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Ionization potential of the lithiumlike 1s 2s states from lithium to neon
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The ionization potentials of the 1s 2s states are calculated for Z=3 to 10 with a method of full core
plus correlation using multiconfiguration interaction wave functions. Relativistic and mass polarization
effects are included using first-order perturbation theory. The QED contributions to the ionization po-
tential are calculated using effective nucleus charges. The results of this work generally agree with those
of experiments. For example, our predicted ionization potentials for Li I and Be ii are 43487. 15(9) and
146883.03(18) cm ' in comparison with the experimental results of 43487. 15 and 146882.86 cm ', re-
spectively. The predicted nonrelativistic energies in this work agree with those of King [Phys. Rev. A
40, 1735 (1989); 38, 6017 (1988)]. Our results show that the higher-order relativistic perturbation tends
to reduce the ionization potential. It becomes appreciable for Z 7, increases from less than 1 cm for
carbon to about 14 cm ' for Ne. Although the agreement between our predictions and experiments is

good for most systems, there is a clear discrepancy of more than 1 cm ' in the case of boron. The reason
for this discrepancy is not understood at this time.

PACS number(s): 31.20.Di, 31.20.Tz, 32.80.Fb

I. INTRODUCTION

The multiconfiguration wave-function approach to the
atomic structure problem has the advantage that it can
be applied to many-electron systems easily. This type of
wave function has been used efFectively in multi-
configuration Hartree-Fock (MCHF) calculations [1].
The multiconfiguration-interaction (CI) approach is also
powerful. For some core-excited systems, highly accu-
rate results have been obtained using this method [2].
However, for systems with a 1s core, it is difficult to ob-
tain an accurate energy with CI wave functions. This is
because the large contribution to the 1s core coming
from the high-angular-momentum components makes the
convergence slower [3]. Here the correlated-coordinate
(Hylleraas-type) wave function becomes very effective [4],
even though the convergence rate is still quite slow.
However, it is difficult to extend the correlated-
coordinate approach to a general many-particle system.
For this reason, it is of interest to know whether accurate
CI predictions are possible for systems with a 1s core, in
spite of the inherent shortcomings. We will use the ion-
ization potential (IP) for lithiumlike ls 2s states as a test
case and compare our results with high-precision experi-
ments.

The method adopted in this work is to use a large CI
1s -core wave function which is sufticiently saturated in
its radial correlation for each angular component. The
large wave function is then used as a single entity in the
total three-electron wave function. The relaxation of the
core and other correlation effects are accounted for by
adding another large CI function. By comparing the
three-electron energy and the two-electron energy of the
core, the IP can be predicted. The basic concept of this
approach is perhaps as old as quantum mechanics itself.
It is the advance of computer technology and the availa-

II. THEORY

The LS coupling scheme is used in the present work.
The nonrelativistic Hamiltonian is given by (in a.u. )

3
H'0= g I y2

2
l

+ g
ij =1 &j

i (j
The relativistic
operators are

and mass-polarization perturbation

H' =H) +H2+H3+H4+H5, (2)

bility of computing resources that allow us to carry this
old concept to its potential.

In this work, we calculate the IP for 1s 2s S states
from Z =3 to 10. The relativistic effects are calculated
using first-order perturbation theory. The mass-
polarization effect is included. To make a definitive com-
parison with the experiment, the radiative correction is
calculated using the equation in Bethe and Salpeter [5].

The computation carried out in this work and the re-
sults presented are mostly in atomic units (a.u. ). It is a
convenient unit to use in computing different theoretical
results. However, accurate experimental data are mostly
given in cm ' or eV. Therefore, to make a definitive
comparison with the experiment, our IP's are converted
into cm ' using the reduced Rydberg constant. The cor-
responding nuclear mass is taken from Wapstra and Audi
[6]. The isotopes used in this work are Li, Be, "B, ' C,
' N, ' 0, ' F, and Ne. The reduced Rydberg constants
agree with those of Pekeris [7] to eight digits. The con-
version factor from cm ' to eV in this work is
0.000 123 984 24 [8]. This is very close to the value
0.000123985 used in Kelly [9] but different from the
0.000 123 95 used in Moore [10].
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where
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For simplicity, we denote the angular component as

l (i)=((l„lz)1,2, 13),

(13)

(14)

(Darwin term),

H3= — g (1+—', s s )5(r,j)
'ij

C i j=1
i&j
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where l12 and I3 couple into I. is implicitly implied. Us-
ing this notation, the spin-angular-momentum functions
become

(electron-electron contact term),

H~= — g V;V,
i,j=1
i &j

(mass polarization),

1 ~ 1

2c ij =1K
i &j

r;, (r; .P;).P.
P, -P +

Pg~

(orbit-orbit interaction), where M is the nuclear mass.
For the two-electron core, we use the wave function

There are two spin doublets,

y, =((s),sz ) l, s3 ),

y2=((s), s2)O, S3) .

(16)

(17)

The correction due to relativistic and mass-polarization
perturbation are given by

The nonrelativistic energies of the 1s core and 1s 2s
state are calculated by minimizing the expectation value

&e[H, ie&
5E,=S&H, & =S (18)

k n ~11 ll 2@11 (rl 2) AX k 1 ) 2e
k, n, l

aE=&el(H, +H, +H, +H, +H, le& . (19)

X Y)(1,2)y(1,2), (8) The total energy (excluding the radiative correction) be-
comes

where A is the antisymrnetrization operator and y(1,2)
represents the singlet spin function. The angular com-
ponent is given by

Y)(1,2)=g&l, m, l, —m~0, 0& Y) (g), p))Y) (g2 p2)

E„,=Eo+~E
To calculate the ionization potential, we use

E,p =E„,( ls 'S) —E„,( ls 2s S)—b EQED(2s) .

(20)

(9)

The nonlinear parameters P) and p) are individually opti-
mized in the energy minimization process. The total wave
function of the three-electron system is given by

%(1,2, 3)= A N„„(1,2)gd;r3e 'y(3)

(10)+gC;4&„(;) )(;)(1,2, 3)
I

The second term on the right-hand side (rhs) accounts for
the three-electron correlation and the relaxation of the
core. The basis function is given by

4 „(;))(;)(1,2, 3)=q)„(;)(R)Y)(™)(R)ass (11)

where R represents the radial parts of r„r2, and r3 and P
represents their angular part. S, is the Z component of
spin S. The radial function is

The last term on the rhs represents the contribution of
the radiative correction to the ionization potential due to
the 2s electron. We are not aware of any accurate QED
calculation for the low-Z 1s 2s system. However, it is
reasonable to assume that the QED effects of the core
cancel out in the ionization potential and the net effect of
the radiative correction comes from the valence 2s elec-
tron. This effect can be calculated using an effective nu-
cleus charge Z, (r in the accurate formula [5]

EEQED ( n, 0 ) = 8Z,(ra R [ —,",—2 in( aZ, (r )

—In[a(n, O)]]/(3mn ), (22)

where R is the Rydberg constant. n is the principle quan-
tum number which equals 2 in our case. K (2,0) has been
accurately calculated [11] to be 16.6398. Z,(r can be cal-
culated using the equation

(23)

3

y„(,)(R ) = + rj 'exp( aj r& ), . —
j=1

and the orbital angular momentum function is

(12) III. COMPUTATIONAL ASPECT

Most of the computations are carried out with double-
precision (R e 8) arithmetic on an IBM 6000/320
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workstation with 16 megabytes of RAM memory. The
limited memory prevents us from extending the size of
our matrix beyond 975 X975. The Anal calculations with
1017X 1017 matrices are computed with quadruple pre-
cision (R a 16) on a mainframe computer. In calculating
the core wave function, we attempt to saturate the radial

basis functions for each l in Eq. (8). However, too many
terms in the same (l, l) angular component may lead to
numerical instability. Although this numerical instability
can be avoided with R + 16 precision, our workstation
cannot perform such a calculation at present. Our
resources on the mainframe computers are more restrict-

TABLE I. Energy convergence of the ls ls 'S core and the ls 2s S states of lithiumlike systems. [In the S calculations, the spinor
from Eq. (16) is adopted except for the core plus 2s and the last two angular components. ]

Angular
component

(0,0)
(1 1}
(2,2)
(3,3)
(4,4)
(5,'5)

(6,6)

No. of
terms

64
56
49
42
36
36
35

Z=3
7.252 486 89
0.023 396 65
0.002 772 30
0.000 705 27
0.000 253 34
0.000 11171
0.000 056 21

Z=4
13.626 853 88
0.024 250 23
0.003 045 62
0.000 789 65
0.000 286 27
0.000 127 26
0.000 064 18

—AE (a.u. )

22.001 508 04
0.024 734 17
0.003 212 63
0.000 842 45
0.000 307 88
0.000 13701
0.000 069 46

Z=6
32.376 289 95
0.025 045 93
0.003 325 08
0.000 878 50
0.000 321 20
0.000 143 25
0.000 072 82

Total 318 7.279 782 38 13.655 417 10 22.030 811 64 32.406 076 73

core plus 2s
((0,0)0,0)
((0, 1)1,1)
((0,2)2, 2)
((0,3)3,3)
((0 4)4 4)
((0,'5)5,'5)
((0,6)6,6)
((1,2)1, 1)
((1,2)1, 1)
((2,3)1,1)

Total

8
66

283
217
141
84
84
84
20
20
10

1017

7.476 009 95
0.000 13662
0.001 604 34
0.000 124 53
0.000 023 98
0.000 007 61
0.000 003 17
0.000 001 55
0.000 009 57
0.000 002 69
0.000 001 06

7.477 925 06

14.321 361 36
0.000 293 87
0.002 636 07
0.000 228 67
0.000 046 91
0.000 015 15
0.000 006 40
0.000 003 26
0.000 009 65
0.000 001 87
0.000 001 07

14.324 604 29

23.420 369 04
0.000 408 28
0.003 249 33
0.000 298 55
0.000 063 26
0.000 020 76
0.000 009 02
0.000 004 50
0.000 007 82
0.000 001 32
0.000 000 88

23.424 432 77

34.770 708 34
0.000 492 25
0.003 653 12
0.000 347 49
0.000 075 08
0.000 024 85
0.000 01092
0.000 005 52
0.000 006 21
0.000 000 94
0.000 000 71

34.775 325 44

(o,0)
(1,1)
(2 2)
(3,3)
(4,4)
(5,5)
(6,6)

64
56
49
42
36
36
35

Z=7
44.751 139 85
0.025 263 52
0.003 405 95
0.000 904 68
0.000 332 69
0.000 148 54
0.000 075 48

Z=8
59.126 030 52
0.025 424 00
0.003 466 84
0.000 924 55
0.000 340 65
0.000 152 26
0.000 077 36

Z=9
75.500 946 62
0.025 547 28
0.003 514 36
0.000 940 17
0.000 346 13
0.000 155 20
0.000 079 01

Z =10
93.875 880 76
0.025 644 92
0.003 552 51
0.000 952 69
0.000 351 98
0.000 157 57
0.000 080 00

Total 318 44.781 270 71 59.156416 18 75.531 528 76 93.906 620 43

core plus 2s
((0,0)0,0)
((0, 1)1,1)
((0,2)2, 2)
((0,3)3,3)
((0 4)4 4)
((o,5)5,5)
((0,6)6,6)
((1,2)1, 1)
((1,2)1, 1)
((2,3)1,1)

8
66

283
217
141
84
84
84
20
20
10

48.371 691 52
0.000 555 19
0.003 938 66
0.000 383 88
0.000 083 89
0.000 027 97
0.000 012 38
0.000 006 28
0.000 005 12
0.000 000 55
0.000 000 57

64.223 030 09
0.000 604 06
0.004 151 07
0.004 411 54
0.000 090 92
0.000 030 44
0.000 013 57
0.000 006 90
0.000 004 18
0.000 000 41
0.000 000 47

82.324 587 47
0.000 642 81
0.004 315 20
0.000 433 46
0.000 096 42
0.000 032 54
0.000 014 51
0.000 007 43
0.000 003 45
0.000 000 32
0.000 000 39

102.676 290 41
0.000 674 48
0.004 445 75
0.000 451 01
0.000 100 90
0.000 034 14
0.000 015 32
0.000 007 88
0.000 002 89
0.000 000 26
0.000 000 33

Total 1017 48.376 706 02 64.228 343 65 82.330 13399 102.682 023 38
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ed. The memory and precision are two factors which
prevent us from obtaining much higher accuracy at this
time. For this reason, we limit the k and n to about 14 or
15 in Eq. (8) and l to 6. It should be pointed out that,
with regard to energy, we can obtain much lower upper
bounds by simply increasing I. However, it is more im-
portant for us to saturate the radial correlations to learn
the convergence of energy in terms of I such that a reli-
able extrapolation procedure can be found for higher I.

In the present work, the ionization potential is ob-
tained from the energy diff'erence calculated with Eqs. (8)
and (10). Hence, it is crucially important that @&,&, is
suSciently saturated so that @„~;~1~;~ does not contain a
part which actually comes from the core. This implies
that if the largest I used in Eq. (8) is 6, the maximum I's
in Eq. (13) will also be 6.

For the 1sls core states, we used 318 terms in the
seven I components. The convergence in energy is given
in Table I. If we compare these results with those of Pek-
eris [7], the deficiency in energy ranges from

—0.000 1310 a.u. in lithium to —0.000 186 1 a.u. in neon.
Again, we emphasize that these energy values can easily
be improved by including higher I's in the wave function,
but for our purpose, this is not as important as saturating
the l's radial functions already being used.

To calculate the 1s 2s energy, we use eight d; terms in
Eq. (10) and about 1009 terms in N„(;) &(,), this implies
that approximately one-half of 3553X3553 matrix ele-
ments are computed for each secular equation. The ener-

gy convergence in terms of increasing l for the S state is
also given in Table I. In Sec. IV the binding energy corn-
ing from the ((0,5)5, 5) and ((0,6)6,6) angular terms will
be used to extrapolate the contribution from higher l. It
is important to know that these energies are well con-
verged. When we increase the number of terms in
((0,5)5, 5) from 56 to 84, bE chan—ges from 3.087 to
3.172 micro-atomic-units (pa.u. ) for lithium and from
15.16 to 15.32 pa.u. for neon. The improvement is about
2.7% to 1.1%. Similarly, for ((0.6)6,6), they change
from 1.493 to 1.545 pa. u. for lithium and 7.727 to 7.883

TABLE II. Convergence study and extrapolation of the higher-I contributions to the ionization potential. [E(pekeris) are from

Ref. [7].]

EE(/)/EE(/ —1) for lsls
EE(/)/EE(/ —1) for ls~2s
5EI(lsls) (pa.u. ) [Eq. (24)]
Ri [Eq. (25)]
Extrapolated energy (pa.u. )

E(Pekeris)

/ =4

0.359
0.317

—298.9
1.180

—4.26

Li II
0.441
0.417

—187.2
1.676

—3.77
—7.279 9134 a.u.

/=6

0.503
0.487

—131.0
2.331

—3.60

l =4

0.368
0.333

—398.4
1.198

—14.84

l=s
Nv

0.446
0.443

—249.9
1.682

—14.55
—44.781 445 1 a.u.

l=6

0.508
0.507

—174.4
2.310

—14.50

AE(/)/AE(/ —1) for lsls
AE (l) /hE (l —1) for ls 2s
5F&(lsls) (pa.u. ) [Eq. (24)]
Rt [Eq. (25)]
Extrapolated energy (pa.u. )

E(Pekeris)

AE(/)/AE(/ —1) for lsls
AE(/)/AE(/ —1) for ls 2s
5E~( ls ls) (pa.u. ) [Eq. (24)]
RI [Eq. (25)]
Extrapolated energy (pa.u. )

E(Pekeris)

0.363
0.323

—340.5
1.190

—8.36

0.365
0.328

—366.4
1.190

—11.20

Be II
0.445
0.423

—213.3
1.676

—7.46
—13.655 5662 a.u.

B Iir
0.445
0.434

—229.4
1.675

—10.60
—22.030971 6 a.u.

0.504
0.510

—149.1
2.323

—7.58

0.507
0.499

—160.0
2.303

—10.36

0.368
0.335

—408.5
1.199

—16.03

0.368
0.337

—417.7
1.207

—17.33

Qvi
0.447
0.446

—256.3
1.683

—15.93
—59.156595 1 a.u.

F VII

0.448
0.446

—262.5
1.692

—17.12
—75.531 712 3 a.u.

0.508
0.509

—178.9
2.313

—15.97

0.509
0.512

—183.5
2.323

—17.26

EE(/)!EE(/ —1) for 1sls
AE(/)/EE(/ —1) for ls 2s
AEz(isis) (pa.u. ) [Eq. (24)]
RI [Eq. (25)]
Extrapolated energy (pa.u. )

E(Pekeris)

0.366
0.331

—385.9
1.202

—13.42

Cvr
0.446
0.440

—242.7
1.694

—12.98
—32.406 246 6 a.u.

0.508
0.506

—169.9
2.333

—12.88

0.369
0.338

—423.6
1.204

—17.89

Ne III
0.448
0.449

—266.1

1.689
—17.99

—93.906 806 5 a.u.

0.508
0.514

—186.1
2.326

—18.33
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IV. EXTRAPOLATION PROCEDURE

Comparing the convergence of 1s 2s S and 1sls 'S in
Table I, it is apparent that the contribution to the binding
energy of S from higher (O, l, l) components is smaller
than the (I, I) contribution to the core by more than an
order of magnitude. However, for /~4, the "rate" of
convergence is about the same. This can be seen by com-
paring the ratio of bE(l)/bE(l —1) for both states for
the entire isoelectronic sequence. This comparison is
given in Table II. We see that this rate for the S is al-
most the same as that of the core. From the results of
Pekeris [7], we can compute the deficiency of the core.
Most of this deficiency comes from the neglected higher-/
angular components. If we define

5Ei(Isis 'S)= g b,Ei(Isis 'S)
1=1+1

=E(Pekeris) —E&(isis 'S), (24)

where E&(isis 'S) is the energy of the wave function in
which (l, I) is the highest angular component, and
AE&(isis 'S) represents the binding energy contribution
from the (l, l) term, the ratio

Ri=5Ei(Isis 'S)IDES(isis 'S) (25)

is stable for the entire isoelectronic sequence for / )3.
Table II shows that R6 falls in the range 2.318+0.015
and R5 falls in the range 1.684+0.010. Since the "rate"
of convergence for 1s 2s S is about the same as that of
ls 'S (see Table II), it is reasonable to assume that this
same convergence behavior will continue for higher /.

Thus, a 5E&( is 2s S) can be obtained from

pa.u. for neon. The improvement is about 3.6% to 2.0%.
This suggests that a further increase in the number of
terms will not change AE substantially.

E„,„„i(ls 2s S)=Ei(ls 2s S)+5Ei(isis 'S)

+5E&( ls 2s S) . (28)

Here the E&( ls 2s S) is the upper bound calculated here.
The validity of this equation would imply that the in-
teraction energy coming from the neglected higher-l com-
ponents in the core with other parts of the three-electron
wave function must be small. This is dificult to prove in
general. However, it can be studied empirically by suc-
cessively adding (I, l) terms to the core and comparing
the change of the three-electron energies to the corre-
sponding change in the core energies. To illustrate, car-
bon is used as an example. The (4,4) angular component
contribution to the binding energy of the two-electron
core is 321.21 pa.u. , but its contribution to the three-
electron energy is 323.35 pa.u. The difference is 2.15
pa. u. This difference reduces to 0.54 pa.u. for (5,5) and
0.28 pa.u. for (6,6). Similar results are also obtained for
lithium. Therefore, it may be reasonable to assume that
for higher / this discrepancy will be further reduced, and
the error bar introduced by such an approximation
should be less than 0.5 pa.u. The total error bar in E
is given by the sum of the uncertainty on the rhs of Eq.
(28). Using this E„,„„„,an accurate effective nuclear
charge can be calculated for the 2s electron with Eq. (23).

ed results for Z =3 and 8% for other Z. This error bar is
probably sufticient. Using these results and the method
in the following paragraph, we can predict a nonrelativis-
tic energy for the 1s 2s states. We find that the results so
obtained agree excellently with those from King [12] in
all cases even if we reduce these estimated error bars by a
factor of 2.

The computation mentioned above is relevant in ob-
taining an accurate IP. Another interesting question is
whether one can also obtain an accurate 1s 2s S nonrela-
tivistic energy by adding 5E&( ls ls S), i.e. ,

5Ei(ls 2s S)=R( AEi(ls22s S), (26)

V. RESULTS AND DISCUSSION

where b,E&( is 2s S) represent the binding energy coming
from the (O, l, l) angular term. Obviously, if this empiri-
cal procedure is valid, then it is necessary that the extra-
polated result must satisfy the relation

5Ei(ls 2s S)=5Ei,(ls 2s S) b,Ei(ls 2s S) . —(27)

This means that for suKciently high /, the correction to
our calculated upper bound should be the same for all l.
The different corrections to the upper bound extrapolated
from / =4, 5, and 6 are also given in Table II. One can
see from this table that results for the l = 5 and 6 are ex-
tremely close. The largest deviation is for neon where it
is 0.35 pa. u. , or 1.8% of the extrapolated energy. The to-
tal extrapolated energy ranges from 3.6 pa.u. for lithium
to 18.3 pa. u. to neon. Since this procedure is not
rigorous, we assign a 10% uncertainty to the extrapolat-

To obtain an accurate IP, the relativistic and mass-
polarization effects must be included. Equation (19) is
calculated for both the 1s1s core and the 1s 2s. These re-
sults are given in Table III. The relativistic effects to the
core states have been calculated by Pekeris [7]. In com-
parison with the results in Ref. [7], we note that for most
perturbations the discrepancies are less than 1% except
for the electron-electron contact term which range from
4.9%%uo in lithium to 1.4%%uo in neon. These discrepancies
should not cause an inaccuracy in the IP result, because
exactly the same core is used in 1s 2s. The errors due to
the core should essentially cancel in the IP calculation.
We may also improve our relativistic-perturbation results
by adding the deficiency in the core. The reliability of
this procedure can be seen from the results of mass polar-
ization. For lithium, Pekeris [7] gives 4.959 72 cm



5426 KWONG T. CHUNG

TABLE III. Relativistic and mass-polarization (MP) corrections for ls 2s states (in a.u. ) and comparison of ls ls core states with
those of Pekeris (Ref. 7).

&H, +H, &

(units of 10 ') (units of 10 )

&8, &

(units of 10 )

Mass polarization
This work Ref. 12

(units of 10 ') (units of 10 ')

lsls this work (Z=3)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.006 934 5
—0.006 953 9

0.000 019 5
—0.280
—0.007 074 8
—0.007 094 2

R =109728.733 cm
0.093 484
0.089 298
0.004 186
4.687
0.095 340
0.091 154

—0.229 22
—0.227 92
—0.001 30

0.572
—0.233 31
—0.232 01

2.2630
2.2600
0.0030
0.133
2.3635
2.3605 3.2605

lsls this work (Z =4)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.024 296 1
—0.024 338 4

0.000 042 3
—0.174
—0.025 373 7
—0.025 4160

R =109730.633 cm

0.263 595
0.254 789
0.008 806
3.456
0.273 551
0.264 745

—0.469 60
—0.467 97
—0.001 63

0.349
—0.486 26
—0.484 63

2.5633
2.5604
0.0029
0.115
2.7603
2.7574 2.758(7)

lsls this work (Z =5)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.063 271 5
—0.063 341 5

0.000 070 0
—0.111
—0.067 228 8
—0.067 298 8

R =109731.845 cm
0.569 210
0.554 178
0.015 032
2.712
0.597 386
0.582 354

—0.796 18
—0.794 54
—0.001 65

0.207
—0.833 57
—0.831 93

2.7578
2.7549
0.0029
0.104
3.0235
3.0206 3.0207

lsls this work (Z =6)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.137097 7
—0.137209 7

0.000 1122
—0.082
—0.147 544 5
—0.147 656 5

R =109732.296 cm
1.050 806
1.027 403
0.023 403
2.278
1.111312
1.087 909

—1.209 14
—1.207 71
—0.001 43

0.118
—1.275 41
—1.273 99

3.1366
3.1340
0.0027
0.085
3.4788
3.4762 3.4760

lsls this work (Z =7)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.262 220 9
—0.262 381 0

0.000 160 1
—0.061
—0.284 889 9
—0.285 050 0

R =109733.014 cm
1.747 417
1.714 396
0.033 021
1.926
1.858 215
1.825 195

—1.708 38
—1.707 56
—0.000 83

0.048
—1.811 66
—1.810 83

3.2085
3.2060
0.0025
0.079
3.5872
3.5847 3.5846

lsls this work (Z =8)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.458 272 1
—0.458 473 9

0.000 201 7
—0.044
—0.501 556 5
—0.501 758 2

R =109733.549 cm
2.699 754
2.655 124
0.044 630
1.681
2.882 836
2.838 206

—2.294 02
—2.294 07

0.000 05
—0.002
—2.442 41
—2.442 46

3.2651
3.2624
0.0026
0.080
3.6721
3.6695 3.6696

ls ls this work (Z =9)
ls ls Pekeris
Deviation from Pekeris
Discrepancy in %
lsls2s this work
Corrected for discrepancy

—0.748 071 6
—0.748 345 7

0.000 274 2
—0.037
—0.823 508 9
—0.823 783 1

R =109734.144 cm
3.947 S26
3.889 420
0.058 106
1.494
4.228 788
4.170682

—2.966 02
—2.967 30

0.001 28
—0.043
—3.167 69
—3.168 97

3.1332
3.1307
0.0024
0.078
3.5397
3.5375 3.5374
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TABLE III. (Continued).

(a, +H, )
(units of 10 ')

(H, )
(units of 10 )

(a, )
(units of 10 ")

Mass polarization
This work R.ef. 12

(units of 10 ) (units of 10 ')

1sls this work (Z =10)
1s ls Pekeris
Deviation from Pekeris
Discrepancy in %
1sls2s this work
Corrected for discrepancy

—1 ~ 157 650 5
—1.158 015 4

0.000 364 9
—0.032
—1.280 414 1
—1.280 779 0

R =109734.301 cm
5.530 620
5.457 300
0.073 320
1.344
5.939 890
5.866 569

—3.724 44
—3.727 20

0.002 75
—0.074
—3.987 44
—3.990 20

3.3427
3.3403
0.0024
0.072
3.7900
3.7876 3.7876

which is 0.030 pa. u. less than our result. If we correct
our 1s 2s result by this amount, we get 23.605 pa. u.
which is exactly the result of King [12]. Close agreement
with King is also reached for other members of the
isoelectronic sequence. Perhaps one should not take
these agreements too seriously because of rounding er-
rors, but it does seem to suggest that the corrected rela-
tivistic results are reliable.

The QED contribution is expected to be substantial for
the 1sls core, but the contribution coming from the 2s
valence electron is expected to be much smaller. It is
dificult to carry out a complete three-electron calcula-
tion for this radiative correction. An approximation
method will be adopted. The QED calculation for the
hydrogenlike systems have been well studied in the litera-
ture [5,11]. An accurate formula for QED shifts for the
hydrogenlike 2s state is available. If we use Eq. (22) with
the effective nucleus charge calculated earlier, the QED
contribution to the ionization potential can be estimated.
This is obviously an approximation. Therefore, we assign
a +7%%uo error bar to the value obtained. In quoting the
IP, the error bars from extrapolation and from QED are
added.

If we add the QED correction to the nonrelativistic
and relativistic effects, final IP results are obtained.
These results are given in Tables IV and V. The experi-
mental IP quoted in the tables are from Moore [10],
Bashkin and Stoner [13], and Kelly [9]. Moore did not
give the IP for Ne vrrr. The data from Moore have been
revised in Kelly except for B III. Most of the lithiumlike
IP in Bashkin and Stoner [13]are identical to that of Kel-
ly [9] except for Nv. To compare with experiment, we
convert the atomic-unit results into cm ' using the re-
duced Rydberg constant. In the case of Li I, both IP ex-
perimental data are within the uncertainty quoted in this
work. But for all other systems, our results show a clear
preference for the new Kelly's [9] data rather than that of
Moore [10]. Most of the IP in Moore comes from the
spectroscopy analysis of Edlen (see Ref. [10]).

The Be?I IP datum in Kelly agrees with this work.
However, starting from CIV, a small discrepancy be-
tween our result and that of Kelly begins to show. In
C Iv, the deviation is 0.68(69) cm . It increases steadily
to 2.8(12), 4.1(20), 9.9(31), and 14.8(47) cm ' for Nv,
0 vi, F vn and Ne VIII, respectively (see Table V). If we
divide these by (Za) times the first-order relativistic
contribution to the IP, the ratios are 1.64, 2.24, 1.31,
1.43, and 1.06 from C Iv to Ne VIII. Hence, we attribute

this deviation to the higher-order relativistic perturba-
tion. It is interesting to note that while the first-order rel-
ativistic effect increases the IP, this higher-order relativis-
tic effect tends to reduce IP. The leading higher-order
relativistic contribution for a 1s hydrogenlike ion is
shown to be 8Z'a /3m in Kissel-Phillip and Schwarz
[14]. However, our result seems to suggest that for the 2s
electron in the lithiumlike ions, it could still be propor-
tional to Z a as suggested by the perturbation theory.

Recently, the IP for the Li I and Be II 1s 2s states have
been calculated to high accuracy [15,16]. These results
are compared in Table IV. Our Lit IP, 0.198158 a.u. ,
agrees extremely well with the 0.198 154(3) a.u. of
Lindgren [16]. However, our calculated relativistic con-
tribution is 11.5 pa. u. whereas it is 16 pa. u. in Lindgren
[16].

Although the discrepancy between theory and experi-
ment from Crv to NevIII may be explained by higher-
order relativistic effects, we cannot explain the —1.29(36)
cm discrepancy in boron. The higher-order relativis-
tic effect for this system is of the order of 0.1 cm
which increases the discrepancy to approximately
—1.39(36) cm '. We note that the IP for 8nI in Moore
[10],Bashkin and Stoner [13],and Kelly [9] are the same.
Moore made the following comment in her table: "The
terms are from Edlen. The absolute values are based on
the assumption that n e for 5g 6 equals that of the cor-
responding term in CIv where 5g 6 —6h H has been
observed. The precision of this term in B III is estimated
to be within +1 cm '. The series are well represented by
a Ritz formula. " Because of the approximation used in
the present work, our result is not conclusive evidence
that Edlen's result is off by more than 1 cm '. Neverthe-
less, our result does emphasize the need to take a closer
look at this IP value. As other IP values are revised from
Moore [10] to Kelly [9], it is possible that this BILE IP
could be slightly revised also.

Using the extrapolation procedure discussed in Sec. IV,
we tabulated the nonrelativistic energy using Eq. (28).
These results and their comparisons with other theories
[17—29] are given in Table VI. Recently, the nonrela-
tivistic energies of the lithiumlike 1s 2s states have been
calculated for LiI to NevIII by King [12]. Our results
agree with those of King in each case. This is interesting
because the nonrelativistic energies of Lit have been
empirically estimated by Bunge to be —7.478073 [17],—7.478 071(5) [26], and —7.47806247(7) a.u. [27]. Oth-
er estimates are —7.478 068 a.u. [19]and —7.478 069 a.u.
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[28]. Our result is —7.478 059 7(9) a.u. which agrees with
the —7.47805953 a.u. of King and Bergsbaken [12] and
the —7.47806032(1) of Mckenzie [29]. For Be II, the
nonrelativistic energy has been estimated to be
—14.32479 a.u. in Weiss [18] and —14.324807 a.u. in
Muszynska et al. [19]. Our result, —14.324 761 0(11)
a.u. , again agrees with the —14.324760 a.u. of King.
The agreement between theory and experiment obtained
in this work could be considered a confirmation of King' s
result in the case of Be+. The predicted nonrelataivistic
results are compared with other theoretical results
[20—29] in Table VI. The energy results with the first-
order relativistic and mass-polarization corrections from
Table III are also given. Since only the @ED result of the
2s electron is calculated in this work, it is not included in
this relativistic energy.

VI. SUMMARY
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In this work, we used a CI approach with a method of
full core plus correlation to calculate the ionization po-
tentials of the lithiumlike ground states for Z =3 to 10.
Most of our results support the experimental IP data in
Kelly [9]. However, B III is an exception. We hope our
result may stimulate more interest in taking a closer look
at this EP value. This EP is important in establishing the
correct term energy table and Grotrian diagrams. In the
present work, the full core is frozen as one single term in
the three-electron calculation. On the surface, the Aexi-
bility in the variation calculation is reduced, thus disal-
lowing the possibility that the total energy might be
lowered even more. However, there are a few distinctive
advantages in this approach to an IP calculation. Name-
ly, since (except for the Pauli-antisymmetry principle) the
core is the same two-electron ground state considered in
the IP calculation, the error due to the approximation in
the core will essentially cancel out, which makes the IP
result more reliable. We should emphasize the words
"full core" if a highly reliable result is expected. We do
not claim that this method can obtain the accuracy that
may be possible with an extensive correlated-coordinate
(Hylleraas-type) method. However, in the absence of the
latter, what we obtained appears to be a good alternative.

There is also an advantage from a numerical aspect.
As we mentioned in Sec. IV, our secular equation from
Eq. (18) actually involves the computation of about one-
half of the 35S3X3553 matrix elements. To diagonalize
such a matrix would certainly lead to numerical instabili-
ty in our calculation, not to mention the huge RAM
memory needed in our computer. By reducing the core
wave function into a single term, this matrix size is re-
duced to 1017X 1017.

This method should also be useful in calculating transi-
tion processes where the participation of the core is weak,
in, for example, the optical transition of 1s nl —+1s n'l'.
Whether we are calculating transition energy or oscilla-
tor strength, the cancellation of the errors in the core
function will likely assist in obtaining a more accurate
result. In the case of Auger processes (ls n, l„n212)
~1s n', l', +e, the method could also be useful.

Note added in proof. I have just received a copy of un-
published work from McKenzie and Drake (Windsor).
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TABLE VI. Nonrelativistic and relativistic energy ( —E) of lithiumlike 1s 2s S states and comparison with other theories.

Corrections

10

Upper bound
This work

(a.u. )

7.477 925 1

14.324 604 3

23.424 432 8

34.775 325 4

48.376 706 0

64.228 343 6

82.330 1340

102.682 023 4

Higher-I

(0.1 pa.u. )

36(4)

76(6)

104(8)

129(10)

145(12)

160(13)

173(14)

183(15)

Core

(0.1 pa.u. )

1310(5)

1491(5)

1600(5)

1699(5)

1744(6)

1789(6)

1835(7)

1861{7)

Nonrel. E
This work

(a.u. )

7.478 059 7(9)

14.324 761 0(11)

23.424 603 1(13)

34.775 508 2(15)

48.376 894 9(18)

64.228 538 5(19)

82.330 334 8(21)

102.682 227 8(22)

Other
theory
(a.u. )

7.478 059 53'
7.478 025
7.478 062 4(7)'
7.477 160
7.478 060 32( 1)'

14.324 760'
14.324 807
14.324 57~

14.324 696"
14.324 72'
14.323 50'
23.424 604'
23.432 481
34.775 509'
34.744 325
48.376 896'
48.375 668
64.228 540'
64.227 273
82.330 336'
82.329 039

102.682 229'
102.680 905d

Relativistic E
This work

(a.u. )

7.478 677 5(9)

14.327 058 7{11)

23.430 803 6(13)

34.789 278 6(15)

48.4037 200(18)

64.276 083 7(19)

82.408 823 9(21)

102.804 800 3(22)

'Reference [12].
bReference [20].
'Reference [27].
Reference [22].

'Reference [29].

'Reference [19].
sReference [23].
"Reference [24].
'Reference [25].
'Reference [18].

Their @ED results for the lithiumlike ls 2s are very
difFerent from those of the present work. Assuming their
results are accurate, these results imply that a substantial
discrepancy exists between theory and experiment on the
ionization potentials of Be II, 8 III, and C Iv. Since the
nonrelativistic energies of this work are accurate and the
higher-order relativistic contributions are small for Z =4
to 6, the source of this discrepancy is not clear at this
time.
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