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Structure of the electromagnetic field around the free electron in nonrelativistic QKD
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We study, within the framework of nonrelativistic QED, the structure of the electromagnetic field in

the neighborhood of a free spinless electron dressed by the interaction with the vacuum field. We intro-
duce a suitable formalism that correlates electron position and field operators. The quantum average
value obtained by applying correlated field operator to the dressed state gives the average value of the
corresponding field quantity as a function of distance from the electron. The results obtained separately
for the electric- and magnetic-field energy density around the particle display contributions that have

quantum origin and that cancel in summing of the two, yielding the total energy density. In the total en-

ergy density only contributions that have a classical analog remain. These results are compared with

those for the electromagnetic structure around a neutral atom, obtained in previous work [R. Passante
and E. A. Power, Phys. Rev. A 35, 188 i1987)].

PACS number(s): 12.20.Ds, 03.65.—w

I. INTRODUCTION

The vacuum properties of a quantized field are
modified by the presence of sources. The modifications
can be described as due to a change in the field mode dis-
tribution [1], or as changes in the field fluctuations be-
cause of emission and absorption of virtual field quanta
by the sources [2]. In the latter case, the sources are sur-
rounded by a cloud of virtual quanta, contributing in gen-
eral to the self-energy and modifying the primitive con-
stants of the theory [3].

Recently, the local structure of the quantized elec-
tromagnetic field around neutral atoms and molecules in
their ground state, in a range where nonrelativistic QED
can be used have been studied [4,5]. In this case, where
the electrons are localized in regions of the order of
atomic dimensions, it has been shown that the structure
of the electromagnetic field at large distance from the
sources carries information about the source's level struc-
ture [5,6]. Moreover, it has proven meaningful to consid-
er separately the electric and magnetic energy densities,
these being connected respectively to the electric and
magnetic van der Waals forces [7].

In this paper we study the structure of the electromag-
netic field around a free electron and, in particular, the
spatial structure of the electric and magnetic energy den-
sities. This constitutes an aspect of the complicated
structure of the photon cloud [8], which, as said previous-
ly, can be in principle connected to observable efFects.

The process responsible for the cloud around the elec-
tron is the emission and absorption of virtual photons
due to recoil events. This process is pictorially described
by the electron-self-energy Feynman diagram [9],describ-
ing the matrix element connected to the total-energy
shift.

In the context of hole theory the structure of the
virtual-electron-positron cloud was studied long ago [10].
This cloud extends up to the electron Compton wave-
length 1,& =filtnc, reducing within Xc the bare-electron
charge to the observed value, which there remains con-
stant for larger distances. In this relativistic context,
however, the transverse virtual-photon cloud around the
electron has only been considered with regards to global
self-energy efFects.

We will treat this problem in the context of nonrela-
tivistic QED, where it has been shown [5], at least in the
case of neutral electromagnetic sources, that the elec-
tromagnetic energy density at a point a certain distance
from the source is caused essentially by the virtual pho-
tons emitted by the source, which are allowed to reach
that distance by the time-energy uncertainty principle.
This qualitative statement is supported by both nonrela-
tivistic and fully relativistic calculations [11]of the elec-
tromagnetic structure around a hydrogen atom, and
seems to be general enough to be valid also in the case of
charged sources. On the basis of this argument one ex-
pects that the field at distances r )k& from the electron
is a result mainly of low-frequency photons, such that one
can use a nonrelativistic description. Here we shall limit
our investigation of the structure of the electromagnetic
cloud around a free electron to regions where nonrela-
tivistic QED is expected to yield a correct answer.

Our procedure consists of evaluating the quantum
average of suitable field operators on the dressed electron
state. This is an eigenstate of the full Hamiltonian, and it
will be calculated perturbatively, up to second order in
the coupling constant, from the bare free-electron state
with a given momentum. This dressed state, however,
being a momentum eigenstate, is not localized in space
and requires a description difFerent from the atomic or
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molecular cases treated previously [+-7]. In fact, if a
direct calculation of the average of any local field quanti-
ty is naively performed on this state, it gives a constant
independent of r. In order to be able to speak about the
structure of the photon cloud around the electron, one
must relate this cloud to the position of the electron,
which seems to convict with the assumption that the
dressed electron is in a momentum eigenstate. We over-
come this difficulty by introducing operators which
correlate electron and field position in a way which is de-
scribed in the next section in detail. In Sec. III we obtain
the magnetic and the electric energy density around the
free electron. The results are discussed in Sec. IV, where
they are also compared to those for an atomic source ob-
tained in previous work.

Ak =e (a. )v'2Mc/kV,

BI, =~ [a X e (~)]&2Mck/ V,
Ek =ie (a)&.2rrhck/V,

(2.3a)

(2.3b)

(2.3c)

The Coulomb self-energy in Hamiltonian (2.1) provides
a contribution to the rest mass energy given by

5m, c = f d rlE~~(r)l (2.5)

with a=k/k, the unit vector along k. The longitudinal
electric field at r due to the electron located at x is E~~ and
can be written as the Fourier expansion [12]

E~~(r)= Jd k exp[ik (r —x)] . (2.4)

II. DRESSED FREE ELECTRON
AND CORRELATED QUANTUM AVERAGES

which diverges as the inverse of the electron radius [10]
yielding, in view of (2.4), a divergence linear in the upper
cutoff k,„=mc/A', as

(2.6)

We consider a spinless electron endowed, in view of
our nonrelativistic approximation, with a physical charge
—e and rest bare mass mp. The Hamiltonian of the elec-
tron interacting with the electromagnetic field, using the
minimal coupling form and the nonrelativistic limit, is

8=A, +8,+8,+(m, +5m, )c',
where

(2.7)

Including the Coulomb self-energy in the rest-mass
term, the Hamiltonian (2.1) becomes

2+ [p+(e/c) A(x)]—m, c +
2mo 8m

Ezr + Br+ d r
8m

(2.1)

A"o —g A'cheka kak+
k 2mp

A(x) p,
moc

2

82= [A(x)]
2m c

(2.8a)

(2.8b)

(2.8c)

where p is the canonical electron momentum conjugate
to the electron position x.

In Eq. (2.1) the electromagnetic field is described
within the Coulomb gauge, the vector potential A, satis-
fying V. A=O, and the electric-field operator E is decom-
posed into longitudinal, E~~, and transverse, E~. The
transverse-field operators can be analyzed in plane waves
of wave vector k and polarization cr (o = 1,2) as follows:

I0&=lp;[0 ) &, (2.9)

defined as

We intend to evaluate the average value of appropriate
field operators on the dressed electron state with momen-
tum p. This state is obtained perturbatively starting from
the corresponding bare-electron state

A(r)= g Ak[ak exp(ik r)+H. c.],
k

B(r)= g Bk[&„exp(ik.r) —H. c.],
E~(r) = g Ek [8k exp(ik. r) —H. c.],

k

(2.2a)

(2.2b)

(2.2c)

PIP [0N) &=PIP [0N) &

Up to terms of order e, the dressed state is

(2.10a)

(2.10b)

where k indicates the set of values [k„,k, k„,cr ) .
In Eqs. (2.2), a k and &I, are creation and annihilation

operators for photons with wave vector k and polariza-
tion o., which satisfy the commutation rules
[al„a I, ]=5k k. —=5z z 5~ ~., and the coefficients appearing
in the expansions are

lg& =—(I0&+ I»+ I» &)+ I» &,), (2.1 1)

where N= 1+(III&/2 is the normalization factor. The
corrections to the unperturbed state, in the context
of a nonrelativistic approximation (p « mc and
ficok «2mc ), are
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Ip
—ek;1. &,

Ak P
moc k Acok

2
I
Ak. (p —flak')] Ak p e2 ( Ak p)

I»&,=, , g g, Ip
—)rik —Ak'; lk, lk, &+&2 ', , g, , lp

—2i)ik;2k &,
0 k k' (Ak) ~ oak(cok+cok') mop

2 Ak. Ak A
Ip

—i)ik —i)ik', l„l„.& — 2, g lp
—2)rik;2k & .

2m oc k k' (ek) (ok + cok' 2m oc k 2ficok

(2.12)

(2.13)

(2.14)

gy (r), r~) =P(r, )P(r2), (2.15)

where P(r2) is the projector in the electron-position
eigenstate

Now we want to take the quantum average of the ap-
propriate operators on

I g & in order to investigate the
electromagnetic field in the surroundings of the dressed
electron. It is immediately seen that taking the expecta-
tion values of field operators alone is not really adequate.
Indeed, since the total Hamiltonian is symmetric under
space translations, the dressed electron is also completely
delocalized in space. As a consequence, the expectation
value of any field quantity that surrounds the particle will
be constant over all space. For such a delocalized sys-
tem, then, it is impossible to obtain in a naive way the
structure of the photon cloud.

In order to overcome this difficulty we consider the
simultaneous correlation between the electron-position
operator and the value of a field operator at a given dis-
tance from the electron. The expectation value of such
operators on the dressed electron state, after integration
over all the possible electron positions, should give the
average value of the field operator as a function of the
distance from the electron.

This approach is similar, in the nonrelativistic context,
to the procedure used by Weisskopf I10] in studying the
charge distribution arising in relativistic @ED from
virtual-electron-positron-pair creation around a free elec-
tron. We shall adapt it to the investigation of the
virtual-photon cloud, which is the main interest of our
work.

We define the operator

C~(p)= f d3r gF(r, p) . (2.19)

Cz(p) depends only on the distance between the field at
r„and the electron, at r2. Naturally, C~(p) can be con-
nected to the observable described by F. In fact, taking
its expectation value on a state of the form

I g;f &

= If & If & where
If & is the state vector of the field and

I((( & describes the electron's state, one has

d r ; F r, P r2

= fd'r&flF(r))lf &&@lr,&&r, lg&

= fd'r&flF(r+p)lf &lit(r)l'. (2.20)

The result coincides with the average value of the field
quantity F at a given distance from the electron.

To see how the expectation value of G~(p) is connected
to integral observables, one integrates it over p

f d p C~(p) = fd'r, fd'rig~(r„ri)

= f d r, F(r))f d r 2rlz &&r 2I

= fd'r, P(r, ) . (2.21)

So, when F is correlated to the electron position, its in-
tegral over all the possible distances and directions
around the electron will simply coincide with its integral
in the space. For example, if F describes the energy den-
sity of the field, 6F(p ) will be the energy density at dis-
tance p from the electron and its integral over p will be
the total field energy.

P(r, )=lr, &&r, l, (2.16)

p=ri —r2,
r =

—,'(r, +r2),
(2.17)

and P(r, ) is any local field operator built from the trans-
verse and the longitudinal field at point r„with F and P
commuting.

It is possible to express (2.15) in terms of the distance
r, —r2 and of the intermediate point r:

III. CORRELATED FIELDS

In order to obtain the electromagnetic-energy-density
distribution around the electron we shall first calculate

A.
the magnetic ener y density. I.et us assume F=8 in
Eq. (2.18), where is the magnetic field, F is taken in a
normal-ordered form so that the contributions from the
vacuum can be separated. Equation (2.19) can then be
written as

g (r p)=F r+ P r—F ' 2 2
(2.18) C &(p)= f d r g i(r, p)+Czp, (3.1)

Equation (2.18) depends on both r and p. We then define
the correlation Cz(p), which is obtained from gz(p, r) by
integration over r,

where

g~, (r,p) =g~,(r„r,) =:IB(r) )]'.P(r, ) (3.2)
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is obviously normally ordered in the field operators and
B(ri ), defined by Eq. (2.2b), is the magnetic field at point
r, . The quantity C7p in (3.1) and in analogous expres-
sions is the zero-point contribution to the correlation
function stemming from the vacuum field fluctuations.
In the present case

C 2mhc ~
k

(3.3)

According to the standard perturbative method, the
expectation value of operator (3.2) on the dressed state
(2.11) is, up to terms of order e,

& it lg~z(ri, rz)lg& =, [&Olg~2(ri, rz)IO&+ &Ilg z(ri, rz)II&+2

+2 Re(0lg, (r, , rz) I II ),+2 Re(0lg, (r, , rz) I II)z+2 Re(0lg, (r„rz) I I ) ] . (3 4)

The first terin on the right-hand side (RHS) of (3.4) vanishes because g z(ri, rz) is normally ordered and the last term
is zero because g 2(r„rz) does not connect states which differ by one photon. The other terms in (3.4) can be written
explicitly using the perturbative corrections to the state vector (2.12)—(2.14) and the explicit expression for the electron
momentum eigenstate in the r representation:

1 i(rip) = —exp —r pv'v (3.5)

Then the second term on the RHS of (3.4) can be expressed as

2 e exp[i (k —k') ~ (rz —r, )]
( I lgzi2(ri, rz) I

I &
= — . . . , g ( Ak .p )( Ak" p)(Bk Bk')Va'c' m'pc' kk

where Bk and Ak are given by (2.3a) and (2.3b).
The third term in (3.4) can be expressed using the second-order correction for the state vector (2.13),

2 e exp[ i (k+ k'—) (rz —ri ) ]2Re(olg 2(r„rz)III), = Re g (Ak.p)(Ak"p')(Bk Bk )
VA c 7' pc

The remaining term in (3.4) is given by

2 exp[ —i (k+ k' }.(rz —ri ) ]2Re(Olg 2(r„rz)III)z= —— Re g ( Ak Ak )(Bk.Bk )
Mpc kk fl COk +COk

(3.6)

(3.7)

(3.8)

Now we evaluate the sums in terms (3.6)—(3.8). Since the method is essentially the same for all these terms, we will
outline the calculations for the first one only.

Concentrating on (3.6), first we change sums into integrals as

f k dkfdQ„Q, (3.9)

and we introduce the new variable:

ii=klrz —r, l
. (3.10)

In k space the z axis is chosen to be parallel to rI —r2,' the angle between k and r&
—r2 is indicated as Ok. After these

substitutions, we get for (3.6) the expression

& Ilg, ,(r„r,) II &
= 1 e 1

rz —r, moc 2' V

X f z)deaf g'dg'f dQk f dQk g [e (x) p][e (a').p]
7

X[~Xe (sc)] [z'Xe (ir')]exp[ i(gcos8k —il'cosOk )], —
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which depends on the fourth power of the distance
r, —r2, on the angle between rj —r2, and on the electron
momentum p. The sum over polarizations is straightfor-
ward, by the use of orthonormality relation

g e, (a)e, (1r)=5;~ (3.12)

The integrals appearing in (3.11) are calculated by reg-
ularization

f "dg= —lim f "e '&dg
0 A~0 0

in order to obtain convergent results when the integrand
is an oscillating function. We get

momentum and on p originate from the perturbative
effects of the first-order-correction Hamiltonian A'„
whereas the p dependence results from the effect of the
second-order Hamiltonian 82, which is independent of
the electron momentum.

Following the same procedure as for the magnetic en-
ergy density, one can obtain the electric energy density
around the free electron, separating the part due to the
transverse electric field, which includes radiative contri-
butions, from that due to the longitudinal field. To this
end, let us first put F=F. i in (2.19) where we again
separate the contribution of the normal-ordered form in
order to obtain

1 a1iic p sin 6
2 Vm,'c' lr, —r, l4

' (3.13) 0 &(p)= f d r g &(r,p)+Czp
j.

(3.18)

2 ' 2e
(3.14)

where 8 is the angle between the electron momentum
and the vector r&

—r2 and n=e /Ac is the fine-structure
constant.

Evaluation of (3.7) is straightforward because it differs
from (3.6) just by an overall minus sign and by a change
k —~ —k in the argument of the exponential. We obtain

where

gE1(r,p) =gz& (r„r2)=:[Ei(r,) j:P(ri ) (3.19)

Proceeding in the same fashion as in the previous sec-
tion we obtain the analogous expression of Eq. (3.4),
whose terms difFerent from zero are

Following the same procedure as above, (3.8) yields (ll ( )ll) 8 cxflc p cos e
(3.20)

2 Re(0lg, (r„r2) l
II )1

=—5 aA 1

21r vmp lr, —r, l'
(3.15) 2 2

( l ( )l I) 8 cxflc p cos 8

Substituting Eq. (3.13)—(3.15) into (3.4) and using
X = II, since all the expressions are of second order in e,
one has

(3.21)

2 Re(0 g, (r„r2) II)2= . (3.22)
5 aA l

21r vmp lr —r, l'

age p sin e
vmpc lrz —r, l

5 eA' 1

2~ Vmp Ir, —ril'
(3.16)

We remark that the two contributions (3.20) and (3.21)
have opposite sign. It follows that no perturbative con-
tributions to the squared transverse field come from the
first-order Hamiltonian H, .

Adding terms (3.20)—(3.22), we find

To obtain the average value of the square of the magnetic
field at a distance p from the electron, we substitute Eq.
(3.16) into Eq. (3.1), which gives

(ply, ,(p)lq) =
mpC

(pl~ ( )lg)
5 xxf1 1 5 cxR 1

21r Vmp lr2 —r, l
21r Vmp p

(3.23)

According to Eq. (2.19), we have the following final ex-
pression for the square of the transverse field around the
electron, analogous to Eq. (3.17):

5 ex@' 1 21rfic ~ k
2~ ~0 P'

(3.17) (3.24)

We remark that all terms depending on the electron
We now define the correlation operator for the square

of the total electric field, which has the form

1(p)= f d r Ei r+~ +E~~ r++
2

:Pr—& +CZP (3.25)



STRUCTURE OF THE ELECTROMAGNETIC FIELD AROUND. . .

In terms of g i(r, p), defined in Eq. (3.19), and of the
].

following two operators,

g &(r,p) =g i(r„rz) = [X'~~(r, )] P(rz),
II II

this is perturbative effect of the second-order term, Az, of
the interaction Hamiltonian.

IV. DISCUSSION OF THE RESULTS

gn, E (r,p)=gE.E (ri, rz)
II

=Ei(r, ) E~~(r, )P(rz),

Eq. (3.25) becomes

~,.(p)= fd"[g, (r,p)+2gE.E„(r p)

+g, (r,p)]+Czp .

(3.27)

(3.28)

& „(p)

Sm

o.kc p sin 8
foal oc 8&p

5 afi 1 Pic +k2 ~ 5 4p'

The magnetic-field energy density at distance p from
the electron can be obtained from Eq. (3.17) as

The expectation value of operator (3.26) is easily evalu-
ated. The Coulomb field depends only on the position
operator, so when it is multiplied by projector P(rz) it
reduces just to the classical Coulomb field of a point elec-
tron located at r2. Physically, this is a consequence of the
fact that the longitudinal field is instantaneous and at a
given time it depends on the simultaneous position of the
charge, so one expects that the quantum Auctuations of
the charge do not play a role in Eq. (3.25). In fact, direct
evaluation of the correlation operator for the square of
the longitudinal electric field around the dressed electron
gives

& 1t lg~2(r„r, )ly)

, [&olg (r„r )lo)+&Ilg, (r„r )lI)]
II

2

=&Olgz&(r„r2)lo) =
II vlr, —r, l' ' (3.29)

which coincides with the classical expression.
The fact that the instantaneous longitudinal field at

fixed distance from the source is not affected by quantum
Auctuations leads one to expect that it interferes in-
coherently with any Auctuating quantity, and that the
average value of interference term (3.27) on the dressed
state vanishes. This is confirmed by a direct calculation
of (3.27):

r2)lg&=2Re&olgE
Eii

r'r2)II&=o .

(3.30)

Adding Eqs. (3.23), (3.29), and (3.30), we have

e 5 GA 1, +
Vlr, —r2l4 2ir Vmo lr, —r, l'

(3.31)

We remark that the only radiative correction to the
classical electric energy density depends on p and that

Finally we integrate (3.31) over r and add the zero-
point term to it, obtaining the square of the total electric
field at distance p from the dressed electron

&pl& i(p)lq&=
' +,+ ' yk . (3.32)

e 5 aA' 1+Pic +k8~p' 16~' mo p' 4V
(4.1b)

The total energy density surrounding the charge at dis-
tance p is the sum of the previous quantities, that is

2 8
8mp4 m oc 8~p 2 V

We see that contributions to the magnetic and to the elec-
tric energy density depending on p have opposite sign
and cancel.

Of the surviving terms in (4.2) two are proportional to
p ", the first coming from the electric-field energy densi-
ty and the second from the magnetic one; the last surviv-
ing contribution is the zero-point energy density. The
first term coincides with the classical electric energy den-
sity surrounding a nonrelativistic moving charge, while
the second has the same structure as the classical magnet-
ic energy density around a free moving charge [13]. So,
apart from the zero-point-energy contributions, the space
distribution of the total energy density around the
quantum-mechanical electron coincides with that around
a classical nonrelativistically moving charge.

In order to see explicitly the origin of the contributions
to the electric and magnetic energy densities having a
classical analog, we shall obtain, within our QED treat-
ment, those contributions to the magnetic and to the elec-
tric field having an expectation value of the dressed state
different from zero and whose square is expected to give
origin to the classical energy density terms above.

According to our previous treatment of quantities
quadratic in the field, now we shall calculate the expecta-
tion values on our dressed state of the correlation opera-
tors for the magnetic and the electric field which, follow-
ing the definition (2.19), are

&B(p)= Id" gB(r p) (4.3a)

A (p)= Jd' g (r,p), (4.3b)

(4. la)

while the electric-field energy is analogously derived from
Eq. (3.32):

(p) lg &

&„(p)=-
8m
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where, using (2.15), we have defined

gE(r, p) =gE(ri, r2) =&(r, )P(r2) . (4.4)

The operator related to the electric field can be
separated in a transverse and a longitudinal contribution

gE('P) gE(rl'r2) gE (rl'r2)+gEII(rl'r2) (4.5)

and evaluating the sum, we have

which, in terms of fields, can be written exphcitly as

gE(r, , r2) =Ei(r, )P(r2)+EII(r, )P(r2) . (4.6)

Let us evaluate the expectation value of these operators
on the dressed state (2.11). The term related to the mag-
netic field gives, always up to terms of order e,

& plgE(ri, r2) I @&

=2 Re& Ol ga(r„r2) IO &

2e exp[ —ik (r2 —r, )]
Re g Bk( Ak. p)

Vmoc ACOk

(4.7)

identical to the Coulomb field around a static classical
charge. This is due to the fact that, within our nonrela-
tivistic approximation, we neglected corrections at the
order of U /c .

As expected, one obtains some of the terms, which de-
pend on p, of the total energy density from the squares of
the average values of the magnetic and electric fields
given by Eqs. (4.9) and (4.12). However, in the magnetic
and electric energy density, Eqs. (4.1a) and (4.1b), terms
depending on p also appear that cannot be derived by
squaring the classical fields. These terms arise from
corrections to the zero-order fields, representing Auctua-
tions whose average value is zero and that change the
zero-point average value of k and P around the elec-
tron, permanently, and independent of the electron
motion. In fact, these contributions persist also for an
electron at rest (p =0), and we can then think of them as
due to the virtual-photon cloud surrounding the electron
in the sense of being a result of the interference between
the virtual photons emitted and reabsorbed by the elec-
tron and the zero-point-field fluctuations.

We may rewrite Eqs. (4.1a) and (4.1b) for the electron
at rest as

& giga(ri, r2)lg& =— p I') I'2
X

vc mo Ir, —r2I
r

~ x~,
Vc mo

(4.8)

5 e ~c Ac
xmas(P)= 2 4 + 4~ X k

16~ p p k

5 e A,c
P

8 16 4

(4.13)

(4.14)

According to Eq. (4.3a), we obtain the magnetic field
around the charge by integrating this quantity over r

B(p)—= & pl~, (p)ly& = ——'
c mo p

(4.9)

The second term gE gives
II

e &i r2 e p
& @Ig, (r„r,)lq& = ——

~ lr, —r, l' I' p' ' (4.11)

so that the electric field surrounding the dressed electron
coincides with the classical field surrounding a nonrela-
tivistic moving charge

E(p)—= &@I& (p)ly&= —e P,
p

(4.12)

Evidently, (4.9) coincides with the classical expression for
the magnetic field of a moving charge [13] at distance p
and its square coincides with the first term in Eq. (3.17).

As for operator (4.5), the first term, gE, is related to
j.

the transverse electric field and describes a fluctuating
quantum effect. Consequently, its average on the dressed
stationary state (2.11) must be zero. In fact,

& plgE, (ri, r2) lq&

2e exp[ —ik (r2 —r, )]
Re+Ei(AI, p) =0.

Vmoc ACOk

(4.10)

Equation (4.13) shows that the magnetic energy density
around the electron is lower than that of the free field
vacuum. Equation (4.14) shows the modification of the
electric energy density which is represented as a power-
law correction to the Coulomb energy density. Thus the
correction is large near the electron, although the validity
of (4.14) is limited by our approximation of distances
larger than A,c. We must stress that this result is nonrela-
tivistic and due to low-energy photons. Fully relativistic
calculations at the same order in e, although presumably
significantly different at distances smaller than A.c, can be
expected to give only small corrections in the range of
distances for which our approach is valid. A correction
to the Coulomb energy density around a charged particle
due to the high-frequency photons is known to exist
which, for a particle at rest, behaves as a power law at
distances larger than A,c [14]. This correction, however,
is due to the vacuum polarization induced by the electric
field of the charge and is of the sixth order in the cou-
pling constant.

We now turn to the total energy of the dressed system,
and we integrate Eq. (4.2). The first term, which comes
from the Coulomb energy density, has already been eval-
uated [see Eq. (2.5)]; it provided a rest-mass energy
5m, c . The second term comes from the classical mag-
netic energy density surrounding a moving electron. We
can write its integral in a compact form using the fact
that abc/p is the square of the Coulomb field and intro-
ducing definition (2.5) of 5m, :
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4 5m)
3 mp

P
2mp

5m p
mp 2mp

where

5m =46m, .

abc p 3 sin 8 afic p 2 3 1

m 2C2 8~
"

p4 m 2c2 8~ 3 p4
d p = d p

(4.15)

(4.16)

and can be calculated explicitly, using the expression for
the dressed state and definition (4.16),

2

(gi A(x) pi@)= — . (4.20)
mpc mp mp

2 2

(@~[A(x)] ~1()—: ( {Oj~[A(x)] ~ {0]) .
2mpc 2mpc

The third term, up to order e, can be written in terms
of the average value on the unperturbed vacuum state of
the field

A contribution to the field energy of this form appears
in any bound system [15], it is ascribed to the cloud of
virtual photons surrounding the atom. It is the energy
density of a transverse field, but it is not an effect of the
radiation field, rather an effect of the so-called "velocity
field, " which arises from the Lorentz transformation of
the static Coulomb field of a steady charge. This is due
to the well-known fact that separation of longitudinal and
transverse parts of a field is not relativistically invariant.
A different, covariant, separation into velocity field,
describing "charge photons, " and radiation field, describ-
ing "radiation photons, " was proposed and it was sug-
gested that only "radiation photons" might be considered
as physical photons. Under this point of view, term
(4.15) is due to emission and reabsorption of only "charge
photons. "

Let us write now the total energy as the sum of the
field and the electron energy, dropping the rest-mass
terms (which included the Coulomb self-energy) and the
zero-point-field energy:

(4.21)

mo

2+,({oj~[A(x)]'~{0] )
2mpc

2 2

+ ', & {oji[J(x)]'i{oj& .

(4.22)

Equation (4.22) can be written in terms of the average
value of the velocity operator

This contribution is an effect of the interaction too, and
it has been interpreted as the kinetic energy of the elec-
tron due to its motion forced by the vacuum Auctuating
field [10). Adding Eqs. (4.19)—(4.21), we obtain the kinet-
ic energy &I, on the dressed state:

p 25m p
k

2mp 2mo

T

(~
]p+(elc)A]x)]

~
5m

2mp mp
P

2mp
so that it becomes

mp mp mp6m
(4.23)

(4.17)

The first term on the RHS is the expectation value of the
electron's kinetic energy on the dressed state, &k, the
second is field energy, &F.

The kinetic energy can be written also in terms of the
velocity operator v =p+ (e /c) A(x) as

&,—:—,'m, &q~v'~itj& . (4.18)

~~=(W 2 0)+,&Wl~]x]&ll&

2

+ ', &W[~(-»'I@&,
2mpc

where the first term is the bare kinetic energy

The explicit expression for the average kinetic energy
&k can be evaluated. It can be written as a sum of three
terms:

2

JY„=—,]m &v& + & {Oj~[A(x)] ~ {Oj & .
2m pc

(4.24)

5m 1 (~)p
m, 2

(4.25)

Adding &I, and &~ we have the total energy of the sys-
tem

The first contribution to the kinetic energy has a classi-
cal analog. The second one is the contribution to the ki-
netic energy of the electron's random motion due to the
vacuum fluctuations of the field. It is a nonclassical
effect, but it contributes to the total energy with a rest-
mass term which is negligible in the nonrelativistic ap-
proach [16]. In the following, we will drop this term too.

Using expression (4.23), also the second term on the
RHS of Eq. (4.17), which is the p-dependent contribution
of the field energy, can be written in terms of the average
velocity of the electron in the form

(4.19) (1/J~u~]1$) =Jtk+&y =
—,'(mo+6m)(v) (4.26)

and the second term is an effect due to the interaction
To accelerate a particle having mass mp up to the aver-

age velocity ( v ) requires an energy m o ( v ) /2; but also
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means a certain amount of energy must be added to
modify the field corresponding to the field energy. The
result is that the effective mass of the coupled system is
the dressed mass I =mo+5m.

We remark that in our approach the role of the field
energy in the total energy of the system becomes particu-
larly clear and that the contributions kept into account in
Eq. (4.26) are of classical nature.

The self-energy (4.26) can also be written in terms of
the momentum p of the bare electron, adding the corre-
sponding expressions for &k and &z, (4.22) and (4.1S),
obtaining the well-known result:

2 2m+m= ~ +
2(mo+25m) mo 2mo

(pl[~(R)]'ly) =~'„—
2m' mp

+2 g(P', )
m6e g

(4.29)

where Bzp is the zero-point value. P', is defined in terms
of an integral of a spherical Bessel function ji (x)

p', = lim f dx e 'xj, (x)
A~0 0

(4.30)

and g is a constant.
It is possible to evaluate both the parameter P', and the

quantity g, using appropriate definitions [7], obtaining
2 2

(4.31)
9~mpe ao

2(ma+5m)
(4.27)

This result can also be derived using the well-known stan-
dard perturbative formula for the correction to the total
energy up to order e:

2

0 Ax.p Ax p 0

g2
Q o

Po
(4.32)

consequently, Eq. (4.29) then can be written as

We introduce into g the average momentum of the
electron in the hydrogen atom, which is related to the
Bohr radius ao, according to the minimum uncertainty
relation

p 6m
2177 o fP2 o

The usual interpretation of this formula in terms of emis-
sion and reabsorption of virtual photons is a useful tool
to calculate the matrix element, but it does not allow us
to understand the role of the field energy.

I.et us compare these results with those obtained for
the virtual-photon cloud surrounding the hydrogen atom
[7] in the so-called "near zone, " in which the electromag-
netic cloud results mainly from field frequencies higher
than the characteristic frequencies of the bare atom. We
expect that with these high frequencies, the electron
behaves as if it were free, because they are able to induce
transitions in the continuum spectrum of the hydrogen
atom.

Before proceeding with the comparison, it is appropri-
ate to stress the conceptual differences between the
definitions used in this paper and those adopted in the
study of the dressed hydrogen atom [7]. As explained be-
fore, (3.17) and (3.32) do not describe fields calculated at
a fixed point in space; indeed, fields generated by a nonlo-
calized charge have to be constant throughout space. In
fact, (3.17) and (3.32) are expectation values of correlated
electron position and field operators, and in this sense we
can interpret these quantities as fields calculated at posi-
tion p relative to the electron.

We now compare our quantities with the field observ-
ables surrounding the hydrogen atom which we assume
to be localized in space due to the large proton mass. In
this case physical quantities related to the electromagnet-
ic fields can be evaluated at the observation point R,
where R=O is the position of the nucleus. In the near
zone the average value of the square of the magnetic field
on the dressed ground state

l P ) is [7]

(4.33)

where the parameters y can be evaluated according to
the definition [7]

~M M
y&= lim f ™dxf dy j&(x)j&(y)eso o o x+y~

(4.35)

which gives

13
72 ~~ Vo (4.36)

It is clear now that the magnetic field surrounding the
hydrogen atom in the "near zone" coincides with the
field "surrounding" a free electron [Eq. (3.17)], except for
the fact that in the atomic case the charge is localized
around a fixed point and its momentum is averaged over
the solid angle. The physical interpretation we have
given to the terms of Eq. (3.17) now can be applied to the
magnetic field around the hydrogen atom. It is worth
stressing that the calculation for the free electron is valid
at distances from the charge larger than the Compton
wavelength, while Eq. (4.33), which has been derived in
the context of dipole approximation, is valid in a "near
zone" which does not overlap with the charge distribu-
tion of the atom, being well outside the Bohr radius.

The square of the transverse electric field in the "near
zone" around the atom is [7]

2g
(pl[Pi(R)] lP~= () +2yo) +E'

3m' moe R

(4.34)
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consequently

(4.37)

which coincides with the expectation value of the square
of the transverse electric field around the free electron,
given in Eq. (3.24) with Ezp the zero-point electric-field
value.

The parallelism between field observables around the
free charge, defined in terms of correlations, and field ob-
servables around neutral and localized sources does not
extend to the case in which the longitudinal field is ana-
lyzed. The longitudinal field of the hydrogen atom is
given by [7]

(4.38)

where x is the electron position. R=O is the position of
the nucleus. Forced Auctuations of the electron cause an
instantaneous electric dipole moment; the longitudinal
field surrounding this system is then very different from
the simple Coulomb field, since it fluctuates and also its
interference with the transverse field is different from
zero.

V. CONCLUSIONS

In QED a free point particle, such as the idealized elec-
tron we have considered in our paper, acquires a compli-
cated structure as a result of the interaction with the elec-
tromagnetic field. The most widely explored second-
order effect of this structure is relativistic, which yields a
substructure due to the polarization of the vacuum.
Another part of this complicated structure consists of a
virtual-photon cloud created by the interaction around
the particle and related to a modification of the zero-
point fluctuations of the electromagnetic field. The latter
structure can be investigated by nonrelativistic QED.

We have investigated one aspect of the spatial form of
this substructure by considering the average values of the
magnetic and electric energy density around the dressed
free particle.

A free electron dressed by its interaction with the elec-
tromagnetic field vacuum is, however, delocalized, so that
the naive quantum average of any field operator would be
constant in space. %'e have therefore introduced suitable
correlation operators connecting the field value at a given
point with the probability of finding the particle at anoth-
er point at the same time. The average values of these
operators working on the dressed state are appropriate to
describe the field observables at a given fixed distance
from the particle. Using this procedure we have found
that the energy density of both the magnetic field and the
electric field in the vicinity of the source appear to be
modified from their unperturbed values.

The changes in the magnetic-field energy density, with
respect to the bare vacuum value, have been shown to
arise from two different contributions. The first is depen-
dent on the electron momentum and coincides with the
contribution expected classically and is proportional to

the squared magnetic field of a moving charge in the non-
relativistic limit. Like its classical counterpart, this con-
tribution goes as the inverse of the fourth power of the
distance from the particle, and is responsible for the mass
shift of the electron as in classical electrodynamics. The
second contribution to the energy density has no classical
analog, is independent of the motion of the electron, and
is a permanent effect around the charge: it has been
shown to decay in proportion with the inverse of the fifth
power of the distance from the electron. The expectation
value of the magnetic field around the particle coincides
instead with the analogous classical distribution, because
the contribution to the magnetic field due to the emission
and absorption of virtual transverse photons is Quctuat-
ing and averages to zero.

The electric-field-energy-density distribution can also
be interpreted as composed of two terms, the first of
which coincides with the square of the classical Coulomb
field around the charge. In the context of nonrelativistic
QED its structure is independent of the particle's motion,
provided of course that its momentum is constant in
time. The second contribution arises from the transverse
field and it is the electric counterpart of the nonclassical
term in the magnetic-field energy density, having the
same spatial structure and opposite sign.

These nonclassical contributions to the magnetic and
electric energy densities, as discussed, do not contribute
to the total energy density of the system. The conse-
quence is that the cloud of virtual transverse photons
does not contribute to the mass shift of the charged parti-
cle. This is at variance with the case of the scalar field
around a neutral source [2,17] or with that of the
virtual-meson cloud around the nucleon in the bag model
[18],where the virtual cloud contributes to the total ener-

gy shift. This seems to explain also why in the relativistic
treatment of the electron self-energy it is only the
electron-positron virtual cloud that modifies the Coulomb
longitudinal field, thereby contributing to the mass shift
[10]. However, the presence of the virtual cloud in QED
has an effect on the field surrounding the charge by
changing the average values of the squares of the magnet-
ic and electric fields. These averages can inhuence sepa-
rately electrical neutral polarizable bodies and magnetiz-
able ones [7], so that the structure of the cloud around a
free charged particle is observable, at least in principle.

Finally, we have shown that the transverse electromag-
netic structure around a nonrelativistic electron is the
same as for hydrogen atom in a zone which is close to the
atom, but larger than the Bohr radius.
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