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A model for intrinsic decoherence in quantum mechanics is proposed, based on a simple modification
of unitary Schrodinger evolution. On sufficiently small time scales the system evolves by a random se-
quence of unitary phase changes generated by the Hamiltonian. The Schrodinger equation is obtained to
zeroth order in the expansion parameter. Higher-order corrections lead to a loss of coherence in the en-
ergy basis. The rate of coherence loss becomes very large as the energy scale of the system is increased.
The expansion parameter determines an uncertainty in the time step on very short times scales. A num-
ber of testable consequences are derived including anomalous dispersion of a free particle, decay of oscil-
latory systems, destruction of interference-fringe visibility, and a phase shift of interference fringes.

PACS number(s): 03.65.Bz, 03.65.8q, 03.65.Ca

I. INTRODUCTION

The feature of quantum mechanics that most distin-
guishes it from classical mechanics is the coherent super-
position of distinct physical states. This feature is at the
heart of the less intuitive aspects of the theory. It is the
basis for the concern about measurement in quantum
mechanics [1], and it is the explanation for the nonap-
pearance of chaos in systems that classically would be
chaotic [2]. Apparently, however, the superposition prin-
ciple does not operate on macroscopic scales, although
nothing in the present formulation of quantum mechanics
would indicate this.

The problem for standard quantum mechanics is to
provide an explanation for the nonappearance of macros-
copically distinguishable states. At least two approaches
have been adopted in the literature. The first approach
seeks an explanation entirely within standard quantum
mechanics supplemented with reasonable statistical argu-
ments. One traces the decoherence of macroscopic sys-
tems to their characteristic multiplicity of degrees of free-
dom, the idea being the quantum coherence rapidly be-
comes spread over many more degrees of freedom than
an observer can have access to [3]. The statistics of the
few observables that are accessible is easily described by a
reduced density operator that is rapidly diagonalized in
some preferred basis.

A second approach to the problem seeks to modify
Schrodinger’s equation in such a way that coherence is
automatically destroyed as the physical properties of the
system approach a macroscopic level. This might be
called “intrinsic” decoherence. A number of models
have been proposed [4-10] the most widely known,
perhaps, being that of Ghirardi, Rimini, and Weber [4].
In their model, each element of a system, at Poisson dis-
tributed times, undergoes a sudden localization over
some range. The model contains two new parameters
defining the frequency and the spatial extent of the locali-
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zation. A related model is discussed in Ref. [5]. Diosi [6]
has attempted to remove the need for new parameters by
linking the localization process to variations in gravita-
tional potential. As discussed in Ref. [7] however, the
model of Diosi leads to an unacceptably large increase in
the growth of the energy of microsystems. This problem
can be overcome, albeit with the introduction of a new
parameter [7]. Nonetheless, the energy will not be a con-
stant of motion in any of these models.

Another approach linking decoherence to gravitation-
al, in fact quantum gravitational, effects has recently been
discussed by Ellis, Mohanty, and Nanopoulos [8,9]. In
fact, each of these papers offers a different model based
on wormhole effects. In Ref. [9], the loss of coherence
can be traced to a new gauge-invariant, nonlocal interac-
tion wormhole-matter coupling, which leads to a decay of
coherence in a two-state SQUID system that goes ex-
ponentially as —¢2, rather than exponentially as —¢, in
other models. This suggests that the decoherence cannot
be represented by a linear, Markovian quantum stochas-
tic process. In this context, however, it should be noted
that two measurement models [10,11] show a ¢ depen-
dence at short times but a linear time dependence on
larger time scales.

In this paper a simple modification of the standard
quantum dynamics is proposed. The central postulate is
that on sufficiently short time steps the system does not
evolve continuously under unitary evolution but rather in
a stochastic sequence of identical unitary transforma-
tions. Effectively this introduces a minimum time step in
the universe. The inverse of this time step is the mean
frequency of the unitary steps, ¥, which becomes an ex-
pansion parameter. If the frequency of the time steps is
large enough, the evolution appear approximately con-
tinuous on laboratory time scales. To zeroth order the
Schrodinger equation is recovered. The first-order
correction leads to a decay of coherence in the energy
eigenstate basis.
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One feature of this model is that constants of the
motion remain constants of the motion and thus station-
ary states remain stationary states, a feature not found in
the model of Ghirardi, Rimini, and Weber. This is also
characteristic of the wormhole model of Ellis, Mohanty,
and Nanopoulos [8] and of an earlier interesting model by
Bedford and Wang [12]. The model, however, does have
a surprising consequence if all orders of magnitude of the
expansion parameter are included; oscillatory systems be-
come frozen at very high energies. This is a direct conse-
quence of introducing a minimum time step. One cannot
produce an oscillator with a period shorter than the
minimum time step. In the case of a free particle, the
new evolution equation introduces an energy-dependent
diffusion term to the position dispersion. Whether or not
these consequences are observable depends on the size of

Y.

II. GENERALIZED SCHRODINGER EVOLUTION

In standard quantum mechanics, the change in the
state of a system in a time interval (z,¢ +7) is given by
iBr

#

—iflr

plt+71)=exp p(t)exp (2.1)

independent of the size of 7. We replace this with the fol-
lowing postulates.

(i) On a sufficiently small time scale the change in the
state of the system is uncertain. The probability that the
system changes is p (7).

(ii) Given that the state of the system changes, it
changes by
—Loina Lotna

70 7007

p(t +7)=exp p(t)exp

=Hr)ple) .

In standard quantum mechanics, p(7)=1 and 6(7)=r.
However, in the generalization considered here we only
require p (7)—1 and 6(7)— 1 for 7 sufficiently large. Fi-
nally we postulate
(iii)
limO(r)=6, ,

7—0

(2.2)

(2.3)

i.e., there is some minimum unitary phase change. One
possible choice is
e(r)=7/p(7) .

Now divide the interval (0,?) into K steps of length 7.
Thus ¢t =K 7. From elementary arguments we see that

K |K
pI=3 |k [pOM1—p(N]F T A (1) p(0)
k=0
=[1+p(r)U(T)]Ep(0) , (2.4)

where U(T)=&(7)—1. A similar equation to Eq. (2.4)
has been used to describe the sub-Poissonian pumped
laser [13]. The rate of change of 5(¢) is then given by
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4
dap(e) _ 1
d o p () In[1+p(7)U(T)]p(2) . (2.5)
In the limit that 7— 0, this reduces to
dp(z) _ 1
a1 Oupe In(1+poU,)p(e) . (2.6)

We now define a “Poisson model” for the stochastic
time steps by setting p,—0. Then

ap _ “alsexo |- Bl -5
dr Y |exp 7y pexp ﬁyH Pl (2.7)
where y =0, '. This equation is equivalent to the as-

sumption that on a sufficiently short time scale the proba-
bility the system evolves is given by y7 [14].

Equation (2.7) is the proposed generalized evolution
equation. Expanding to first order in ¥ ~!, we find

9P — =LA, 51— (A, 18,51] .

- Iy (2.8)

Thus Schrodinger’s equation is recovered in the limit
Y — oo (that is, 6,b=0). The first-order correction in Eq.
(2.8) leads to a diagonalization of the density operator in
the energy eigenstate basis,

d PN :;l ' 1| A
at<E1p|E> h(E E)E'|pIE)

1
27y

(E'—E)E'|pIE) . (2.9

Note that the rate of diagonalization depends on the
square of the energy separation of the superposed states.
Thus coherence between states that are widely separated
in energy compared to Planck’s constant decay rapidly.
This type of double commutator has appeared in many
models for coherence decay [3,4-10]. Most recently,
Mohanty, Ellis, and Nanopoulos derived a similar term
from a quantum gravitational effect. A similar term also
arises in models of continuous measurement [10,15].

Complementary to the diagonalization of the density
operator, the first-order term in Eq. (2.8) induces
diffusion in variables that do not commute with the Ham-
iltonian. However, all constants of motion commute with
the Hamiltonian and thus remain unaffected. In fact, this
is a general feature of the complete evolution (2.7).
Furthermore, the coherence between superposed degen-
erate energy eigenstates does not decay and thus no
“splitting” can occur in the energy spectrum.

The model discussed above is intended to apply both to
individual systems prepared initially in pure states or to
large collections of systems perhaps better described ini-
tially as mixed states. Nonetheless, a density operator
description is necessary in both cases. The reason is as
follows. A single system, prepared in a pure state, evolv-
ing as indicated above and for which the sequence of ex-
act times of occurrence of each unitary step is known,
will always be described by a pure state. The essential
point of the model, however, is that this sequence of
times is, in principle, unknowable.
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III. EFFECT ON MOMENTS

We now investigate the modification to the equations
of the first- and second-order moments required by Eq.
(2.7) for various systems.

For any operator A we have from Eq. (2.7)

d A i A A - A~
4 (q)y= L —Hi_2). G
o (4) y<exp P H |4 exp > (3.1

In the case of a free particle of mass m the Hamiltonian is
A=p2/2m ,

where p is the momentum. The first-order moments are
unchanged from their Schrodinger form. The position
variance, however, does behave differently,

2
V(@(0)=V(@(0)+ -5 V(p(0))
m

2t R 2E0t

+ m(@(O),p(O))S+ my (3.2)
where E,=(p %0))/2m and ( 4,B),=1(AB+BA4)
—(A4)(B). The first terms in Eq. (2.10) are the stan-
dard Schrodinger result representing dispersion of the po-
sition variance. The final term represents an additional
energy-dependent diffusion. A possible test of the gen-
eralization proposed here would consist in finding such a
term. We shall return to this point in Sec. IV.

Consider now a harmonic oscillator with frequency w,.
In terms of the raising and lowering operators a*,a, the
Hamiltonian is A Zﬁwo(aTa +4). The mean complex
amplitude of the oscillator is given by

(a(n)y=exp[—yt(1—e ") Ka(0)) . (3.3)
When wy/y <<1 this reduces to

: 2
(a (1) ) - <a (0))6 —iwgt—(wg/2y)t )
The effect of the generalized evolution equation when
¥ >>w, is to induce a decay of the complex amplitude. In
fact, this result is a direct reflection of the phase diffusion
arising from the first-order term in Eq. (2.8) [16]. If,
however, o, is sufficiently large that wy/y =2nr,

(a(t))=(a(0))

(3.4)

and the oscillator dynamics becomes frozen. It is thus
impossible to produce an oscillator that has a period
smaller than the fundamental time step ¥ ~!. In general,
when very large energies are involved the dynamics aris-
ing from the generalized evolution is very different from
Schrodinger dynamics.

A similar result occurs in a precessing spin system.
For example, if A =ﬁw0fz the mean value of the x and y
components of angular momentum are given by
(T (1)) =1(J(0)) (e 71 ~e

i

“)+eyt(l—e"ﬂ))
—é<jx(0)>(e_yt(l_e*i”)—e‘th*ei#)]) ’

(3.5)
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(F,(0)=1(F,(0)) (e Tr1me g myrii—eit)
+2AT,(0)) (e TrHIme T g Triimet)
(3.6
where u=wy/y. If 0y/y <1,
(7.()y=[{T,(0))cos(wpt)
— w2
—(J,(0))sin(we)t)]e T, 3.7
(7,())=[{T,(0))sin(wt)
—
+(J,(0)Ycos(won)le T (3.8)

As in the case of the harmonic oscillator, ordinary
Schrodinger dynamics is recovered with the addition of a
slow decay. The origin of this decay is also a “phase
diffusion” of the angular momentum vector about the z
axis [16].

Quite apart from the effect on quantum coherence, the
above results indicate that the generalized evolution
would cause significant deviation in behavior in the mo-
ments. As it is usually much easier to measure moments
than to construct possibly macroscopic interference de-
vices, such deviations should be easier to test. However,
the crucial question is the time scale on which these
effects become important and this is determined by the
size of y_l. Previous studies [10,15] on the effect of
nonunitary terms on interference effects have indicated
that the time scale for such experiments is not deter-
mined by y ! alone but rather the product of ¥ ~! and
the square of some variable representing the‘‘separation”
in the superposed variables monitored by the interference
experiment. Thus if ¥ ! is too small, quantum interfer-
ence experiments may be the only way to test the model.

IV. EFFECT ON POSITION INTERFERENCE

In this section we consider the effect of the generalized
evolution equation on the interference fringes on the posi-
tion probability density for a harmonic oscillator
prepared in an initial superposition state.

Consider a harmonic oscillator prepared in a linear su-
perposition of two coherent states centered on opposite
sides of the potential and separated by a distance 2X|,.

[W(0))=Nay)+|—ay)) , 4.1)
where Iao) is a coherent state and
1
V2

The position X and momentum P are determined by the
complex parameter a,

2%
mag

— 2
N=— (14 H00 172

a=( )TV2X +i(2#ma,) " 2P,

where m is the oscillator mass. We take ay,=x, purely

real. The parameter x is a dimensionless position.
Define the matrix elements of the density operator in
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the energy basis by

Pam ()= n|p(t)|m) .

Then to first order in y !

o = o () (@2)
ioln —m 27/nm Pum (t .

Epnm=
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S

wdt

Pum()=exp | —iwgt(n —m)——z?(n —m)* |pm(0) .

4.3)
The position probability density for the initial state is
given by

P(x,t)=N*{P_(x,t)+P_(x,t)+2Re[I(x,1)]} (4.4)
with the solution with
J
2 "7 Carar B obin—misay [a* (D] (alD)]” ~ =
P x,t)=|=| e © ¥ e ° = — 2-ntmI2g (V2x)H,, (V2x) 4.5)
T z m!
n,m =0
2 12 —2x2—x2 2 —(uzt(n—m)z/Z‘y [a*(t)]" [_a(t)]m A o3
Ix,t)=|=1 e © 3 e ™ 2= (ntm2g (V2x)H,,(V2x) , (4.6)
’ T i n! m!
n,m =0
I
and The additional complex term proportional to A in Eq.
ot (4.10) indicates a frequency shift, i.e., a shift in the fringe
alt)=age ° pattern. Using Eqgs. (4.9) and (4.10) the visibility to

For a free oscillator the maximum interference occurs
when the Gaussian wave packets overlap at the origin.
This occurs at t =7 /2w, and we henceforth only consid-
er the position probability at this time.

The sums in Egs. (4.5) and (4.6) are difficult to evaluate
exactly. However, one easily shows that

I(0,7/2wy)=P,(0,7/20) . 4.7

The degree of interference is quantified by defining the
fringe visibility

_ (x,7m/20,)]

V= b om0

(4.8)

When y— 0, V(x)=1 for all values of x, indicating
maximum interference, i.e., maximum quantum coher-
ence. In general, V(x) is a complicated function of x.
Near x =0, V(x) decays from unity with a rate that de-
pends on x,. Thus to determine the effect of finite ¥ on
quantum coherence we now find an approximate expres-
sion for V(x) near x =0.

Using the integral representation for the Hermite poly-
nomial and expanding the exponential to first order, Egs.
(4.5) and (4.6) become
172

Py x,7m/2wq)~= [% e'2x2[1—47»x(2)(1—4x2)] (4.9)

1/2
245
1(x,7/2w)~ l] e Tl —aAx3 +4ikxx,)
o
(4.10)
where

o
=0 (4.11)

4y

lowest order in (x,)* becomes
V(x)~1—16Ax3x>

4wy
=1- y" x2x? . 4.12)

The important point to note here is that the decay rate of
V(x) from one near x =0 is proportional to x3. This
dependence is characteristic of the effect of nonunitary
evolution on quantum coherence features [17,18]. Such a
dependence ensures that quantum coherence is
suppressed as the macroscopic level is approached while
remaining apparent at microscopic scales. Equation
(4.12) is written in terms of the dimensionless position.
In terms of the real position variables X and X,

™m0}

r#

V(x)=1— X3x2 . (4.13)

V. DISCUSSION AND CONCLUSION

There are number of reasons why destruction of coher-
ence in the energy basis may be sufficient to avoid macro-
scopic consequences of the superposition principle. First,
many schemes to search for a macroscopic quantum su-
perposition state involve time evolution as an essential
component. In coherent quantum tunneling an initial
state localized in some macroscopic state evolves first to a
superposition of two localized states and finally to a state
localized in a state macroscopically distinct from the ini-
tial state. For such a process to occur, the time evolution
must preserve coherence in the energy basis. For exam-
ple, consider a particle moving in a symmetric bistable,
quartic potential. A localized state in one well could sim-
ply be a superposition of the two lowest-energy eigen-
states. Tunneling will only be possible if coherence be-
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tween these states is maintained as a s phase shift devel-
ops between them.

Another example is the EPR experiment in which a su-
perposition state of two-particle system is formed at some
location and which evolves to a state in which the parti-
cles are spatially separated. In order for nonclassical
correlations to be found in measurements on each of the
particles, it is essential that during the time of flight of
the particles coherence is maintained between the initial-
ly superposed states.

As a final example, there is the case of the quantum
suppression of chaos in certain classically chaotic system.
This is due to partial reconstruction of initial states as
time evolution retains coherence between the energy
eigenstates contributing to the initial state. The easiest
way to prevent this suppression and permit the appear-
ance of diffusion associated with classical chaos is to
suppress coherence in the energy basis.

From another point of view, however, it seems plausi-
ble that a model that simply destroys coherence in the en-
ergy basis will not be sufficient to remove all the unwant-
ed consequences of the superposition principle. In fact
this must be the case if the model of this paper is to be
made consistent with relativity; what appears as random
time jumps in one inertial frame may well appear as a
random position fluctuation in another frame. Thus it
may be best to regard the model given here as only a part
of a more comprehensive treatment that would also in-
clude spatial fluctuations, perhaps of the kind proposed
by Ghirardi, Rimini, and Weber.

Where should one look to find evidence for a stochastic
time evolution? Two possible consequences of the model
will be considered: the additional energy-dependent
diffusion of a free particle and the frequency shifts in os-
cillatory systems.

Consider a free particle initially prepared in a state in
which the position and momentum are uncorrelated. The
variance in position at time ¢ is given by Eq. (4.3) as

V@) =o2+Ap(t)+Ap(1), (5.1
where
_t*
AF(Z‘)—;{UP (5.2)
is the free-particle dispersion in position,
Ap(t)=2Dt (5.3)

is the additional energy-dependent diffusion, and af] and
012, are the initial variance in position and momentum, re-
spectively. The diffusion constant D is given by

D= Eo (5.4)

my

At long times the quadratic time dependence of free
dispersion Ap(¢) will dominate; anomalous dispersion is a
short-time phenomenon. The two terms are equal at time
t* where
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2Eom
t*= 3 (5.5)
Yo,
at which time
2E, |’
Ap(t*)=Ap(t*)= o (5.6)
p

For the anomalous dispersion to become apparent, we re-
quire t* to be comparable to the time of flight of the free
particle over the extent of the experiment. To increase ¢*
we can increase the Kkinetic energy of the particles or de-
crease the initial momentum uncertainty. If the energy is
too large, relativistic corrections must dominate and the
present nonrelativistic treatment is inadequate. We shall
return to this point at the end of this section.

Experiments on neutron interference [19] do not pro-
vide an adequate constraint on ¥ as the energies of
thermal neutrons are too low. Typically in such experi-
ments Ey~kT and 0‘2, ~mkT. Thus t*~y~!. Neutron
interference experiments are conducted over length scales
of the order of one meter, i.e., over time scales of the or-
der of (kT /m) "/2~10"* s and y ! is certainly much
smaller than this.

Neutron interferometry, while not likely to provide
evidence for anomalous dispersion, may yet be useful in
searching for the modification of interference fringes dis-
cussed in Sec. IV. In particular, it may be possible to ob-
serve the small fringe shift in a single slit neutron experi-
ment. A fringe shift in such an experiment would appear
as an anomalous slit width when the results were
matched to theory.

Another possible test of the model is to search for the
decay of first-order moments in oscillatory systems. The
coherent excitation of a two-level atomic transition is
well described in terms of the precession of a spin half
particle. The precession frequency is the Rabi frequency
for the transition, which is proportional to the strength of
the applied field. The Hamiltonian describing this pro-
cess, in a frame rotating at the transition frequency, is
(20]

A=#07_, (5.7)

where Q is the Rabi frequency. For typical optical tran-
sitions, Q~107 s~!. From Sec. II we see that the decay
rate of (.?y(t) ), the polarization, is determined by Q2/y.
However, the natural linewidth is ~107 s~!. Thus for
the effect of decoherence to become apparent we require
Q2> 107y. No experiment performed to date has detect-
ed such an additional decay of the atomic dipole. This
indicates that ¥ "1 <10~ 7 s. An attempt to force a tighter
constraint on ¥ ! by increasing the Rabi frequency will
face serious problems as the dynamics for the atom under
very intense fields is not well described by the simple
Hamiltonian of Eq. (5.7) (among other problems the
rotating-wave approximation will not be valid). Thus
laser spectroscopic tests of the generalized evolution
equation will be very difficult, though perhaps not impos-
sible.
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