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Information theory allows us to make quantitative statements about the strength and nature of the
correlations between systems. Application of this theory to the quantized electromagnetic field reveals a
special role for the two-mode squeezed states. The nonclassical properties of these states arise from the
intermode correlations, and we apply information-theoretic methods to determine the strength of the
correlation between specific pairs of observables. This analysis leads to the important genera/ result that
for any correlated pure state a given pair of single-system observables contains at most only half the in-

formation about the correlations. We discuss the implications of this result for the distinction between
classical and quantum systems.

I. INTRODUCTION

One of the philosophically most challenging features of
quantum theory has been to understand the nature and
implications of quantum correlations. The strength of
these correlations has led to a debate on the question of
completeness and whether quantum theory lacks a hid-
den element [1—3]. However, experiment has shown that
such a hidden element, if it exists, cannot be local [4]. It
has been suggested that this nonlocal property violates
causality and may be used for superluminal communica-
tion. There exists, however, a general proof that the act
of observation of one of a pair of correlated quantum sys-
tems can in no way affect the outcome of observations on
its partner [5].

Quantum correlations, as their name suggests, are re-
sponsible for a number of nonclassical effects. This ap-
parently straightforward statement is itself the source of
some difficulties associated with the description "nonclas-
sical. " At one level a nonclassical effect is one that does
not exist in conventional classical theory. Examples of
such nonclassical effects are found in the detection of
squeezed states of the electromagnetic field [6]. These
states have properties that are incompatible with the
description of light by the classical Maxwell field [7].
Another, and perhaps more fundamental, criterion for
nonclassical behavior is provided by correlated quantum
states whose properties are incompatible with the classi-
cal notion of local realism. It is consideration of states of
this type that has enforced the rejection of local realism
and revealed some of the most subtle features of quantum
theory [1-4]. Although these nonclassical features coexist
in a number of systems [8], they are by no means
equivalent. Both of these nonclassical types of behavior
will appear in this paper and we will be careful to distin-
guish between them.

Quantum correlations between two systems have been
characterized by the correlations between operators cor-

responding to observables associated with the individual
systems and also with the state describing the two sys-
tems. Operator correlations may be quantified by means
of the correlation coeflicient [9]. However, it is more
difticult to quantify the absolute strength of the correla-
tion associated with a quantum state. This problem may
be solved by appealing to information theory and defining
an index of correlation as the information content of the
correlation. This index of correlation has been applied to
the discussion of quantum correlations by a number of
authors [10—12]. We review the principal properties of
the index of correlation and its application to quantum-
optical correlations in Sec. II.

The index of correlation is an absolute, quantitative,
and observable-independent measure of the strength of
the correlations between two systems. It does not, how-
ever, tell us which observables we must measure in order
to retrieve this information. To answer this question we
introduce, in Sec. III, the Shannon index of correlation.
This quantity tells us how much of the information resid-
ing in the correlations is revealed by measuring a given
pair of observables. We derive the important result that,
for a pure state, no observation of a pair of single-system
observables can provide more than half the information
content of the correlations. We have previously
highlighted the fundamental significance of the two-mode
squeezed states as being the most strongly correlated
states of light [12]. In Sec. IV we apply the Shannon in-
dex of correlation to these states and find that the most
strongly correlated observables are the photon numbers
associated with the individual modes. The Shannon in-
dex also allows us to ascertain the information contained
in the correlations between the single-mode quadratures
and phases.

States that maximize the index of correlation (and are
therefore optimally correlated) are entangled pure states.
Entangled mixtures of states always have a lower index of
correlation. Both entanglement —that is, inability to fac-
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II. THE INDEX OF CORRELATION

Correlation is a fundamental property of a two-
component quantum system and is reflected in our abili-
ty, or inability, to factorize the complete density matrix.
The information content, Q, of a density matrix, p, is
defined through its entropy in the following way [13,14):

Q
—Smsx (2.1)

where S '" is the maximum possible entropy for the sys-
tem and S is the actual entropy. Entropy is defined in
quantum mechanics as a generalization of the classical
Boltzmann entropy [15]so that

S = —Trplnp . (2.2)

We have set Boltzmann's constant equal to unity here
and shall continue to do so throughout this paper. If the
system is in a pure state, the entropy (2.2) is precisely
zero and in this case we have as much information about
the system as quantum mechanics allows us. If the sys-
tem is in a mixed state, the entropy is positive and so
measures deviations from pure-state behavior. Further-
more, if p refers to an isolated system, as we have impli-
citly assumed above, then the entropy is time indepen-
dent, as the dynamics of p are governed by a unitary
transformation.

We shall, in this paper, restrict ourselves to a con-
sideration of correlated quantum systems where the
correlation exists between just two component systems.
We shall label these component systems by the suffixes a
and b. The overall state of the two-component system is
described by a density operator p and the states of the
component systems are described by the reduced density
operators P, and pb. The reduced density operators for
the a(b) systems are constructed from the full two-
component density operator p by tracing over one of the
component systems. Thus,

pa (b)
—

Trb (a)p (2.3)

The operation of tracing over one of the systems is
equivalent to neglecting all information about the joint
properties of the component systems. The information
content of each of the component systems is defined in an
analogous way to (2.1) but with the entropies being
formed through the reduced density operator so that the
entropy for the a system, for example, is given by

S, = —Tr,p, lnp, . (2.4)

It is the full density operator for the two-component sys-
tem, p, that contains the information about the joint
properties of the component systems.

torize the two-system density matrix —and the superposi-
tion principle for probability amplitudes contribute to the
strength of the quantum correlations. The significance of
the superposition principle in maximizing the index of
correlation leads us to speculate, in Sec. V, on the use of
information theory to distinguish between classical and
quantum correlations.

The index of correlation is defined as the information
content of the correlation between two systems. Formal-
ly, this is written as

(2.5)

where Q is the information content of the full density
operator and Q, ~&~ is the information content of the re-
duced density operator for the a(b) system. Failure to
measure joint properties of the two systems results in a
loss of this quantity of information. Noting that
S '"=S, '"+Sb '", we find that the index of correlation
I, takes the simple and appealing form

I, =S, +Sb —S . (2.6)

The index of correlation can be extended to quantum sys-
tems with any number of correlated components. If we
have N correlated components, then the index of correla-
tion for the X-component quantum system is given by
[11, 16]

N

I, = QSJ.—S. (2.7)

However, as we have previously mentioned, we shall re-
strict ourselves in this paper to consideration of quantum
systems with two components. Examples of such systems
in quantum optics are the two-mode squeezed state and
the Jaynes-Cummings model of optical resonance. In the
former the two component systems are the modes of the
electromagnetic field; in the latter the components are the
field mode and the two-level atom.

The entropies for the individual component systems
are no longer time independent, in general, as the dynarn-
ics of the reduced density operators are not governed by a
unitary transformation. In general, these entropies are
not monotonically increasing functions of time and can
even exhibit periodic behavior [17]. The failure of mono-
tonicity as a property of the reduced entropies is partially
compensated by the existence of a remarkable theorem
due to Araki and Lieb. This theorem states that for any
two-component quantum system the entropies are related
by the following triangle inequality [18]:

is. —s, i
~s&s. +s, . (2.8)

If the two-component system is in a pure state so that
S=0, then the a and the b systems have equal entropies.
An interesting example of the use of this relation occurs
if we consider a two-level atom interacting with a quan-
tized field mode in a perfect cavity. If the initial state of
the atom-field system is pure, then the field can be de-
scribed at all times by just two quantum states [17]. The
Araki-Lieb inequality (2.8) has important implications for
the index of correlation. It has been shown [10,12] that
the maximum correlation occurs when the two-
component system is in a pure state. This is a necessary
but not sufficient condition to obtain the maximal corre-
lation. Recalling the fact that for a pure state we have
S, =S& =S, it can then be shown [10,12] that the max-
imum value that the index of correlation can take is just
I, "=2S. The actual value of the index of correlation
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where Z(/3) is the partition function, H is the system
Hamiltonian, and P is the inverse temperature. The max-
imally correlated state of two similar quantum systems
will be a pure state in which each of the component sys-
tems are thermal in character. Such states are well
known in quantum-statistical mechanics as thermofields
[19, 20].

III. THE SHANNON INDEX OF CORRELATION

The index of correlation is an absolute measure of the
strength of correlation between two quantum systems.
As we have seen, this index can enable us to determine
the optimally correlated quantum state of the two sys-
tems. However, from an experimental point of view one
would be entitled to ask which observables need to be
measured to access this information. In other words, we
need to determine in exactly which observables this infor-
rnation resides. With this purpose in mind, we introduce
a "Shannon" index of correlation which is a direct mea-
sure of the information content of the correlation be-
tween specific pairs of observables. The use of "Shan-
non" in this context is for two reasons: Firstly, it serves
to distinguish the observable-dependent index from the
observable-independent index, and secondly, this nomen-
clature has also been applied previously in the study of
fluctuations in quantum optics [17]. If M and 8' denote
two quantum operators representing properties of the a
and b systems, respectively, then the Shannon index of
correlation between them will be denoted by I, (M, N).
Failure to measure these observables jointly will result in
a loss of this quantity of information.

We shall, as before, consider two quantum systems
which we label with the suffices a and b. The information
content of an observable M of the a system, when con-
sidered independently of the b system, is given by

g, (M }=S '"(4)+ g & pip, Ip &ln& pip, Ip &, (3.1)

where
l p, ) is an eigenstate of M and S '"(M ) is the max-

depends on the nature of the subsystems in question. For
example, if the two systems have different numbers of
states, the maximal correlation occurs when the total sys-
tem is in a pure state and the system with the smaller
number of states has maximum entropy. For the
remainder of this paper we shall concern ourselves with
pairs of similar systems —that is, systems with equal
numbers of states. It is not difficult to extend our results
to the former case where the systems have unequal num-
bers of states.

The optimally correlated state of a two-component
quantum system is a pure state in which the entropy of
one of the component systems has been maximized. This
maximization procedure is often subject to physical con-
straints. Indeed, for unbounded systems the entropy
must be constrained by the specification of a mean ener-
gy. The state with maximum entropy, but finite mean en-
ergy, exhibits thermal Auctuations and is described by a
density operator of the general form

(2.9)

imum entropy associated with the observable. The joint
Shannon entropy for two observables M and 8' which act
in the a and b systems, respectively, is formed in a similar
fashion from the diagonal elements of p, the full two-
system density operator, in the eigenbasis of the two ob-
servables. Thus we have

S(M, N) = —g g p„„ lnp„„,
p v

(3.2)

where p„~, = (p, l (vlplv) lp) and lv) is an eigenstate of
Using the notation that S,~b~(f, ~b~) is the entropy of

the observable T, ~b~ in the a(b) system alone and that
S(Q,A') is the joint entropy defined in (3.2), we can
define a Shannon index of correlation between the observ-
ables M and 1V as

I,(M, g)=S, (M)+S (8) S(M,—k) . (3.3)

This expression now gives the information content of the
correlation between the specific observables 4 and k

Let us suppose that each of these quantum systems is
described by a single quantum number. These systems
could be, for example, two modes of the electromagnetic
field. The state of the two systems is described by a den-
sity operator with four summation indices. If we only re-
quire the diagonal elements of this density operator, this
description simplifies considerably. Denoting the diago-
nal part of the density operator in the observable bases

l p ) and
l
v ) by pd;, s, we obtain for the diagonal part an

expression of the form

pd...= r, r P„.lp v&&p vl . (3.4)

Rernernbering the fact that P„P„with the equality
holding only for perfect correlation, we find that the
difference between the joint entropy of the two observ-
ables and the entropy of the observable M obeys the rela-
tion

S ( M, A' ) —S, ( M ) = —g g I'„ ln ~ 0 .
p v P

(3.6)

Thus we arrive at the modified Araki-Lieb inequality for
quantum observables, which states that

max(S, (M), Sb(N)} ~S(M, N) ~S,(M)+Sb(N) .

(3.7)

This inequality tells us that the observables considered
jointly must be at least as disordered as either of the ob-
servables alone. If we label the entropies in (3.7) such
that S, Sb, we find that the Shannon index of correla-
tion is bounded by I (M, N)~Sb(N). The maximum
possible value for I,(M, N) is just Sb(N) and the max-
imum value that this can take is just S,(M ). Optimally
correlated observables must have equal disorder in the in-
dividual observables. The above discussion can readily be

The diagonal part of the reduced density operator for the
a system is given by the expression

(3.5)
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extended to include systems described by more than one
quantum number.

The Shannon index possesses two important properties
(the proofs of these properties are given in Appendices A
and 8). The first of these properties is the physically
reasonable result that for any given pair of observables
the Shannon index is less than or equal to the full index.
Formally, we have

I, (M, A)~I,'. (3.8)

I, (M, R) &
—,'I, (pure) . (3.9)

This is an important and fundamental result. For pure
states of the two-component system any measurement on
a single pair of correlated observables can, at most, give
precisely half the information content about the correla-
tion between the states. This result implies that to test
whether a state is optimally correlated, at least three ob-
servables must be measured, rather than just the two
necessary to give the maximum Shannon index. Any pair
of observables which saturate inequality (3.9) are the
maximally correlated observables for that state. Further-
more, no other pair of observables will saturate this in-
equality so that there is a unique pair of observables
which are maximally correlated. This follows from the
result (proved in Appendix 8) that any pure-state wave
function of two systems may be written in the form

(3.10)

where p„) and ~v„) are observable bases. For any pure
state of a two-component system, one can always find a
pair of observables which are maximally correlated (this
includes the null result where only one of the c„ is
nonzero). This result can be stated in another way (see
Appendix 8): Given a two-component pure state in
which one reduced density operator is diagonal in some
observable, the procedure of finding the basis in which
the other reduced density operator is diagonal also gives
the perfectly correlated observables of the two systems.
This is an important result about correlated quantum sys-
tems.

One can also consider the Shannon index as a parame-
ter which simply characterizes the independence of two
probability distributions. The modified Araki-Lieb in-
equality (3.7) therefore holds for any two well-behaved
probability distributions. Physically, this inequality
states tha'. the uncertainty of a joint distribution must be

This expresses the fact that the information contained in
the correlation between any two observables cannot
exceed the total information content of the correlation
between the systems. En other words, a measurement of
any given pair of observables will not yield more informa-
tion than is contained within the two-system state itself.
The second, more interesting property, is perhaps not so
obvious. In Appendix 8 we prove the result that for a
pure state of the two-component system the Shannon in-
dex of correlation for a given pair of observables is less
than or equal to half the index of correlation for the state.
Formally, this relation is written as

at least equal to the uncertainty of either of the corn-
ponent systems considered independently. It is then
tempting to enlarge upon (3.7) to include classical distri-
butions on phase space. This is fraught with difticulty
but an insight into the distinction between classical and
quantum correlations can be gained from the Shannon in-
dex applied to classical and quantum statistical-
mechanical problems. We brieAy remark here that at the
level of a single pair of observables for a correlated sys-
tem, there can be no evidence for the quantum nature of
the correlation. Thus, all correlations between a given
pair of observables can be expressed purely in terms of
probability distributions in much the same way as we
could describe a classical ensemble. The expressions (3.8)
and (3.9) show that to access the region where quantum
correlations are manifest, there are two requirements.
Firstly, we must measure more than a single pair of ob-
servables and, secondly, we must ensure that the quan-
tum state of the two systems is such that the associated
index of correlation is more than half of the maximum
possible index for the two systems. We shall speculate
further on such issues in Sec. V.

In Sec. IV we shall consider a physical example of a
correlated quantum system. The example we shall con-
sider is the two-mode squeezed vacuum state of the elec-
tromagnetic field [21]. The correlations between the
modes are directly responsible for many of the nonclassi-
cal features observed in these states [22,23]. The
information-theoretic bounds on the correlations that we
have derived above and elsewhere [12] reveal new and
fundamental insights into the nature of the two-mode
squeezed state.

IV. CORRELATIONS AND TWO-MODE SQUEEZING

The two-mode squeezed state belongs to a special class
of minimum uncertainty states for which the quantum
noise is unevenly distributed between the field quadra-
tures [21]. These states have many unusual properties [6]
and potential applications in low-noise communications
[24]. One of the most fascinating features of the two-
mode squeezed state is the strong correlation that devel-
ops between the modes. These correlations have been
used to demonstrate that "error-free" communication is
possible in the presence of noise [25]. Furthermore, it
has been demonstrated, both theoretically [8,26] and ex-
perimentally [23,27] that these correlations violate classi-
cal bounds and are thus quantum mechanical in origin.
Many important experiments and concepts dealing with
the correlation in two-mode squeezed states have recently
been reviewed [28]. The effect of measurement on the
correlation between the modes has also been investigated
[29]. In most of what follows we shall be exclusively con-
cerned with the two-mode squeezed vacuum state which,
for simplicity, we shall refer to as a "squeezed state. " In
cases where confusion may arise, however, we refer to the
full description.

The two-mode squeezed vacuum state can be expanded
in a number state basis as

~r, P) =(coshr) ' g (tanhr)"e'"~~n ), ~n )i, , (4.1)
n=0
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g (MN) —(M)(N)
[((M 2) (M )2)((N 2) (N )2)]1/2

AM62V
(4.2)

The variance in the sum and difterence operators is given
by

6 (M+N)+b, M+6 ¹2bMENg(M, N), (4.3)

so that if the fluctuations in M+N are reduced by the
correlation, the Auctuations in M —N are enhanced. This
leads to a sort of uncertainty relation between these vari-
ances [30]. Let us now consider the case of two field
modes, again labeled by the suffices a and b. The X quad-
rature operators for the modes are defined by

X =
—,'(a, +a t), (4.4)

where j =a, b and & is the annihilation operator for
mode j. These quadratures are unsqueezed and in fact
display thermal characteristics [31,30]. The joint-mode
quadrature operators defined by

X —=X,+Xb (4.5)

where a and b refer to the two field modes. It is easy to
see from this expression that the photon number in each
mode is perfectly correlated with the photon number in
the other mode. It is not entirely obvious, however, that
the correlation between the modes is responsible for the
squeezing properties. We note here that squeezing is a
"nonclassical" property in that such a property is incom-
patible with the description of light by a classical
Maxwell field [7]. The strong intermode correlations also
give rise to properties which are incompatible with the
notion of local realism [8,23]. Thus, both types of non-
classical behavior mentioned in the Introduction coexist
in squeezed states and are both caused by the strong
correlation between the modes. However, the existence
of one of these quantum features does not guarantee the
presence of the other. We shall delay any consideration
of the violation of classical local realism by squeezed
states until Sec. V where we shall speculate on the use of
information theory to distinguish between classical and
quantum correlations.

As we have mentioned above, it is the strong correla-
tion between the modes in a two-mode squeezed state
which is directly responsible for the squeezing properties.
In order to show this, we shall follow an earlier analysis
[30], although with the slight modification that our
present discussion is recast in terms of the correlation
coefficient. Let us consider two general quantum sys-
tems, labeled as above by the suffices a and b, and let M
and N be operators in the a and b systems, respectively.
The correlation coefficient, which provides a variance-
based measure of the degree of correlation between these
operators is defined in terms of the covariance

b(M, N) = (MN ) —(M ) (N )

and the variances (denoted by b, M = (M ) = (M ), for
example) and is given by

can be squeezed, however, if the quadrature correlation
coefficient satisfies the following relationship:

I+((X'„X'i, ) & (2n+ 1) (4.6)

where n is the mean number of photons in each mode.
The correlation coefficient is given by

where the state
~
n ) is the "real"-space energy eigenstate

with energy E„. If we label the "fictitious" system by a
tilde, then the thermofield vacuum state which repro-
duces the above expectation value can in general be writ-
ten as

~0(P)) =Z ' (P) g exp(iP„,'PE„)~n, n ) . ——(4.8)

systems. For the squeezed state (4.1) the phase is given
by the relation P„=nP. The index of correlation between
the real and fictitious systems is given by the expression
[12]

I, =2[P(H ) +lnZ(P)] .

This index of correlation is the general expression for any
pure state of two quantum systems which can be de-
scribed by a state of the form (4.8). Consequently, within
the thermofield formalism it is possible to construct an

g(X„Xb ) = —tanh2r cosP

so that for /=0 and in the limit of large squeezing the
single-mode X quadratures become perfectly anticorrelat-
ed. Expressing n in terms of the squeezing parameter r,
we find, as expected, that for /=0 the inequality is al-
ways satisfied for the squeezed state (4.1). We have there-
fore shown that the squeezing properties of this state are
manifest in operators which act in both mode spaces and
that it is the correlation between the modes which is
directly responsible for these properties.

As we have mentioned above, the most correlated state
of two similar quantum systems is a pure state in which
each of the component systems is thermal in character.
Such states are known as thermofield states [19] and
represent the most correlated state possible for two sys-
tems subject to a mean energy constraint [12]. The two-
mode squeezed state is an example of a bosonic
thermofield state [20]. The main utility of the
thermofield formalism is that it provides a way of
describing thermal ensemble averages as pure-state ex-
pectations. This is achieved through the introduction of
an identical "fictitious" system which is correlated with
the thermal system of interest, or the "real" system.
Thus, for many calculations the thermofield formalism is
purely a calculational technique and the fictitious system
has no physical significance. For the two-mode squeezed
state, however, both the real and the fictitious systems are
in fact physical field modes.

The pure thermofield vacuum state, denoted by ~0(P) ),
is constructed so that the expectation value of any opera-
tor 3 on the real system alone reproduces the thermal
ensemble average so that

(0(P)~ 3 ~0(P)) =Z '(P) g (n(A (n )e ", (4.7)
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unlimited number of two-mode states which are maximal-
ly correlated in that they maximize the index of correla-
tion. However, the mere ability to construct such states
does not guarantee their physical relevance or the proper-
ty of squeezing. We shall therefore limit our attention to
the specific thermofield state which generates the two-
mode squeezed vacuum state. We show in Appendix C
that if, in addition, to the mean energy constraint we im-
pose a mean amplitude constraint, then the displaced
two-mode squeezed state is the most strongly correlated
state of the two field modes.

The index of correlation for the squeezed state (4.1) is
given by the expression [12]

I, =2[cosh r)ln(cosh r)=(sinh r)ln(sinh r)] . (4.9)

I, (N„Nb ) = —g cosh r
tanh "r

ln
cosh2r

(4.11)

The photon numbers are perfectly correlated and, as
such, carry precisely half the information about the
correlation between the modes. As we have previously
shown [12], the two-mode squeezed state is an optimally
correlated state of the two field modes and the above re-
sult for the photon-number correlation gives an explicit
example of the general relation (3.8). The photon num-
bers are the optimally correlated observables for the
squeezed state (4.1). Other observables will also be corre-
lated, but no other pair of observables will be as strongly
correlated as the photon numbers for the modes. This is
reAected in the variance of the photon-number difference
between the modes which is given by [30]

The information is contained in the photon-number
correlations and in phase-dependent correlations of, for
example, the field quadratures. The simplest way to ob-
tain the number correlation between the modes is to aver-
age the density operator over the squeezing angle P. This
is the approach previously used [12]. However, we shall,
by way of example, calculate the Shannon index of corre-
lation in the manner prescribed in Sec. III. The number-
state matrix elements of the squeezed-state density opera-
tor are, from (4.1), given by

b&nl &n' p n') ln)b=(coshr) tanh "r5„„
(4.10)

, & n lp, ln ), =& & n lpga ln )b =(coshr) tanh "r .

If we denote the photon-number operator for a field mode
by X, then the Shannon index of correlation for the pho-
ton number is, from (3.1)—(3.3), given by

reflects the strong phase correlation between the modes.
To determine this phase correlation, we require the ele-
ments of the relevant density operators in the phase basis.

The properties of the Hermitian optical phase operator
have been described in detail elsewhere [33]. The opera-
tor exists in an (s +1)-dimensional state space 'P spanned
either by (s + 1) number states,

l
n ), or (s + 1) orthonor-

mal phase states. The phase states can be expanded in
terms of the number states as

S

l9 ) =(s+1) '~ g exp(in9 )ln )
n=0

(m =0, 1,2, . . . , s) . (4.13)

The (s + 1) phase values 9 are equally spaced and lie in
the range [90,90+2vr). Thus, we have

g g + 2
(s+1) (4.14)

.&9. lp. l9. &. =,&9 lp, l9. ),=
(4.15)

[(s + 1)coshr ]
1+tanh r —2tanhr cos(P —9 —9 )

To avoid confusion with the squeezing angle P, we denote
the phase operator by 4 [34] so that the Shannon entro-
pies in phase for the individual modes become

S,(4, ) =S„(kb ) =ln(s +1) . (4.16)

This is the maximum possible phase entropy and results
from a completely random phase distribution. This is
consistent with the fact that each of the modes are
thermal in character and individually possess no phase
information. The calculation of the joint phase entropy is
more dificult. However, if we take the continuum limit
so that 0 and 0 become continuous variables and we
use the integral relationships [35]

J d9 1 =2' Cosh 7

1+tanh r —2 tanhr cos( A —9)

The value of 00 is arbitrary, although care must be taken
in the choice of this quantity in order to avoid spurious
"window" effects [33]. We emphasize that the limit
s~ oo is taken only after c numbers, such as expectation
values, have been calculated. Physical results are ob-
tained in this limit.

The matrix elements required for a calculation of the
Shannon index for the phase are given, in the limit of
large s, by

6 (N, N„)=0 . — (4. 12) (4.17)

This result is a nonclassical prediction in the sense that it
cannot be reproduced by classical Maxwell theory. If we
consider two phase-locked coherent states, the Auctua-
tion in the photon-number difference is Poissonian. It
has been recently shown that the sum of the phases of the
two field modes in a two-mode squeezed vacuum state
locks to the phase of the squeezing parameter [32]. This

then the joint phase entropy becomes

S(C&„C&„)=21n(s + 1)—ln(cosh r ) . (4.18)

ln[1+tanh r —2 tanhr cos( A —9) ]dO
1+tanh r —2tanhr cos(A —9)

= —4~cosh r ln(cosh r),
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The Shannon index of correlation for the mode phases
then becomes

I, ( C&„4 b) =1n( c os h r ) . (4.19)

The density-of-states function cancels in the Shannon in-
dex but not in the individual entropies. This is a particu-
larly nice feature of this measure of correlation.

We note that

I, (P„Pb ) )I, (C&„C&b )

so that the photon-number operators are more strongly
correlated than the phase operators for the modes. This
is expected and arises because a measurement of X, im-
mediately and precisely predicts the result of a measure-
ment of Xb. The difference between these Shannon in-
dices is given by

Instead of summations we now have integrals over the
continuous variables X, and Xb. As before, we shall find
that any density-of-states factors cancel in the index of
correlation. The entropies for the single-mode quadra-
tures are easily calculated to be

S,(X, ) =Sq (Xq ) = —,
' [ln(~ cosh2r ) + 1] (4.26)

culated in a straightforward way from the diagonal ele-
ments of p in the X quadrature basis. For the state (4.1)
with P =0, these diagonal elements are given by

&x.,x, ~p~x. ,x, )

' exp[cosh2r(x, +X& )+2 sinh2rx, xb ] .

(4.25)

I,(N„Nb ) I,(4„—4& ) =sinh r ln(coth r ) (4.20)
and a slightly more involved calculation gives the joint
entropy for the single-mode quadratures as

and in the limit r ~ ~ this difference tends to unity. This
reAects the fact that in this limit the two phases become
strongly locked [32]. The large r forms of these Shannon
indices are given by

S(X„Xb)=in(~)+1 . (4.27)

The Shannon index for the X quadratures then becomes

I,(N„Xb ) =I,(4, , 4b ) =2r, (4.21) I,(X„Xb) =ln(cosh2r) (4.28)

so that while the two indices have the same limiting form
for large r, the difference between them tends to unity.

We have seen that the photon numbers between the
modes are perfectly correlated and that the phase correla-
tion between the modes is essentially perfect at large r. It
is important to determine the correlation between the
phase of one mode and the photon number of the other.
The required single-mode matrix elements are given
above but the joint entropy requires the matrix element
of the full two-mode density operator and is given by

2

(4.22)

The joint entropy for the number and phase is therefore
given by

S(X„4b) =S,(X, )+Sb(C&q ) . (4.23)

(4.24)

This result is easily understood: Measuring the number
(phase) of one mode yields precisely zero information
about the phase (number) of the other mode. For exam-
ple, if mode a is found to have n photons, then mode b is
in a number state with n photons —that is, a state of ran-
dom phase. It can be shown that 2%and N are uncorrelat-
ed directly from the density operator. We have the fac-
torization property

, (n[ (8 ~p~e )„[n),=P, (n)P (8 )

so that the photon-number statistics for one mode are in-
dependent of the phase statistics for the other.

The Shannon index for the quadratures can also be cal-

The Shannon index of correlation is, therefore, zero—
that is,

and in the large-r limit this has the value 2r. The above
Shannon index does not depend on whether we measure
the squeezed or unsqueezed quadrature; the Y quadra-
tures are as strongly correlated as the X quadratures.
Furthermore, a similar calculation shows that

I, (X„E'b ) =I, ( f;,Xb ) =0 . (4.29)

The quadratures are therefore not cross correlated. The
quadrature correlation is stronger than the phase correla-
tion between the modes and we find that

I, (1V„iV'b ) = ,' I, )I, (X„X'b—))I,(4„4b ) . (4.30)

In the limit of large squeezing the difference between the
Shannon indices of the above correlated observables be-
comes negligible and the number, phase, and quadrature
correlations become equally strong.

The two-mode squeezed vacuum state is an important
state of the two-mode field. Subject to a mean energy
constraint, there are no other quantum states of the two-
mode system which yield a stronger correlation. This
places the two-mode squeezed state in a very special posi-
tion in quantum optics. We shall speculate in Sec. V that
the two-mode squeezed state belongs to a special class of
two-system states which, to some extent, display maximal
violations of local realism. Setting speculation aside, we
have shown that the two-mode squeezed state is a maxi-
mally correlated quantum state (subject to the energy
constraint) and that the photon-number operators for the
modes form the most correlated observables. We have
also explicitly calculated the correlations between the
mode phases and between the mode quadratures. We
find, as expected, that these observables are not as strong-
ly correlated as the photon numbers.
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V. DISCUSSIQN

cl I, I,"
s " s '"+s '"

a b

(5.1)

We have used the notation that superscript max refers to

In the preceding sections we have developed an
information-theoretic approach to correlated quantum
systems. We have applied this to correlations of quantum
states and to correlations of specific observables.
Throughout, we have purposely restricted our treatment
to quantum systems comprised of two-component sys-
tems. It is apparent that the index of correlation allows
us to determine some fundamental and general relations
between the correlations of observables and the correla-
tion of states. One of the most philosophically challeng-
ing features of correlated quantum systems is their ap-
parent violation of local realism. For such correlated sys-
tems, observation of one component system appears to
cause an instantaneous response in its partner. These
correlations are not fully characterized by sets of obser-
vation probabilities between pairs of observables [36]. In
this section we suggest that quantum mechanics enables
systems to be twice as strongly correlated as classical
physics would allow and that the source of this excess
correlation is the superposition principle for probability
amplitudes. The index of correlation allows us to specu-
late on the boundary between quantum and classical
correlations, but the bounds derived therefrom are not as
strong as those of the Bell inequalities. We should re-
mark here that an information-theoretic treatment of the
Bell inequalities has been derived [37].

In order to discuss the distinction between classical
and quantum correlations, it is important to have a mea-
sure of .correlation between two classical systems. By
"classical" physics we mean, in this context, a local real-
istic theory that is complete without recourse to hidden
variables. Classical ensembles are defined in terms of dis-
tributions on phase space and an entropy can be associat-
ed with such distributions. We note, however, that there
can be considerable difficulties in defining entropies of
continuous variables in classical mechanics and some of
these are addressed in the review by Wehrl [38]. guided
by the fact that, for both continuous and discrete vari-
ables in quantum mechanics, the density-of-states factors
cancel in the index of correlation, we shall assume a simi-
lar property in a classical description. With these re-
marks in mind, we are in a position to describe a "classi-
cal' index of correlation I,", which gives the information
content of the correlation between two classical systems.
This index is given by Eq. (2.6) where the entropies are
now defined through classical distributions on phase
space.

In order to compare classical and quantum regimes, we
must first introduce a figure of merit for characterizing
the strength of correlation in both classical and quantum
systems. We define the quantum and classical figures of
merit, respectively, by

I, I,
qu s-- 5-+s- '

a b

the maximum entropy of the system subject to any physi-
cal constraints. S " is therefore the maximum possible
entropy of the two-component system subject to any
physical constraints. The tilde is used to remind us that
we are dealing with a classically derived entropy and the
comments of the previous paragraphs apply. This figure
of merit suffers from the potentially serious problem that
any density-of-states factors will no longer cancel as they
did for the index of correlation. This should be borne in
mind in the following discussion, especially where one
may be faced with classical entropies of continuous vari-
ables. We remark that this problem does not occur in the
quantum-mechanical definition of entropy so that the
figure of merit defined above is a sensible measure and
any general conclusions we may come to concerning
correlated quantum systems will be valid.

The figures of merit g are bounded in the quantum and
classical cases by

cl( i
2

(5.2)

The crucial difference here is that while a classically
correlated system, defined in terms of probability distri-
butions, must display a disorder at least equal to either of
its components, a quantum system can have a zero total
entropy. It is the superposition principle for probability
amplitudes that allows us to make this distinction in
quantum mechanics. The measurement of an observable
of an ensemble of identically prepared systems will, in
general, lead to a spread of different results. In classical
physics the entropy of the system will be greater than or
equal to the entropy associated with this distribution of
results. However, a quantum system may be in a pure-
state superposition of the eigenstates of the measured ob-
servable. The entropy of the ensemble is zero but mea-
surement of the chosen observable produces a distribu-
tion of different results. Once again, we emphasize that it
is the appearance of probability amplitudes in quantum
mechanics which implies that quantum-mechanical sys-
tems obey the quantum Araki-Lieb inequality (2.8) rather
than the "classical" Araki-Lieb inequality (3.7). This
leads us to the speculative conclusion that quantum
mechanics allows systems to be twice as strongly correlat-
ed as classical mechanics.

Unfortunately, this information-theoretic distinction,
while providing valuable insights, is of little immediate
use in assessing the possible violation of local realism. It
is clear from the above inequalities (5.2) that conventional
classical mechanics cannot access the region —,

' &g~ 1

which is precisely the region in which we expect to find
violations of Bell s inequalities. However, the strength of
correlation can be enhanced in classical mechanics at the
expense of the introduction of hidden variables. In order,
then, to determine the index of correlation and the figure
of merit for the system, we would need to include this ex-
tra information associated with the hidden variables.
Naturally, we could not obtain this additional informa-
tion by direct observation of the systems. Thus the
quantum-classical bounds we have described above are of
little operational use in distinguishing between quantum



INFORMATION THEORY, SQUEEZING, AND QUANTUM. . . 543

mechanics and a local hidden-variable version of classical
mechanics. In other words, any experiment we might
consider to test local realism cannot access the informa-
tion about the correlation associated with the hidden
variables; the only information about correlations accessi-
ble to experiment is that contained within the real, physi-
cal variables. It is therefore possible to construct a
hidden-variable theory for a correlated system which wi11,
experimentally, yield the same index of correlation as
that of the quantized system [16]. For this reason the
above quantum-classical bound is not as strong as those
of the Bell inequalities, or indeed the information-
theoretical bounds derived by Braunstein and Caves [37].
However, the bounds we have suggested give a clear in-
sight into the origin of the distinction between conven-
tional classical mechanics and quantum mechanics. It is
precisely the extra information inherent in the superposi-
tion of probability amplitudes in quantum mechanics
which allows a quantum ensemble to have zero entropy.

An optimally correlated quantum system must be in a
pure state, but measurement of a specific pair of individu-
al system observables cannot reveal the existence of the
pure state. This means that measurement of one property
of each of a correlated pair of systems will not distinguish
between the classical and quantum regimes. It is only by
also measuring other noncommuting observables that the
quantum nature of the correlation can be established. As
we have remarked above, one can supplement classical
physics with hidden variables which may then admit the
existence of correlations in the nonclassical regime. Tests
to distinguish between quantum mechanics and rival clas-
sical theories must therefore probe the region —,

' &g ~ 1.
In order to test quantum mechanics in this regime, we
need to measure more than a single pair of observables.
An example of such a test is provided by the Bell inequal-
ities which distinguish between quantum mechanics and
local hidden-variable theories by considering more than
one observable for at least one of the correlated systems
[3]. The index of correlation has highlighted the fact that
it is the pure-state entanglement of probability ampli-
tudes, for which there is no classical analog, which ad-
mits this extra correlation in quantum mechanics.

Let us now consider the quantum figure of merit for
correlated systems, leaving aside the question of any clas-
sical or quantum bounds. As we have already indicated,
the quantum definitions of entropy do not suffer from the
limitations of classical entropies. The quantum figure of
merit for the correlation between two systems is, there-
fore, a general parameter for quantum-mechanical corre-
lations irrespective of its comparison with any classical
measures. A correlated quantum system prepared in a
state which saturates the inequality (5.2) so that g= 1 be-
longs to a special class of quantum states: these states are
the maximally correlated states that quantum mechanics
will allow. In other words, given a state of general two-
component system with g=1, we cannot find another
state of any two quantum systems which is more strongly
correlated. The two-mode squeezed state (4.1) saturates
this inequality so that iI(squeezed)= l. This places the
squeezed states among a very special class of two-
component quantum states.
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APPENDIX A

In this appendix we prove the inequality

I, ~I, (A,B) . (A 1)

The proof of this relation depends on three theorems:
(1) The first theorem is a property of the relative entro-

py which we quote without proof. The theorem is con-
tained in the review article by Wehrl, 38]. This theorem
states that for density operators p and o. in a product
space H, H2, the relative entropy satisfies the relation

S(~ p) S(uilpi)

where we have written

(A2)

p'= ggp „lm, m &&n, nl, (A3)

then the reduced density operator in the space H& is the
diagonal in the lm ) basis. This is trivial to prove from
(A3).

Let us now consider a Hilbert space H, Hb with a
state on this space described by a density operator p. Let
us also construct a density operator cr from the reduced
density operators so that o =p, (3)pb. The relative entro-

py S(cr lp) is then identically equal to the index of corre-
lation. We now write the density operators p and o. in a
particular basis so that, for example,

(A4)

Now we double the basis so that the new density opera-
tors are in the space H, H, Hb Hb. We have the new
density operator p' in this space given by

P g g X gpw, ~', a, a'l ~~ ~ &

S(o.lp) =Trp(lnp —incr )

and the subscript 1 implies that a trace has been taken
over the Hilbert space H2.

(2) The second theorem states that if the Hilbert space
H, is doubled to make H&H, and the density matrix
elements p „are replaced with p „so that
l
m )~ l m, m ), then the entropy remains unchanged.

This follows quite simply from the fact that making the
transformation from the single space to the doubled
space in the way prescribed leaves the density matrix ele-
ments unchanged. Thus, p(Hi ) and p(Hig Hi ) have the
same eigenvalue spectrum [39].

(3) The third theorem simply states that given a density
matrix in the double space, that is,
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Now we have from theorem (2) above that S(p)=S(p')
and from theorem (3) we have S(p') =S(A, B ). Similar
results hold for o.. Tracing over the tilde bases, we find
that

Tr,p'=p( A, B),
Tr, a' =p. ( A )epb(B ),

(A6)

and we have used the notation that subscript t refers to
the tilde system and that p( A, B ) is the density operator
expressed in the basis defined by these operators. We
then find the relation, from theorem (1), that

$(alp) ~$(p. (A )pb(B) p(A, B)) (A7)

which is equivalent to the inequality (Al). The theorem
is thus proven.

APPENDIX 8

Ig&= &~„lp,„)e l~„) . (B1)

This tells us that for any pure state of a two-component
system one can always find a pair of observables which
are maximally correlated.

Consider the general expression for a pure state of two
quantum systems:

I q ) = y y c,, I p, &. In, & „, (B2)

where we assume that the above expansion is in an ob-
servable basis derived from Hermitian operators so that
iM ~p; ) =p; p; ) and Q~ Aj ) =0, ~Qj ) with these states be-
ing orthonormal. Let us now define new, normalized
states in the b system by

(83)

In this appendix we prove the result that measurement
of a single pair of correlated observables, for a pure state
of a two-component system, can, at most, give only half
the information about the correlation between the states.
In order to prove this, we first need to prove the result
that any two-component pure state may be written in the
form

i j k

(B6)

so that if we now assume that the pk ) form the basis in
which p, is diagonal, then Eq. (B5) must be satisfied.
Thus the observables represented by the operators p, and
v are the maximally correlated observables for the two-
component system. The reduced density operators are
diagonal in the bases of these observables. The assertion
of Eq. (Bl) is now proven.

Let us now consider two quantum systems labeled by
the suffixes a and b. Using the property that the Shannon
entropy for an observable in one of these systems is
greater than or equal to the total entropy, we find that
the Shannon index of correlation obeys the inequality

I,(A,B)~S,+Sb —S(A,B), (B7)

APPENDIX C

In order to determine the most strongly correlated
state of the two-mode field subject to both a mean energy
and a mean amplitude constraint, we must maximize the
single-mode entropy subject to the following constraints:

Tr(p) =1,
Tr(a ap) =n,
Tr(ap) =a,

(C 1)

where n =n, h + a
~

and n,„ is the number of thermal
photons. Using the method of Lagrange multipliers, we
find the variational equation

where 2 and 8 represent observables in the a and b sys-
tems, respectively. Using the modified Araki-Lieb in-
equality (3.7), we find that the maximum Shannon index
is just given by

I, '"(A,B)=S,(A )=Sb(B)=S(A,B),
so that the left-hand side of inequality (B7) can be re-
placed by I, '"(A,B) and is saturated precisely when

S, =S, ( A ) and Sb =Sb(B ). However, we see from (B1)
that this occurs when 3 and B determine the bases in
which p, and p& are diagonal. This is sufficient to deter-
mine that the maximal Shannon entropy for these observ-
ables is precisely half that of the index of correlation for
the pure state. The inequality (3.9) is therefore proven.

In general, the
~ v; ) b do not describe an orthogonal basis

and are thus not eigenstates of an observable. The over-
lap between these states is given by

(B4)

I+Inp+A, +P a a+ —8 + a =0, (C2)

where the constants A, , P, and y are to be determined.
This condition can also be written as

These states are only orthonormal if the coefficients satis-
fy the relation

g Ckjcij ~ik ~i
J

The reduced density operator for the a system is given by
the expression

I+ lnp+ A, '+P A A =0,
where

A =D —aD

(C3)

(C4)
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and D is the Glauber displacement operator [40]. The
new condition (C3) is precisely the equation we would ob-
tain if we were required to maximize the entropy of a
density operator p subject to the constraints

Tr(p) = 1,
Tr(A Ap)=n, h .

(C5)

e
—PA

Tr[exp( —PA A )]
(C6)

The constraint on the average photon number in (C5) is
chosen to be consistent with the earlier constraints (Cl).
The solution of this is just the Boltzmann distribution
given by

0=D —
p~hD (C7)

and we have written the thermal density operator as p,h.
Two-mode states such that each of the single modes are
described by density operators of the form (C7) are
coherent thermofield states [41] and are formally identi-
cal to the displaced two-mode squeezed vacuum state.
The most correlated two-mode state subject to a mean en-
ergy and amplitude constraint is the displaced two-mode
squeezed vacuum state.

As the trace of an operator is invariant under a unitary
transformation, we find that the density operator p is
given by
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