
had taken a more accurate form of the functional, e.g. ,
that including a Weizsacker-Kirzhnitz gradient correc-
tion [29,30], the discontinuities of n (r) and g(r) occur-
ring at the surface r =r] of the type-II atom would van-
ish. Then, we would have only one type of atom, that
with continuous distributions n (r) and g(r), which at
weak magnetic fields is qualitatively closer to the type-I
atom. The discontinuity of n (r) obtained at r =ra in the
type-I atom (similar to that present in the nonmagnetic
TFD atom) is only spurious, on condition that this atom
is assumed to represent a metal cell, since then the elec-
tron density of one cell joins smoothly with that of the
neighboring cells.

V. SUMMARY AND DISCUSSION

aE, , ,
aE[,g;8]

aB ' aB
(77)

This relation is true for any parameter B appearing in an
energy functional. In our case, B is the magnetic field,
and the derivative of the energy functional (6) with
respect to 8 gives —M defined in Eq. (45). Equation (76)
is valid for each type of TFD atom separately on the
grounds of arguments similar to those applied in the case
of the virial theorem (75); it is also valid for the TF atom.

Since for the type-I atom M is proportional to B at
weak magnetic fields, the integration of Eq. (76) yields the
total energy decrease in the usual form

E(8) E(B=0)= ——,'BM =
—,'E~ . — (7g)

It should be noticed that Eq. (78), combined with the viri-
al theorem (73), also implies a decrease of the electron ki-
netic energy approximately equal to the term —,'Ez. At
the same time, an increase of the internal energy E by
the term —

—,'Ez is observed. In the case of the neutral
type-II atom the coefficient —,

' in Eq. (78) is replaced by —', ,
since then M ~B' . For the neutral TF atom having
M ~B,it is equal to 4.

From the theoretical point of view, a basic question
may be, which type of atom, I or II, has a lower energy in
the interval 0(B&B„where both the atomic types ex-
ist? The atom with a lower energy corresponds to the
true minimum of the energy functional (6), so according
to the basic idea of the density-functional theory, we
should choose the low-energy atom to represent a real
atom. Unfortunately, it turns out in the numerical calcu-
lations that the type-II atom has a lower energy. For
weak magnetic fields this result is also implied by
the analytically obtained power dependences of
E(B) E(8 =0) on B. We explai—n the energy preference

E(B',8 ) =E[n(r;8'), g(r;8');8 ]

attains its minimum, with respect to B', at B'=B, and
E(8'=B,B)=E(B). Therefore we have

dE (8) BE (8'= 8, 8 )+ ~E (8'= 8, 8 )
dB M' ' aB

In this paper we have introduced the electron-spin po-
larization into the statistical, TF or TFD, atom submitted
to an external magnetic field. This extended statistical
atom is described with the aid of two distributions: the
electron density n (r) and the relative magnetization g(r),
which enter the energy functional E[n, g]. The minimi-
zation of this functional at the zero magnetic field shows
that no spontaneous magnetization can occur in the sta-
tistical atoms.

At the first step of the calculations, we dealt with the
TF atom where exchange phenomena are neglected. This
atom contains a totally spin-polarized ((=1) region
r, & r ( ro near the atomic edge r = ro (for the neutral TF
atom ro is infinite), while for r (r, the polarization is
only partial: 0&/(r) & 1. However, g(r) as well as n (r)
are continuous on the internal boundary surface r=r&
and the same applies to the derivatives dg(r) /dr,
dn ( r) /dr. The variational equations are most con-
veniently expressed in terms of reduced variables: x and
f (x) with the aid of which r, n (r), and g(r) can be easily
calculated. The second-order differential equation for the
reduced potential f (x) and the corresponding boundary
and matching conditions are obtained. In this descrip-
tion of the model the three parameters Z, X, and B enter
in the form of the two combinations q and w. The mag-
netic moment of the neutral TF atom is found to be pro-
portional to B at weak B; this unphysical prediction is
related to the incorrect behavior of the TF potential:
V(r) CC r at large r where g(r) = 1.

At the next step, the exchange energy given by the
spin-extended TFD formula is included in E[n, g]. Two
types of atoms, I and II, emerge then in the model. The
atom of type I is represented by smooth distributions of
n (r) and g(r) The second-o. rder differential equation for
g(r) and three boundary conditions are derived from the
variational principle. They allow us to find the atomic
radius ro and the distribution g(r); we also obtain the re-
lation between n (r) and g(r), which enables us to calcu-
late n(r). In the atom of type II there are unphysical
discontinuities of n(r) and g(r) on an internal surface
r =r&, also other properties of this atom show unphysical
behavior. This type of the magnetic TFD atom evolves



5446 MAREK CINAL

from the magnetic TF atom if the exchange is smoothly
switched on at some fixed B )0. However, the crude way
in which the exchange is treated in the TFD model com-
bined with the TF expression for the kinetic energy,
which seems to be an even more drastic approximation,
makes the resulting type-II TFD atom, with discontinu-
ous n(r), g(r), even more unphysical than the original
magnetic TF atom. However, a positive exchange
coefFicient ~,Q gives, in our model, an alternate, much
more physical, solution: the type-I atom. It exists for
0&B &B,2, the maximum field 8,2 is small at small v, Q,

but its value for the actual tc, o [cf. Eq. (60)] is very large
from the experimental point of view. The duality of the
TFD solution would not be present in the case of the
better treatment of the atomic energy functional, espe-
cially, the treatment of its kinetic part. In fact, n (r) and
g(r) become continuous, if a Weizsacker-Kirzhnitz
correction is included. Nevertheless, on the level of
1ocal-density energy functional adopted in this paper, the
inclusion of the exchange term was crucial for obtaining
a physically acceptable solution (i.e., the type-I, TFD-like
solution) for a spin-polarized atom in a magnetic field.

For weak fields B the dominant terms in the expan-
sions of ro and n (r) with respect to B can be determined
in the case of the type-I atom, through a solution of a B-
independent differential equation. In this way the
coefFicient for the volume magnetostriction is obtained.
Simultaneously, the relative magnetization g(r) for weak
B can be expressed analytically with the aid of the unper-
turbed TFD density n o( r ). Then the spin susceptibility
y',

&
can be easily calculated through a single integration

done for every atomic number Z. Our model predicts in
the correct way the tendency of y'",

&
to increase with the

increase of Z for elements within the subgroups of the

periodic table; the numerical values, however, at least for
alkali metals, are not in such good agreement with exper-
iment as the results obtained with the use of the varia-
tional principle for the magnetic susceptibility in the
method proposed by Vosko, Perdew, and MacDonald
[31]. Let us note here that the latter treatment requires
the solution of the Kohn-Sham equations, which makes it
incomparably more laborious than the present calcula-
tion.

The type-II solutions, although their physical meaning
is questionable (especially at small B), show that a very
strong field, practically of the order of 10' G, is required
to polarize almost fully the electron spins in a TFD atom;
for weaker B this polarization is considerably smaller.
These calculations suggest that the assumption of exactly
full spin polarization of the TFD atom in the fields —10'
G, made by Banerjee, Constantinescu, and Rehak [18] in
their treatment of the orbital effects in the TFD atom, is
not obvious. The orbital effects, neglected in our paper,
lead to a TFD atomic volume that is much shrunken at
very strong magnetic fields, which implies a large in-
crease of the electron density. This density increase
should act, as we may expect from our model, towards a
considerable decrease of the spin polarization g(r).
Therefore, the validity of the full polarization assumed in
Banerjee's model can be checked only after the electron
spins are included in this model and a full solution of the
problem is obtained.
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