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The coherent overlap of the waves traversing the two legs of a perfect-crystal neutron interferometer
is altered by a material with a neutron-nuclear optical potential. The fringe visibility is limited by the
longitudinal coherence length. The loss of interference contrast caused by a slab of material of positive
optical potential can be restored by placing another slab of material with a negative optical potential in
the same leg of the interferometer. This paper describes the observation and detailed characterization of
this quantum-mechanical phenomenon, which we call the phase-echo effect.

PACS number(s): 03.65.Bz, 42.50.—p

I. INTRODUCTION

Quantum mechanics describes a moving neutron in
terms of its wave function W(r,?). In an eigenstate

W(r,t)=1(r)e ', (1)

where the spatial part ¢(r) satisfies the time-independent
Schrodinger equation for a particle of mass m, momen-
tum p, and energy E:
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Y(r)=E(o)Y(r) . (2)

A monochromatic plane wave of amplitude a(k),

i(k-r—w1)

¥(r,t)=a(k)e ) (3)

where k=p /% and w, =E /#=#k?/2m, is a solution of ‘

this equation. But, it is of infinite spatial extent. The
idea of a particle such as the neutron having infinite spa-
tial extent is intuitively unappealing. To localize the
probability amplitude of the neutron, one superposes a
series of plane waves whose wave vectors differ slightly,
so that they add constructively in some finite region of
space and time, but sum to zero elsewhere. This creates a
localized “wave packet,” which more closely corresponds
to our classical idea of a moving, finite particle.
Mathematically, we build the wave packet by a Fourier
sum of plane-wave components, having a (complex) spec-
trum a(k):

w(r,1)= [a(kle

i(kr—wt)

dk . (4)

The phases of the component waves are correlated by
a(k), so that they add constructively in some localized
region of space-time, and cancel out elsewhere.

Consider a neutron wave packet ¥; incident on a per-
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fect Si crystal neutron interferometer (NI), as shown in
Fig. 1 [1,2]. The first crystal blade of the NI splits the
amplitude of ¥; into two parts ¥, and ¥,, which separate
and traverse paths I and II, respectively. Both beams
pass through an aluminum slab, which we can rotate
through small angles a about a vertical axis. This slab,
called the ““phase rotator,” changes the phases of ¥, and
¥, by amounts 3,(a) and B3,(a), respectively. The beam
V¥, also passes through a plane-parallel slab of some ma-
terial, perpendicular to the beam, with atom density N,
neutron-nuclear scattering length b, and thickness D.
This slab, which we call the “sample,” induces a phase
shift

27NbD _
k

xs=kAl=— —NbDA (5)

and a spatial delay
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FIG. 1. Schematic of a neutron wave packet passing through
a skew-symmetric neutron interferometer, with a phase rotator
across both beams and a sample of some material in beam II.
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Al=—1DV, /E ©6)

in ¥,, where E is the neutron’s kinetic energy and V,, is
the neutron-nuclear optical potential (27#*Nb/m). We
assume for the moment that the sample does not attenu-
ate the beam. The two waves recombine in the last
perfect-crystal slab of the NI, and form two exit waves,
which are linear combinations of ¥, and ¥,. If the opti-
cal path lengths of beams I and II are nearly equal, the
two packets overlap and coherently interfere, giving rise
to interference effects.

The cumulative effect of passing through the NI is that
each component of the wave packet has its amplitude re-
duced by a factor ¥, and experiences a dispersive phase
shift, such that

\I/1=fa(k)y1ei(¢’+ﬁl)eiw"' , o

J
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=lim - [ar [ wik)dk [ W (k)dk
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We define the initial phase difference to be
=P, — Py, (10a)
and the phase shift due to the phase rotator is
b= o)~ Brla) = Npbprd — 0150 )

cos?0; —sin’a

where Np, bp, and d are, respectively, the atom density,
nuclear scattering length, and thickness of the phase rota-
tor; 0; is the Bragg angle of the interferometer. The k
and k' dependence of these phase angles has been
suppressed, for notational simplicity. The integral over
time ¢ yields a delta function 8(w; —w} ), so that

I(D’a>=Aff:!a(k)|2dk
+B f_+:l“(k)lzCOS[¢0+¢p(a)+XS(D)]dk ,
(11)
where we have defined
A=yitys, B=2yyv,. (12)

We explicitly note the dependence of the average count-
ing rate on the thickness of the sample D and the angle a
of the phase rotator, since these are the parameters that
are varied in our experiment. Since y; and v, differ for
the C2 and C3 beams, the parameter A4 has a different
value in the two exit beams [3].

The first integral term in Eq. (11) is a constant. The

i[¢pgtdpla)txs]
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‘I’z: fa(k)yzei(¢2+ﬁ2+xs)em"t ) (8)

where ®,; and ®, are the phase changes that occur in an
empty NI, due to passage through the crystal blades and
the regions between the blades. Under ideal conditions,
®,=®, The phase angles @, ,, B;,, and x5 depend on
the wave vector k. The factors v, , and @, , depend on
which exit beam, C2 or C3, we are considering. As a re-
sult, the wave functions (¥,)c, and (¥,)s, which enter
the C2 exit beam differ from (¥,)c; and (W¥,)c3, which
enter the C3 beam. The exit wave function W is the sum
of ¥, and V¥,; consequently, the two exit waves
(W) ea=(¥)er T (¥3)cz and (Wj)e3=(¥) )3+ (Wy)es]
differ in amplitude and phase. If one of the exit beams
enters a detector large enough to fully encompass it, the
time-averaged counting rate in the detector is

—i[¢gt+dpla)t+xg] —i(kr—w, 1) (k' T—o)t)
T

9)

second term, however, oscillates as we vary ¢p(a). For
example, if the spectral distribution g(k)=|a(k)|* is a
Gaussian, of standard deviation o, then Eq. (11) yields
an intensity

_ o 2
I(D,a)=A +B cos[¢o+dpla)+x,(D)]e 0N

(13)

where 0, =270, /k? is the width of the spectral distribu-
tion in terms of wavelength A [4].

As we vary ¢p(a), we trace out a sinusoidal intensity
pattern I(D,a), called an interferogram. The first term
in Eq. (13) gives the mean value of the pattern, while the
second term describes the interference oscillations. The
contrast (fringe visibility) of the interferogram is defined
to be the amplitude of the oscillation divided by the mean
value of the pattern. As Eq. (13) shows, the contrast
C (D) diminishes as the sample thickness D increases; its
maximum value C(0) occurs when D =0, that is, when
there is no sample in beam II. In principle, the maximum
contrast Cc5(0) in the C3 beam may vary from 0% to
100%, depending on how well the interferometer per-
forms; experimentally, we find C;(0)=50%. It is the
relative contrast Cx(D)=C(D)/C(0) that is of interest
in these experiments. The relative contrast can be calcu-
lated from the magnitude of the complex mutual coher-
ence function I'(D, a) [5]:

C(D) _ |T(D,a)|
c) |r©,0) ’

Cr(D)= (14)
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where

[(D,a)= (W 0)¥,(Al))

1 +oo 2 ildg+dp(@)+X,(D)]
- . 15
73 f_w la(k)|%e dk (15)

Or, if the displacement Al is in the longitudinal direction
(parallel to k), we can use the wavelength spectrum g(A)
to calculate I'(D, a ):

o (B0t ptetixs(D)] 4o (16)

1 +
T(D,a)=—==[""g)
For our experiment Y ¢(D)>>¢p(a), so that the phase ro-
tator has negligible effect on the contrast. Thus, for a
Gaussian distribution |a(k)|?, the relative contrast falls
[according to Eq. (13)] as a function of the sample thick-
ness D alone, namely

—(NbDo,)?/2

Cr(D)=e 17

Such relative contrast curves were first measured for neu-
tron interferometry by Kaiser, Werner, and George [6].

Note that Eq. (11) for the intensity I(D,a) depends
only on the magnitude of the spectrum a (k). In taking
the complex conjugate required by Eq. (9), all informa-
tion about the phase correlation of the Fourier com-
ponents comprising the wave packet is lost. There is then
no way, by measuring I(D,a), to establish the phase
correlation of the various Fourier components. The same
results could be produced by an incoherent superposition
of infinite, phase-uncorrelated, monochromatic plane
waves, with an intensity distribution g(k)=|a (k)|? [7,8].
If we know the intensity spectrum g (k) [or g (A)], we can
predict the outcome of our Cg (D) measurement; there is
no need to refer to wave packets or localized neutrons,
except at the moment of detection. From our continuous
beam measurements, we cannot say for certain that the
neutron travels as a packet, but only that the beam has an
intensity spectrum g(k) consistent with a traveling-wave
packet.

There are therefore two conceptual interpretations as
to why the relative contrast decreases with increasing
sample thickness; both are equally valid. First, we known
that a wave packet spreads as it propagates, with the fas-
ter wavelength components tending toward the leading
end of the packet and the slower components toward the
trailing end. The sample delays the packet on path II
with respect to the packet on path I, so that when they
reach the recombination region, the packets are spatially
displaced by a distance Al(D),

2
Al(D)=—2Nb

(18)
Faster components within one packet then overlap with
slower components within the other. The result is that
the interference amplitude partially “washes out” when
summed over the packet, which reduced the contrast of
the interferogram [9]. If the two packets are displaced by
a distance greater than the longitudinal coherence length,
then the contrast disappears.

If one views the neutron beam as consistinfg of an in-
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coherent superposition of plane waves, then a second
conceptual interpretation can be applied: Each plane
wave k component gives rise to its own intensity pattern
I(k,D,a); the overall intensity I(D,a) is the integral of
I(k,D,a) over the intensity distribution g(k). On pass-
ing through the sample, each component experiences a
different phase shift xys(k,D), as given by Eq. (5). The
overall intensity is thus a sum of sinusoidal patterns of
differing phase, which leads to a reduction in interference
amplitude. The beam is said to become “dephased” as
the sample thickness increases, and the interferogram
contrast eventually approaches zero.

II. ATTENTUATION AND NONIDEAL EFFECTS

In this experiment, we wish to measure changes in in-
terferogram contrast due to the coherence properties of a
neutron beam. However, there are other effects which
also reduce the contrast. These must be understood and
corrected for, if we wish to isolate the dephasing effects.

First, we have to take into account the beam attenua-
tion due to the sample, which we ignored in the preced-
ing section. If an attenuating sample is placed in beam
I1, the amplitude of the wave ¥, is attenuated by a factor
exp(—¢), such that

\112=e'gfa(k)(yze'(¢z+ﬁz+xs))e

iwkt , (19)

where § is due to the absorption and scattering cross sec-
tions o, and o of the material:

§(DYy=4Ho,+0,IND . (20)

The factor of 1 is present because we are interested in the
attenuation of the wave amplitude. Where the wave ¥,
in Eq. (8) was attenuated by a factor y,, it is now at-
tenuated by a factor y,e “%. So if we replace each factor
of ¥, in Eq. (12) with y,e ~%, we find that the mean value
and amplitude parameters 4 and B are no longer con-
stants, but vary with sample thickness as

A(D)=y}+e ¥Phy3, B(D)=2yy,e *P. (1)

The contrast is proportional to B/ A, so that even in
the absence of dephasing effects, attenuation leads to a
loss in contrast with increasing sample thickness,

-¢

C(D) _ e — , (22)

C0) [ arte *ay

where we define the intensity fractions a; and ay; to be

2 2

"N __ 7
Q=TS0 AnT 5 23)

rYitv; vYitva

and where a;+a;=1. Thus, if we measure a contrast
Ceas 1N Our experiment, and wish to deduce the contrast
C that would occur without the sample’s attenuation, we
merely multiply C_. .. by an attenuation correction factor

att*

C=CreasSatt » 24)

where
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faw=e’la;+e %ay] . (25)

This gives us a way to measure the contrast C, correct-
ing for and thereby excluding the effects of attenuation.
The intensity fractions a; and ay; and attenuation param-
eters § were measured experimentally, as described in the
Appendix. From this information, we calculated the at-
tenuation correction factors f,, for each sample used,
and corrected our results according to Eq. (24). (See the
Appendix for details and results of this correction pro-
cess.)

It is important to recall that the factors ¥, and y, are
different for the two exit beams C2 and C3. Consequent-
ly, the intensity fractions a; and ay; and the attenuation
correction factors f,,, differ for C2 and C3. The effect of
attenuation on the contrast of the two beams is therefore
different, and we must correct the C2 and C3 data sepa-
rately.

In addition to attenuation, there are other nonideal
effects which reduce the interferogram contrast. In Sec.
I, we assumed that the interferometer and setup were
“ideal.” That meant that the Si interferometer crystal
was free from imperfections and machined to a flawless
geometry: each blade equally spaced, flat, parallel, and of
the same thickness. (The scale of this required precision
is about 0.25 um.) It also implied that the setup com-
pletely isolated the interferometer from outside distur-
bances, such as vibrations, rotations, and strains. With
an arrangement such as this, we would be able to achieve
perfect fringe visibility, yielding a contrast in the C3
beam of 100%. But this is, of course, not the case. At
best, our neutron interferometer operates at a contrast of
~70%, and usually less. This is because of small imper-
fections in the geometry of the NI and in the quality of
the setup.

First, consider what happens if the surfaces of the in-
terferometer blades are not completely flat and parallel.
Thickness variations on the order of micrometers can
easily be produced during the machining and etching of
the crystal. A neutron ray striking a crystal blade at a
given spot may thus pass through more material than a
neutron striking another spot. As a result, the initial
phase ¢; of the neutrons varies spatially across the cross
sectional area of the beam. (The subscript “0” on ¢, has
been changed to “i”” to emphasize that the initial phase is
now spatially variable.)

A simple model shows how such spatial inhomo-
geneities in the thickness of the blades lead to a loss in
contrast. Consider a neutron beam incident on a region
“S” on the first blade of the interferometer. A neutron
striking the blade at point (x,y) splits and moves through
the NI, also passing through the other blades before
recombining and finally being detected. Suppose the in-
terferogram for the neutrons entering at (x,y) has an ini-
tial phase ¢,(x,y), such that the resulting intensity is

I(x,y,¢)=A +Bcos[¢;(x,y)+¢(a,D)], (26)

where ¢(a,D)=¢p(a)+xs(D). The overall intensity is
the integral of I (x,y,¢) over region S:
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I(¢)=fS{A+B cos[é;(x,y)+d(a,D)]}dx dy . @7

For our purposes here, ¢(a,D) is a constant. Within the
illuminated area S, there is a probability distribution
w(¢;) of ¢; values. For the sake of discussion, we sup-
pose that w,(¢;) is a Gaussian of width o, centered at ¢,
(“s” for “‘spatial”):

ws(¢i)

1 e—(¢i—¢s)2/20§

= 28
V2ro, 28)

We replace the integral over x and y in Eq. (27) with one
over the initial phase ¢;, weighted by w, (¢, ):

1($)= [ " “w,(8,){ A +B cos[¢,(x,y)+¢(a,D)]}d &,

—a2/2
=A +Bcos[¢, +d(a,D)]e . (29)
Theoretically, 4 and B should be equal in the C3 exit
beam. If there were no imperfections (o,=0), then
Ic4(¢) would yield 100% contrast. However, we see that
spatial inhomogeneities cause the amplitude of I (¢) to be
reduced by a factor exp(—o2/2). Consequently, the con-
trast C; also drops by the same factor:

—o2/2

C,=Cye (30)

For example, if there were thickness variations of order
At=25 pm across the illuminated area S, then there
would be a phase uncertainty o of

Nb LAt 30°
=% = ~0.52 rad= (31
for A=2.349-A neutrons. As a result, no matter how
good our setup was, we would not be able to produce a
contrast higher than about C;=87% in C3 (and ~30%
in C2) due to the uneven blade surfaces.

Other “nonideal” contrast effects are due to vibrations
and rotations transmitted to the interferometer crystal
through the setup from the surrounding environment.
The back and forth rotation of the interferometer causes
the diffracted neutrons to be Doppler shifted upon
reflection, so that the initial phase ¢; also varies with
time. This shift in phase, due to rotation, is called the
Sagnac effect [10].

This “temporal fluctuation” can be modeled in the
same way as the spatial variations. If we assume that the
time-varying initial phase ¢,(¢) is described by a Gaussian
distribution w,(A¢), of width o, (“¢” for ‘“‘temporal”’), we
find that this leads to a further reduction in the time-
averaged contrast by a factor exp(—a2/2). Combining
the effects of spatial inhomogeneities and temporal fluc-
tuations, the overall contrast C;, is found to be reduced
by both effects:

2 2
—0/2 —oi/2
C,=e ‘e . (32)

There are other effects that also reduce the interfero-
gram contrast, such as thermal gradients, imperfections
in machining, and gravitational warping of the crystal.
In light of this discussion, it is not surprising that we can-
not attain 100% contrast with our interferometer. In
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fact, given its sensitivity to small imperfections and dis-
turbances, it is quite a feat (perhaps a miracle) that the
device works at all. We must content ourselves with a
maximum contrast C, of ~50%, and work from there.

III. THE PHASE-ECHO EFFECT

In Sec. I, we saw that a sample placed in one leg of the
interferometer shifts the packet on that path with respect
to the other path (or, equivalently, that it dephases the
Fourier components that make up the beam). As the
sample thickness increases, the coherence of the beams is
reduced, leading to a loss in interferogram contrast. For
a Gaussian spectrum g(A) of width o,, we found that the
contrast also falls off as a Gaussian [Eq. (17)].

Now consider what happens if we add a second sample
to the same leg of the interferometer. The second sample
may be of a different material, so that its parameters
(N,,b,,D,) may differ from those of the first sample
(Ny,b,,D,). The outcome of such an arrangement is not
difficult to derive because the effect of the two samples is
additive. For example, if we have a Gaussian g(k), the
relative contrast Cg(D,,D,) is found from Eq. (17) sim-
ply by replacing the factor (NbD) by (N,b,D,+N,b,D,),
so that the relative contrast becomes

— 2,2
(N, b,D,+N,b,D, 02 /2

CR(Dl,D2)=e (33)

The form of this equation presents us with an interest-
ing possibility. For most nuclei, b is positive, but there
are a few elements, such as titanium, manganese, and
vanadium, whose scattering lengths are negative. Thus,
in contrast to x-ray and optical interferometry, we have a
unique opportunity in neutron interferometry to place
materials of both positive and negative optical potentials
in one leg of the interferometer. If we choose one sample
with a positive scattering length b, >0 and another with
a negative scattering length b, <0 and machine them to
thicknesses D, and D, such that

NbD,=—N,b,D, , (34)

then Eq. (33) implies that the relative contrast due to this
arrangement is

Cr(D,,D,)=e °=100% . (35)

This means that there should be no loss in contrast (or
coherence) due to the samples. When each sample is
placed individually in the neutron beam, the coherence is
reduced, resulting in a lower interferogram contrast. If,
however, both samples are simultaneously placed in the
same leg of the interferometer, the coherence of the beam
is apparently restored. The first sample shifts the packet
by Al (i.e., dephases the beam); but the second sample
shifts the packet back by —Al it “rephases” the beam.
We call this the “phase-echo effect.” It was first pro-
posed as an NI experiment by Badurek, Rauch, and Zeil-
inger in 1979 [11]. In one instance, the effect was ob-
served by Kaiser, George, and Werner, in conjunction
with another experiment, but was not studied systemati-
cally [12].

If the samples are not ideally matched, the contrast

only partially recovers, but if the condition in Eq. (34) is
exactly met, the relative contrast should recover to
100%. There will still be a loss of contrast due to at-
tenuation by the samples, but this can be corrected for, as
discussed in Sec. II. It is important to note that the
effect occurs in both the C2 and C3 exit beams because
the relative contrast Cp has the same form for each
beam. We can thus use data obtained from both detec-
tors.

The paragraphs above assume that the intensity spec-
trum g(k) is a simple Gaussian. Since this was not the
case experimentally, we need to extend our analysis to
general spectra. This is easy to do, however. If we mea-
sure g(k) [or g(A)], we can place it in Eq. (16), and calcu-
late (numerically, if necessary) the predicted behavior of
Cgr (D) using Eq. (14).

IV. SAMPLES AND SETUP

To observe the phase-echo effect, the first order of busi-
ness was to construct a suitable set of phase shifting sam-
ples. We chose to use bismuth and titanium. Bismuth
has a large, positive scattering length b =8.533 fm, an
atom density N =2.82X10%® m™3, and a relatively low
absorption cross section (o, =0.0388 barn and o, =9.156
barn). Titanium was chosen because it is one of the few
materials with a large, negative scattering length,
b=—3.438 fm; it has an atom density N =6.031X 10
m~3 It is, however, more highly absorbing than
bismuth: o, =6.1 barn and o =4.06 barn.

Initially, five slab-shaped samples of bismuth and ti-
tanium were machined, polished, and etched, and then
epoxied onto aluminum mounting brackets. The bismuth
samples were made so that their nominal thicknesses
were multiples of 4 mm (4, 8, 12, 16, and 20 mm). The ti-
tanium samples were made in multiples of 5 mm (5, 10,
15, 20, and 25 mm). The exact thicknesses of the samples
are given in Table I. The samples were made in matching
sets, one Bi and one Ti piece per set, and the sets were la-
beled 1-5, in order of increasing thickness. Within each
set, the corresponding Bi and Ti samples were made such
that the ratio of their thicknesses would give rise to the
optimum phase-echo effect. From Eq. (34), the optimal
ratio should be

Dyy _ —Npiby;

=1.16 . (36)
Dy; Nyibri

Due to the difficulty in machining bismuth, the actual

thickness ratios were closer to 1.24. This means that the

phase-echo contrast should not recover to a full 100%:;

but it should recover to nearly that level (at least 97% for

our samples).

In addition, we made a sixth pair of Bi and Ti samples,
which were thinner than the other sets (2.1 and 2.8 mm,
respectively). Since this pair of samples was about half as
thick as set 1, it was dubbed set % These thinner samples
were used in combination with larger samples to give
finer increments in thickness. For example, bismuth sam-
ples 1 and 1 could be used simultaneously to place 6.10
mm of Bi in the beam; we called such a combination
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“bismuth sample 11.” The thin samples in set 1 could
also be combined with the other samples, to create ‘““‘sam-
ple 21, “sample 31,” and so on. This effectively doubled
the number of data points that we could obtain.

The basic setup for the phase-echo experiment is indi-
cated schematically in Fig. 2. A slit 4 mm wide and 6
mm high was mounted ~7 cm in front of the interferom-
eter, to restrict the beam size. When no sample was in
the beam, this produced an average counting rate of
~530 counts/min with ~57% contrast in the C3 detec-
tor and a rate of ~2000 counts/min with ~179% contrast
in the C2 detector. The Bi and Ti samples were affixed
by means of their mounting brackets to an aluminum bar,
which held the samples at the right height and position to
intercept the beam. The bar was attached to a transla-
tion table, so that the samples could be driven in and out
of beam II by a computer-controlled stepping motor.

The neutrons were detected by %-in.-diam, cylindrical,
20-atm 3He detectors, which are essentially black to
thermal neutrons. The C2 detector was mounted verti-
cally ~20 cm past the NI. It was surrounded by a casing
made of B,C powder suspended in epoxy, which absorbed
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FIG. 2. Setup for the phase-echo experiment, sample-in con-
dition, showing the width of the beam as it passes through the
NI. The nominally monochromatic beam (AA/A=1.2%) is
produced by Bragg reflection from a pyrolytic graphite mono-
chromator (205 =41°). The Bragg angle of the (220) reflection in
the silicon NI is 63 =37.7°.

TABLE 1. Phase-echo relative-contrast results.

Sample D (mm) Al (A) A¢ (rad) (CR )C2 (%) (CR )c3 (%) (CR > (%)
Bi
~12— 2.09 —44.2 —118 87.3+1.6 83.5+1.7 86.5+0.8
1 4.01 —84.7 —227 51.8+1.4 59.0+1.6 52.6+0.8
1% 6.10 —128.9 —345 24.4+1.1 21.1+1.3 24.4+0.6
2 7.99 —168.8 —452 4.3+0.9 7.8+1.1 4.2+0.5
2% 10.08 —213.0 —571 13.0+0.8 16.41+1.1 13.5+0.4
3 12.26 —259.1 — 694 14.1+£0.8 14.8+1.1 12.7+0.4
3% 14.35 —303.2 —812 3.3+0.8 8.3+1.2 4.0+0.4
4 16.15 —341.2 —914 1.5+0.8 0.3%1.3 1.3+0.4
4% 18.24 —385.4 —1032 5.8+0.8 5.4+1.3 5.5+0.4
5 20.08 —424.3 —1135 3.6+0.8 3.4+1.3 3.8+0.4
Ti
% 2.80 51.0 136 83.5+1.7 83.9+1.2 83.8+1.0
1 5.01 91.2 244 59.0x1.6 58.9+1.0 58.9+0.8
1—;— 7.81 142.2 380 21.1+£1.3 21.9+0.8 21.7+0.7
2 10.02 182.5 488 7.8x1.1 7.9+0.7 7.91+0.6
2% 12.82 2334 624 16.4%1.1 15.0+0.6 15.3+0.5
3 14.96 272.4 728 14.8+1.1 14.6+0.7 14.7+0.6
3% 17.76 3234 865 8.3+1.2 6.2+0.7 6.7+0.6
4 20.01 364.4 975 0.3+1.3 0.8+£0.7 0.7+0.6
4% 22.81 4153 1111 5.4+1.3 5.6+0.7 5.6+0.6
5 24.98 454.9 1217 34+1.3 4.8+0.7 4.5+0.6
Bi+Ti

% 4.89 6.8 18 99.7+2.4 101.4+1.5 100.9+1.3
1 9.02 6.5 17 91.2+2.2 89.9+1.4 90.2+1.2
2 18.01 13.7 36 91.9x2.1 92.7+1.3 92.5+1.1
3 27.22 13.3 35 99.4+2.4 95.3+1.4 96.4+1.2
4 36.16 23.2 61 115.0%£2.8 106.9+1.6 108.9+1.4
5 45.06 30.6 82 91.11£2.6 89.9+1.5 90.2+1.3
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any background neutrons. The beam was allowed to
enter only through an opening, | in. wide and 1 in. high,
defined by a cadmium tube several inches long.

This phase-echo experiment was carried out in con-
junction with a crystal-analyzed coherence experiment
(to be described in a subsequent paper), and we wanted
the setups for the two to be as similar as possible. For
that reason, the C3 detector was mounted farther away,
~80 cm from the interferometer, and consisted of three
3He detectors, mounted horizontally in a neutron-
shielding B,C-epoxy cassette, which all fed into the same
electronic counting chain.

The vast majority of neutrons entering the interferome-
ter fall outside the Darwin acceptance width of the Si
crystal, and are not diffracted. This so-called ‘“‘direct
beam” also has a divergence to it, and at the position of
the C3 detector, it would partially overlap with the C3
beam, spilling into the detector and overwhelming the
relatively weak C3 beam. To prevent this from happen-
ing, the direct beam was blocked with a 1-cm-thick slab
of B,C-epoxy directly after the NI.

V. DATA COLLECTION AND ANALYSIS

As we have seen, even when there is no sample in the
beam, a neutron interferometer operates at a contrast C,
which is less than 100%. The goal of this experiment was
to measure a drop in contrast from this starting value C,
to a new value C(D) when a sample was placed in the
beam. The coherence loss due to the dephasing effect
manifests itself in a relative drop in contrast from C, to
C(D). It was therefore important to measure the
“sample-out” contrast C, as well as the “sample-in” con-
trast C (D) for each data set.

The basic procedure consisted of taking simultaneous
sample-out and sample-in interferograms. We first
mounted a sample on the translation bar, but drove it to a
position where it did not intercept the beam; we call this
the sample-out position. With the phase rotator set to a
certain position a;, data were collected until the monitor
counter reached a fixed, preset number, usually 600-k
monitor counts, taking approximately 3 min. In this
period of time, the C2 and C3 detectors counted of order
~1750 and ~ 6600 neutrons, respectively. This is the
sample-out data. We then drove the sample into the
beam on leg II of the interferometer, and collected data
again, usually for a longer time, ~7 min or so. This is
the sample-in data. We then drove the sample back out
of the beam, moved the phase shifter to a new position
a,, and began the counting process again. After 30 or so
data points, the result was a pair of interferograms, one
with sample-out, and one with sample-in.

It was important to take these interferograms simul-
taneously because the absolute contrast C, drifted a small
amount with time, due to environmental factors. Over
the course of a day, the sample-out contrast C, might
vary between 51% and 58%, although smaller drifts of
~+1% were usually the rule. However, the relative loss
of contrast due to dephasing will rot drift as long as the
sample-in and sample-out curves had the same ‘‘starting”
contrast C,. To ensure that this was the case, we had to

5363

take the two data sets at the same time.

Collecting two such interferograms for a given sample
constituted one data “run.” The process was repeated for
all Bi samples individually (including the paired ; sam-
ples), and then for all Ti samples as well. Finally, the
matched sets of Bi and Ti samples were jointly mounted,
one set at a time, and data runs were taken for these also.
Each data run took between 7 and 20 h to complete.
Longer counting times were used for thicker samples.
This was partially to compensate for the reduction in
beam intensity due to the attenuation of the sample. But
the main reason for increasing the counting time was to
improve the statistics for these runs. With thick samples,
the contrast of the interferograms was severely reduced;
only by increasing the counting time could we measure
the small interferogram amplitudes with sufficient statist-
ical accuracy. The background was checked periodically,
but it varied little from day to day, so the measurements
were averaged to give one, constant value, used
throughout the experiment: B:,=129 counts/min,
B3 =29.7 counts/min.

After completion, each interferogram was fit to a
cosine function by a nonlinear least-squares-fit routine.
The fit gives values for the amplitude B and mean value
M of the interferogram; the mean value M included the
background rate B as well as the intensity 4 due to the
interfering neutrons: M = A4 + 3. The background rate
B was measured separately by rotating the interferometer
off the Bragg condition and counting. The measured
value of B is used with the fit parameters M and B to cal-
culate the contrast C ., of the interferogram:

Cons =372 - (37)
This was done separately for the data in both detector
channels C2 and C3 for both the sample-out and
sample-in conditions.

After fitting the sample-in interferograms, the contrast
had to be corrected for attenuation due to the sample.
We used the correction factors f,,; (given in Table III in
the Appendix) to calculate the true, corrected contrast
C'in’

Cin =( C'meas )in.fatt . (38)

Again, the correction had to be done separately for the
C2 and C3 data since f,,, was different for the two exit
beams. No such correction was required for the sample-
out contrast C,. The fit program also computed a statist-
ical error for the mean value M and amplitude B of each
fit. Likewise, the background counting rate B had a sta-
tistical uncertainty to it. Using standard statistical
methods, we calculated error bars for our results.

The dephasing effect manifests itself in a drop in the
relative contrast between the sample-out and sample-in
data sets. If the sample-out contrast is Cyto,, and the
sample-in contrast is C;, o, then the relative contrast
Cr*op is given by

Cin
Cr=

- (39)
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where 1.50
o 12 o 121172 A,=2.3356 A,= 2.3520
. 9o in oy o,=.00575 o,=.00805
op=Cpg C, C,, (40) £ 400} o:= 0.659 c§= 0.988
3
Although the absolute contrasts C, and C;, will differ for o
the C2 and C3 beams, the relative contrast Cy should be o 0.50 %
the same for both, as discussed earlier. So, for each data .
run we can combine the C2 and C3 relative contrast re- = 0.00
sults in the standard statistical way, weighting each ac- o=
cording to its uncertainty. If the C2 relative contrast is r . ) .

C,*0,, and the C3 relative contrast is C;t03, then the
combined result {Cp )+{o ) is given by

(03)2C2+(0’2)2C3
Cr )= s 41
(Cer (03 +(0y)? “
where
TR 0P+ (o,

The combined relative contrast {Cg)+{og) was the
final, overall result of each data run.

VI. RESULTS

Since the contrast results depend on the shape of g(k),
we first need to know the spectrum to be able to predict
the outcome of the experiment. We actually chose to
measure the intensity spectrum g(A) in terms of wave-
length. A silicon (111) crystal with an effective mosaic
width of ~0.02° was placed in the exit C3 beam, in the
antiparallel geometry. This crystal acts as an analyzer,
reflecting out of the beam an extremely narrow band of
wavelengths. A relationship between the angular posi-
tion 6 of the analyzer crystal and the wavelength A of the
neutrons reflected out of the beam gives the spectrum
g (ML), obtained in a 0-20 scan with the analyzer crystal,
namely

cos(6;)cos(6 4) !

MOI=Ro | 1+(0—0 ) —or—o— :

(43)

where 0; and 0 4, are the Bragg angles of the interferome-
ter and the analyzer crystal, respectively, and A, is the
mean wavelength. Since the spectrum deviates somewhat
from a simple Gaussian form, we chose the next order of
complexity, and modeled the spectrum as the sum of two
independent Gaussians

a; —(A—1,)2/202 a
e B =S

(A=1,)?/20%
e .
V2ro,

(44)

Figure 3 shows the wavelength intensity spectrum, with
the background subtracted and the peak intensity spec-
trum, with the background subtracted and the peak in-
tensity normalized to 1. The double-Gaussian fit is also
shown, with the fit parameters

2.34 2.36
Wavelength ()

FIG. 3. Measured wavelength spectrum g(A) for the phase-
echo experiment, and the double-Gaussian fit to it.

2.38

A, =2.3356 A, A,=2.3530 A ;
0,=0.00575 A, 0,=0.00805 A ; 45)

a;=0.659, a,=0.988 .

The low signal to background ratio (~0.63) limits the ac-
curacy of these fit parameters. The actual spectrum may
have more structure to it than is encompassed by a
double-Gaussian distribution, but this approximation is
sufficient for understanding the results of the experiment.

Let us now look at results of the phase-echo measure-
ments. The data were collected in 26 data runs, and each
was analyzed as described in Sec. V. Figure 4 shows a

4000
(a) Open Beam
3000 A
!
2000 A
1000 A
7] 0 + + t
= (b) 8mm Bi Sample
S 2000 | irrreceere - el
E hd hd v L
~ 1000 -
™~ 0 e : :
] .
§ 2000 4 (¢) 10mm Ti Sample
[S)
“ 1000 1 Sesttoesteee 1
M
O
0 + —+ t
d) Bi + TiS |
2000 | (d) Bi i Samples
000 4\M/
0 } 4 t
-1.0 -0.5 0.0 0.5 1.0

Phase Rotator Angle a (deg)

FIG. 4. A typical set of phase-echo interferograms, with (a)
no sample, (b) with 8-mm Bi sample 2, (¢) 10-mm Ti sample 2,
and (d) both Bi 2 and Ti 2 in the beam.
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typical set of data in the C3 detector channel, using sam-
ples from set 2 (8-mm Bi and 10-mm Ti). The interfero-
grams originally had different counting times per data
point, but the plots have been normalized to the same
number of monitor counts per point, 600-k monitor
~ 185 sec. The solid curves show the least-squares fit to
the data. The uppermost panel is for the sample-out con-
dition, when both beams in the interferometer were unob-
structed. Sample-out interferograms do not vary much
from run to run, so only one representative example is
shown. The second panel shows the interferogram when
bismuth sample 2 (7.99 mm thick) was inserted into beam
II; the third graph, when titanium sample 2 (10.02 mm
thick) was used. In the bottom panel, Bi 2 and Ti 2 have
been simultaneously inserted into the beam. The inter-
ferograms in Fig. 4 are thus the result of three different
data runs.

The plots in Fig. 4 clearly show that the phase-echo
effect does occur. When no sample was in the beam, the
interferogram had relatively good contrast, Cy~56%.
When Bi or Ti alone was inserted, the contrast dropped
considerably. Also, the counting rates of the sample-in
curves were reduced due to the absorption of the samples;
the loss is more pronounced for titanium, as one would
expect. But, when Bi and Ti samples were jointly placed
in the beam, the contrast recovers to a great extent.
From the fits,

(Cr)pir=4.17%+0.47% ,
(Cr)11,=7.87%=+0.58% , (46)
(CrIpit1i2=92.5%+1.11% .

Each sample, when used independently, reduces the
coherence of the beam, lowering the relative contrast to
~6%. But by adding a second sample, the phase-echo
effect restores the coherence, returning the relative con-
trast to nearly its full value, 92.5%.

The results shown above are for only one of the sample
sets. A similar analysis was carried out for all of the
remaining data runs. The resulting contrast data are
summarized in Table I. Also given in the table are the
phase shift A¢ and the longitudinal deviation A/ caused
by the sample(s). The columns labeled (Cg )¢, and (Cg )3
give the relative contrasts for the C2 and C3 channels,
corrected for attenuation; the final column (Cy) gives
the weighted sum of the C2 and C3 data.

The data in Table I represent the overall results of the
phase-echo experiment. Let us examine these results to
see how well they agree with our predictions. First, let us
look at the dephased data, when Bi or Ti were used alone.
The relative contrast Cr (D) in each case should fall off
according to Eq. (14). Using our measured wavelength
spectrum g(A), we can calculate what the contrast curve
Cr should look like. If we plot Cy versus the phase shift
Ap=NbDA, then Cg should look the same for both
bismuth and titanium, and in fact for any phase-shifting
material, given the same g(A). This has been done in Fig.
5, where Cy is plotted for Bi samples alone and Ti sam-
ples alone versus A¢(D). There is good agreement be-
tween the predicted and measured dephased contrast re-
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FIG. 5. Relative contrast results for both Bi and Ti samples
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dicted contrast curve.
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sults. The measured Bi and Ti points trace out nearly
identical curves, which are quite similar in shape to the
predicted curve.

Of special interest in Fig. 5 is the fact that the contrast
does not die out smoothly, but has a long ‘“tail” to it.
The existence of a tail on the contrast curve was original-
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FIG. 6. Overall results of the phase-echo experiment, for (a)
bismuth samples, (b) titanium samples, and (c) joint Bi+ Ti sam-
ples. In all cases, the error bars are smaller than the plotted
points.
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ly perplexing to us, because we were not aware that the
wavelength spectrum g(A) had a non-Gaussian shape.
By measuring g (A), however, we were able to quite accu-
rately explain the shape of the contrast tail.

So, the coherence loss due to dephasing occurs as pre-
dicted when bismuth or titanium samples are used indi-
vidually. Let us now look at the results of the runs where
Bi and Ti samples were used jointly, to see how the
phase-echo effect alters the outcome. Figure 6 compares
the dephased contrast curves, when Bi and Ti are used
alone, to the phase-echo contrast curve, obtained when
the matching Bi+Ti sets are used. The curves are plot-
ted versus sample thickness D. The effect of the phase
echo can be plainly seen. The top two graphs show that
when Bi or Ti is used alone, the relative contrast falls off
rather quickly and is practically zero when the sample
thickness reaches ~20 mm. But as is shown in the bot-
tom graph, when both samples are used to create the
phase-echo effect, the relative contrast remains very
good, nearly 100%, all the way out to 45 mm, which is as
much material as we could fit into our interferometer.
This figure sums up the phase-echo effect in a concise
way.

VII. CONTRAST CURVES
WITH NON-GAUSSIAN SPECTRA

The contrast curves measured in this experiment have
a “two-humped” shape. As Egs. (14) and (16) show, any
deviation of the spectrum g(k) from a simple Gaussian
form will result in a contrast curve that is also non-
Gaussian, although, as we shall see, this deviation may
not always be experimentally visible.

This makes perfect sense mathematically, but let us try
to gain some more physical insight into what is going on.
We will use a simple model to investigate the effects of
non-Gaussian spectra. For comparison, we would like
the model to include the single-Gaussian spectrum as a
special case. The simplest way to do this is to choose a
model spectrum that consists of two equivalent Gaussian
peaks P, and P,, each with the same width o and ampli-
tude, but centered at two different wavelengths A, and A,.
Placing such a spectrum in Eq. (15), we find that Cjy is
given by

— o)?
Cr(D)=|cos(Nb,DAM e P72 @7)

where AA=(A,—A,)/2. Thus there is still a Gaussian de-
cay in contrast, but it is modulated by a slowly oscillating
cosine term. The first minimum of this cosine term is lo-
cated at D, =w/(NbAA). At this point, the neutrons in
peak P, are, on the average, 180° out of phase with those
in peak P,, so that their interferogram patterns cancel
out, giving a contrast minimum. For the minimum to be
visible, however, it must occur before the exponential de-
cay has become too severe. If this is not the case, the
contrast curve will still appear roughly Gaussian. If, on
the other hand, AA is large enough, then the contrast
curve will oscillate within a Gaussian envelope. Al-
though simple, this model adequately describes the phys-
ics behind the experimental contrast curves.
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VIII. CONCLUSIONS

From this experiment, we can say without a doubt that
the phase-echo effect is a fact of nature as predicted by
quantum mechanics. Figures 4 and 6 are the proof: 20
mm of bismuth destroys the coherence of the neutron
beam; 25 mm of titanium also destroys the coherence; but
put the two together, and the coherence recovers to near-
ly 100%.

This observation begs the following question. What do
we mean when we say that the coherence is “lost” when a
sample of optical potential ¥, is placed in one leg of the
interferometer? It can obviously be found again by plac-
ing yet another sample of optical potential — V¥, in the
same leg of the interferometer. Was it ever lost in the
first place? The answer is that the coherence is only “ap-
parently” lost. Each wavelength component produces
two waves ¥; and ¥y, traversing the interferometer, which
are still perfectly coherent with each other. The coher-
ence properties of each wavelength component remain in-
tact, and each component is still related to all the other
components in a definite way. In this sense, the neutron
beam is still coherent, even after being dephased by the
sample.

But we do not detect only one wavelength component.
When we average our measurements over the spectral
distribution |a (k)|?, we find that the coherence proper-
ties of the various A components tend to cancel out when
a thick sample is used. The fringe visibility becomes
washed out in the overall beam, and is no longer macros-
copically observable. In a very real sense, the beam then
consists of a series of Fourier components, whose sum
adds up to give zero contrast. Yet the phase coherence is
still contained in the waves traversing the two legs of the
interferometer, and can be reconstructed once again by
the phase-echo effect.
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APPENDIX: MEASURING ATTENUATION
CORRECTION PARAMETERS

To correct for attenuation, we need to know the inten-
sity fractions (aj)cy c3 and (ay)cy c; of the beams on
path I and path II of the interferometer, for the C2 and
C3 exit beams separately. We also have to know how the
attenuation factor £(D) of the samples depends on the
sample thickness D. Knowing this, the attenuation
correction factors (f,)ca c3 can be calculated for the
two exit beams:

[fae(D) e, c3=e*Pl(ar) ey c3te " Pay )y 3] -

(A1)
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The intent of this appendix is to find a table of f,, values
for both the C2 and C3 exit beams, for the Bi and Ti
samples used in our experiment. The setup is identical to
that used in the experiment.

The first parameters to be measured were the intensity
fractions a; and a;;. The measurement technique was
rather simple. We first blocked beam II with a piece of
cadmium, and measured the intensity I, due to neutrons
path I alone, in both the C2 and C3 detectors. Then,
leaving beam II blocked the interferometer was rotated
off of its Bragg condition, so that no coherent beams were
entering the detectors, and measured the background rate
B,. We next returned the interferometer to the Bragg
condition, moved the cadmium piece so that it blocked
beam I instead, and measured the intensity I, due to the
neutrons on path II alone, in both the C2 and C3 detec-
tors. Finally, the interferometer was once more rotated
off of the Bragg condition, and the background rate B,
was measured with beam I still blocked. From these
data, we calculated a; and ay;.

Referring to the definitions of a; and ay; in Eq. (23),
the coherent beam intensities are related to our data by

_ 11 _31
(ap)ey,c3= I,—8B,+1,—38B, C2,C3 ’
(A2)
(ay)cr 3= . .
, I,—8B,+1,—38B, C2,C3

We measured the intensities I, and I, for ~190 sec, and
then repeated the measurement ten times. The back-
ground rates B, and B, were measured for the same
length of time, but only for six trials. From these data,
the intensity fractions a; and ay; were derived for both
beams, as shown in Table II.

The next experimental step was to measure the at-
tenuation factors { of the Ti and Bi samples. This was
done by measuring the beam attenuation due to the sam-
ples. To mimic the actual experimental conditions as
closely as possible, the transmission measurements were
done in beam II of the interferometer. The other beam
on leg I was blocked with a cadmium piece. This
prevented the two beams from interfering with each oth-
er, so that the intensity rate in the two detectors would be
constant, and not depend on any phase shift A¢. There
was a possibility that neutrons could be small-angle scat-
tered out of the beam, and yet still enter the C3 detector;
for that reason, preference was given to the data collected
in the C2 detector.

TABLE II. Measured intensity fractions a; and a;; in both
exit beams.

Detector ay ay
C2 0.758+0.005 0.242+0.002
C3 0.536+0.008 0.464+0.007
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The technique used to measure the attenuation due to
the samples is as follows. First, beam I was blocked with
cadmium, but beam II was left open, with no sample in it.
With this arrangement, we measured the sample-out in-
tensity I, for about 55 min. Next, the sample was
mounted in beam II, leaving beam I blocked, and the
sample-in intensity I;, was measured for the same length
of time. Afterwards, the interferometer was rotated off
its Bragg position, so that no beam diffracted onto path
II. The neutron background B was measured for the
same amount of time. Since there was no beam on path
II, the background was the same whether there was a
sample in place or not.

From these data, the transmission 7T of the beam
through the sample was calculated:

Iin —".B
=, (A3)
I —B
And from the transmission T we calculated the absorp-
tion factor § of the sample:

¢=—1mT. (A4)

TABLE III. Contrast attenuation correction factors f,, for
both C2 and C3 beams.

Sample D (mm) (fan )C2 (fatt )63
Bi
1 2.09 1.010 1.002
1 4.01 1.020 1.003
14 6.10 1.031 1.006
2 7.99 1.042 1.008
21 10.08 1.054 1.011
3 12.26 1.066 1.015
31 14.35 1.079 1.019
4 16.15 1.090 1.023
41 18.24 1.104 1.027
5 20.08 1.116 1.032
Ti
% 2.80 1.057 1.012
1 5.01 1.109 1.029
11 7.81 1.185 1.059
2 10.02 1.253 1.091
21 12.82 1.351 1.141
3 14.96 1.435 1.186
3% 17.76 1.557 1.257
4 20.01 1.667 1.322
4% 22.81 1.818 1.416
5 24.98 1.948 1.498
Bi+Ti
1 4.89 1.069 1.016
1 9.02 1.136 1.039
2 18.01 1.326 1.127
3 27.22 1.578 1.269
4 36.16 1.905 1.470
5 45.06 2.316 1.737
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Once again, there were actually two separate measure-
ments of § for each data run, one in the C2 beam, and the
other in the C3 beam. Such a transmission measurement
was carried out for all six Ti samples. The results were
plotted as a graph of § versus sample thickness D. Ac-
cording to Eq. (20), { should be a linear function of D.
We fit a straight line to the plot, including the point
(D =0,£=0), and used the slope of this line to calculate
the experimental values of the absorption factor & for
each sample. For the Ti samples, the result is
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$ri(D1;)=(3.57X10"2 mm~)Dy; . (A5)

The process was then repeated for the Bi samples. A
linear fit to the data points yields the result

Epi( Dpi)=(9.41X 1073 mm™")Dy; , (A6)

With the experimentally measured values of a;, ay,
and §, the contrast attenuation correction factors f,,
were calculated. The results are summarized in Table
I11.
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