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Comparison of second-order impact line shifts
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The second-order impact shifts in hydrogen obtained from the Baranger formalism are compared with
those from a kinetic theory approach. The resulting An =0 contributions to the shift from the two
theories are shown to be identical, except for the neglect of electron-electron correlations in the
Baranger formalism. It is also shown that some care is required in taking the classical limit for the per-
turbing electrons, or else the shift from An =0 interactions vanishes.

PACS number(s): 32.70.Jz

I. INTRODUCTION

The possibility that a plasma may cause a shift in spec-
tral lines has been a long-standing topic of interest. The
line shift is of fundamental importance since it involves
many-body aspects of the line-shape theory due to in-
teractions between the radiator and the plasma. Accord-
ing to semiclassical estimates [1-3], the major contribu-
tion to the small shifts of hydrogen and singly ionized
helium lines is from collisional interactions with plasma
electrons. However, these estimates were based on a
second-order, semiclassical, impact-parameter method
[4], and such calculations are very dependent on the
strong-collision cutoff procedure [3,5]. Consequently, the
semiclassical estimates are subject to theoretical uncer-
tainties.

Recently, shift calculations with a quantum-
mechanical-impact approximation including higher-order
terms have been reported [6—8]. These calculations uti-
lized the formalism developed by Baranger [9], and essen-
tially confirm, for temperatures of interest, the most re-
cent semiclassical results [3]. However, there is some
question concerning the physical meaning and
significance of the agreement. In particular, it is not
clear whether contributions to the shift involving An =0
interactions (i.e., interactions not accompanied by
changes in the principal quantum number) are correctly
accounted for in the various calculations.

For example, using a kinetic theory approach [10], it
was shown that the An =0 contribution to the net shift in
hydrogen is comparable to the An50 contribution [3].
However, earlier calculations [1,2] did not include this
term since the perturber ensemble average exactly van-
ishes for a classical electron gas [4,10]. Furthermore, the
Baranger formalism factorizes the density operator, while
the kinetic theory approach formally retains correlations
between the radiator and plasma.

The purpose of the present Brief Report is to examine
the connection between the shifts in the Baranger formal-
ism and the kinetic theory. Only shifts from the An =0
terms in hydrogen are considered and then only to second
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order in the atom-electron interaction in the impact ap-
proximation. Furthermore, the lower state broadening
and level splitting due to the ion microfields are neglect-
ed.

II. THEORY

Consider Baranger’s expression for the shift caused by

electron impacts for an upper atomic state |u) (in units
with 7=1) [9],
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Here, N is the perturbing electron density, f,(0) is the
elastic forward-scattering amplitude for an electron and
hydrogen atom in state | ), and [ ],,, denotes an ensem-
ble average over the perturbing electron gas. That is,
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where ¢(p) is the one-electron momentum distribution

normalized to unity. Expansion of Eq. (1) to second or-
der in the atom-electron interaction leads to

diP =Re[N{p|V(k=0)|u)]
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where P denotes the principal part, and E(p) is the ener-
gy of the perturbing electron in a plane-wave state of
momentum p. The matrix element D, (k) is defined by

D, (k)= {ul V)| Y p"V(—=K)u') , 4)
<

where the atomic states are restricted to having the same
principal quantum number, and V(k) is the atom-
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electron interaction in Fourier-transform space with k
the electron momentum transfer variable. Note that the
first term in Eq. (3) is identical to Eq. (2.12) of Ref. [10]
(with no lower state broadening) and vanishes for neutral

radiators.
The ensemble average (integral over p) in Eq. (3) may
be rewritten using the isotropy of ¢(p) and E(p) and the
J

1
(27)3

o(p)
E(p+k)—E(p)

11
[apP = a7 [dps(p)

where 87! is the temperature, which, for cases of interest,
is large compared to the electron-energy difference, thus
allowing the expansion of the exponential. Substitution of
Eq. (6) into Eq. (3) yields

qgv=_NB_1
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# 2
The result in Eq. (7) does not vanish and is identical to
Eq. (2.25) of Ref. [10] if electron-electron correlations in
the latter are neglected [set S(k)=1]. Recall that
electron-electron correlations are not included in Eq. (1)
above [9].
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III. COMMENTS

The discussion above presents an explicit comparison
of the second-order, impact-approximation shifts from
the Baranger formalism to those from a kinetic theory
approach. It was shown that for the An =0 interactions
both approaches yield identical results (neglecting
electron-electron correlations).

It is important to note that the asymmetry of the elec-
tron ensemble average in Eq. (6) due to detailed balance
must be retained in order to obtain a nonzero result. For
example, if the classical limit is taken prematurely in Eq.
(6), then [10]

d;f)—)() s (8)
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relation
o(p)—d(p+k)
=¢(p)(1—exp{—B[E(p+k)—E(p)]}) (5

(valid for both the quantum and classical electron gas) to
obtain

1—exp{ —BlE(p+k)—E(p)]}
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which erroneously neglects a significant contribution to
the shift [3]. The asymmetry has a simple interpretation.
In a collision the perturbing electron may give or receive
energy from the radiator. However, for the colliding
electron to give energy, it must possess it, thus introduc-
ing the Boltzmann factor involving the energy difference
in Eq. (6). While the discussion here has been limited to
second order, the same physics should still be present in
an all-order calculation. That is, the perturber ensemble
average must satisfy the detailed balance condition.
Finally, the results above show that a calculation of the
Baranger expression for the impact shift does not require
any corrections due to factorizing the density matrix, at
least to second order in the radiator-perturber interac-
tion. The agreement is due to the impact limit, since only
for these infinite times does the system lose memory of
the initial conditions. Interestingly, Blaha and Davis [6]
examined the An =0 contribution to the shift in Het and
found their answer to be only about 30% smaller than the
semiclassical result [3]. Similar comparisons using the
strong-coupling method [7,8] should prove interesting.
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