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Non-Newtonian viscosity of atomic Hnids in shear and shear-free Rows
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Simple shear and various simple shear-free flows with constant traceless velocity gradient are simulat-

ed at the microscopic level for an atomic fluid at a single state point. The dependence of the viscosity

upon the strain rate is obtained for each specific flow and analyzed on the basis of the retarded motion

expansion of the nonequilibrium pressure tensor. %'ithin the investigated range of strain rate, the pres-
sure and the internal energy follow a linear behavior in terms of the second scalar invariant of the
strain-rate tensor which, as expected by symmetry, is common to all flows.

PACS number(s): 47.50.+d, 66.20.+d, 61.20.Ja, 62.10.+s

In this paper we present nonequilibrium molecular-
dynamics (NEMD) results on the rheological behavior of
an atomic Quid. %'e performed a series of experiments
where the Quid, at a single state point, is subjected to
di6'erent homogeneous steady Qows with zero divergence,
implying a constant volume steady deformation of the
system. Both shear and shear-free Qows were considered
for increasing strain rate.

The viscosity in planar Couette (simple shear) flow and
in planar elongational Qow exhibits strain-rate thinning.
In uniaxial elongational Qow we observe strong thinning
for uniaxial stretching and weak thickening for biaxial
stretching (uniaxial compression), while the strain-rate
derivative of the viscosity is continuous and negative for
vanishing elongational rates. In the linear regime all
viscosities reduce, within statistical errors, to the
Newtonian viscosity go which was independently com-
puted by its Green-Kubo formula.

%"hen the above viscosities are expressed in terms of
the second scalar invariant of the strain-rate tensor
[denoted by I 2 and defined in (3)], similar behaviors are
observed. The viscosity data in planar Qows fall on the
same curve within statistical errors. Moreover, in uniaxi-
al elongational Qow, the viscosities relative to stretching
and compressional cases lie symmetrically above and
below the planar Qow data. For all Qows, the pressure
and the internal energy show, in the investigated strain-
rate domain, an apparent universal linear behavior in
terms of I z.

Since all Qows considered are characterized by a small
Deborah number ( D (0.2 ), our results on viscosity can
be interpreted on the basis of the retarded motion expan-
sion (RME) [la] and provide a quantitative estimate of
some low-order coefticients. Consequently, we are able to
specify the range of validity of low nth-order Quid ap-
proximations for the viscosity material function. In par-
ticular, this analysis suggests that the observed similari-
ties are restricted to a limited range of strain rates. Un-
fortunately, it remains impossible to compare the simula-
tion results with real experiments, as the non-Newtonian
e6'ects in atomic Quids appear at experimentally inacces-
sible high strain rates ( = 10' sec ').

The rheology of atomic Quids has already been the ob-
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The planar Couette Sow (shear flow) corresponds to yAO
and e=O. The elongational Aows (shear-free Aows) are
given by y=0 and e'%0, with parameter b=1,0 corre-
sponding to planar and uniaxial elongational Qows, re-
spectively. In the last case i &0 corresponds to uniaxial
stretching and i &0 to uniaxial compression. The scalar

ject of many NEMD experiments. Very precise results
on the strain-rate dependence of shear viscosity are avail-
able [2—4], but an interpretation in terms of classical
rheological theories is still lacking. Results on shear-free
Qows have also been published in an attempt to give a
more complete description of the rheological behavior
[5,6], but they remain very preliminary because no con-
sistent picture could be inferred. In the present work, a
unified interpretation of NEMD results on diferent flows
is provided in the context of numerical simulation at the
molecular level. It leads to numerical estimates of some
low-order RME coe%cients for a specific microscopic
model: this is not only of academic interest, as kinetic-
theory predictions of these coefBcients have already been
derived for various molecular models of polymer melts
and solutions [1].

In our simulations, we deal with steady velocity fields
v(r) with the traceless gradient homogeneous in space.
For the sake of simplicity, the notation of Ref. [1] will be
adopted as much as possible throughout this paper.
Denoting by y and i the shear rate and the elongational
rate, respectively, all Qows considered in this work can be
expressed in terms of the velocity gradient
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invariants of the strain-rate tensor, defined as

I,= try, I z= tr(y. y), I 3= tr(y. y y) (3)

where g and g are the shear and elongational viscosities
respectively.

We considered a Weeks-Chandler-Andersen [7] fiuid
[purely repulsive Lennard-Jones (LJ) pair interactions
truncated at r, =2'~ o ] composed of %=864 point parti-
cles. Throughout this work, we dealt with a single ther-
modynamic state point defined by the density p=0. 8o.
and the temperature T= 1.Salk+ where cr and s are the
usual LJ parameters and k~ is the Boltzmann constant.

In our experiments we exploited the dynamical NEMD
method [8,9], which follows the transient behavior of the
Quid from equilibrium until the onset of the stationary
state corresponding to the applied homogeneous and con-
stant velocity field. A constant-density, constant-
temperature stationary state was indeed observed because
(i) our fiows had zero divergence and (ii) heat was re-
moved homogeneously from the system by a thermostat.
The plateau value of the elements of the viscous pressure
tensor V (called a stress tensor in Ref. [1]) was used to
give an estimation of the generalized viscosity and the de-
viation of the pressure from its equilibrium value
bp =

—,
'

(r„„+r „+r„).
In these experiments we used a synthetic NEMD algo-

rithm (known as the SLLOD algorithm [10,11]),in which
the homogeneous velocity gradient is induced by a ficti-
tious field at the molecular level. The temperature was
controlled by a Nose-Hoover (NH) thermostat [12]. The
velocity gradient was taken to be VvB(t), where Vv is
the constant tensor fixed by a particular form of (1) and
where B(t) is a unit step function in time. The second-
order differential equations [9,10], derived from the
SLLOD equations have the form

F;
+(Vv)T.r;5(t)+(Vv) .[(Vv) .r;]

g[r, (V—v) r—,]. (5)

for an atom i of mass m with Cartesian coordinates r;.

are summarized in Table I for a11 Qows. Note that I
&
=0

and I 2&0 for all Qows I 3 is zero for the planar Qows,
and in the uniaxial elongational Qow it has the sign of i.
In Table I, we also mention the usual definition of the
generalized viscosity specific for each Qow. For vanish-
ing strain rates, Newton's law implies [1(a)]

The first term on the right-hand side of (5) is the usual ac-
celeration of microscopic origin due to the total inter-
molecular force F;. The second term is the instantaneous
acceleration that must be applied at time t =0 in order to
initialize the velocity field of the system. The third term,
which corresponds to the material time derivative of the
local macroscopic velocity field, forces a Quid element to
follow the streamlines of the imposed velocity field. At
the same time, the "molecular-dynamics box" deforms
according to the Qow but remains the unit cell of an
infinite periodic system [9]. The last term represents the
effect of the thermostat [12]. It introduces an extra vari-
able g that obeys the differential equation
dgldt =[K—(3N 1)kii

—T]!Q, where K is twice the ki-
netic energy computed by the peculiar velocities (the
thermal part of the velocities out of the local velocity
field) and Q is a parameter that controls the efficiency of
the thermostat. The equations of motion (S) were in-
tegrated by the velocity version of the Verlet algorithm

[13]with a time step h =0.005o (m Ie)' The t.hermos-
tat coupling parameter was chosen to get
Q I(3N 1)=0.0—08m o .

The transient Quid behavior was obtained by averaging
nonequilibrium trajectories of time length 1.0cr(m!s)'
over many (typically 1000) initial equilibrium
configurations. These were generated by a separate
canonical equilibrium MD siinulation (performed in the
absence of fiow but in the presence of the thermostat). In
the linear regime (the Newtonian regime) the subtraction
technique [14] was applied to extract the signal from the
noise. In all cases, the onset of the plateau in the viscosi-
ty took place around t =0.4o(mls)'~ and, within the
explored range of the elongational rate, the deformation
of the box never caused opposite sides to come closer
than 5u.

The data on the generalized viscosities for all Qows are
shown in Fig. 1, normalized by a factor 3+b for elonga-
tional flows so as to display relationship (4) in the zero-
strain-rate limit. An asterisk is used to indicate quanti-
ties expressed in the usual LJ units. The Green-Kubo
value qo =1.71+0.01 was evaluated using an equilibrium
trajectory of 4X10 steps. This value is indeed compati-
ble with all extrapolated generalized viscosities for the
vanishing strain rate. Note that, by symmetry, the
viscosity in planar Qows is independent of the sign of the
strain rate. In Fig. 2, we plot the viscosity in the two pla-
nar Qows and the two branches of the elongational viscos-
ity in uniaxial elongational fiow (uniaxial compression
and uniaxial stretching) against the second scalar invari-
ant I z. Within statistical errors, we observe a common
curve for planar Couette Qow and planar elongational

TABLE I. Strain-rate scalar invariants and generalized viscosity for shear and shear-free (elonga-
tional) flows: planar and uniaxial elongational Aows correspond to b =1 and 0, respectively. y and i
are the shear and elongational rates, respectively, and Vis the viscous pressure tensor.

Flow

Shear
Shear-free

WO

0
0

%0
2y' ,2{3+b2)e

Generalized
viscosity

~(y) =—,ry
g(i, b) = —(~„—~„)/i
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q*, q /(3+b)—
1.7

X(i)='V ~ (6a)

pressure tensor to the set of convected time derivatives of
the strain-rate tensor. These are defined recursively as

1.6 y(„+I)= (y(„))—[(Vv) y(„)+y(„) (Vv)]Dt

1.5

1.4

'f, C 2

(n ~ 1), (6b)

where D/Dt=(B/Bt+g u ()/Br ) is the material time
derivative that vanishes for steady homogeneous Aows.
Noting that y[„] is of order n in the strain rate, the RME
for an incompressible Auid, written here explicitly up to
the third order, is

FIG. 1. Reduced shear viscosity g* and elongational viscosi-
ties q */(3+b) vs reduced shear rate y and elongational rate

, respectively. All data on planar Couette (4 ), planar elonga-
tional (C') and uniaxial elongational Aows (o) are shown to-
gether with the Green-Kubo (~ ) estimate qo .

r= —[b,y(, )+bzy(2)+b»(y(, ).y()))+b3y(3)

+b 12( Y(1) ) (2) + Y(2) Y(1)

+b, .„(y(,)..y(, ))y(, )+ . ] (7)
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fIow lying midway between the uniaxial elongational How
branches.

In all Aows, the relative change of the viscosity with
strain rate suggests that we are exploring small deviations
from the linear Newton's law. A measure of such non-
linearities for a particular Quid-How system is the De-
borah number [1(a)] D defined as the ratio of the stress
response time of the fl.uid A, to the characteristic time of
the Aow ~F. %'e estimate A, =0.06 from the time integral
of the normalized equilibrium stress-stress correlation
function (stress-relaxation modulus). As we consider
steady Qows, 1/I z is a natural choice for rF so that
D (0.2 for all our experiments. In this range of D, our
results can be interpreted in the framework of the retard-
ed motion expansion [1(a)], which relates the viscous
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where the coefficients b are material parameters. Ac-
cording to the current terminology, an nth-order Quid is
defined by the constitutive relation (7) truncated at order
n It is t.hen straightforward [1(a)], for a given Qow, to
write down the viscosity of the nth-order Quid in terms of
the material coefficients b . For any specific velocity gra-
dient (1), the tensors y( )

(I ~ n) are computed accord-
ing to (6) and substituted in (7). Then the viscosity ex-
pression follows from its definition in terms of V (see
Table I). For the third-order Quid, the shear and elonga-
tional viscosities in planar and in uniaxial elongational
How are, respectively,

1.5 ——

1.4 ——

1.3 s i I i i I i I s I s

0 2 6 8 10 ~ 12
I2

FIG. 2. Reduced shear viscosity g* and elongational viscosi-
ties g*/(3+b) vs the reduced second scalar invariant of the
strain-rate tensor I"&. The symbols for planar Aows and Green-
Kubo data are as in Fig. 1. The uniaxial elongational viscosity
is now plotted in two branches corresponding to uniaxial exten-
sion (0 ) and uniaxial compression (0). The solid curve is a fit
g*/4=a+bI 2+c(I 2 ) on planar elongational data which
provides a = 1.705+0.008, b = ( —3.8+0.3) X 10, and
c=(1.7+0.3)X10 . The straight line and the solid curve
represent third and fifth-order fIuid models, respectively.

where the second scalar invariant I 2 for each specific
Qow is reported in Table I. From (9) and (10) we see that
in terms of I 2, the viscosity in planar elongational Aow

rl(e, 1)/4 and the symmetric part of the viscosity in uni-
axial elongational Qow rl(e, 0)/3 are equivalent, in agree-
ment with our earlier remark (Fig. 2). However, a more
general analysis suggests that this property does not hold
for an nth-order Quid with n )4. As concerns the com-
parison between 2)(y) and rl(c, 1)/4 in terms of I z, we see
from (8) and (9) that already for the third-order Quid both
expressions di6'er by b3/2 I 2. Second-order polynomial
fits of the data for planar Couette and planar elongational
Qow in terms of I z give biz —b1.11=(4.1+0.4)10 and
biz —b1.11

—b3/2=(3. 8+0.3)X 10 . This leads to the
conclusion that the size of b3 is within statistical errors.
Figure 2 shows the fit on planar elongational Aow data,
for which the second-order coefficient turns out to be
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(1.7+0.3)X10 . The straight line represents the poly-
nomial fit up to the linear term, showing that a third-
order Quid model is able to reproduce the nonlinear
viscosity up to D =0. 1 (I &=0.2), while a fifth-order fiuid
is necessary to reach D =0.2.

The press::,&re and the internal energy per particle devi-
ated from their equilibrium value during our transient ex-
periments. While the instantaneous viscosity response
rapidly reached a well-defined plateau, these thermo-
dynamic quantities underwent an initial rise, followed by
long-lived damped oscillations still present at t = 1,
which are possibly due to interference from the thermos-
tatting mechanism. We therefore measured the
stationary-state pressures and internal energies from the
apparent asymptotic mean without trying to estimate the
associated errors. In Fig. 3 these quantities are plotted
versus I 2 for all shear and shear-free Qows showing a
common linear behavior. This can be explained by sym-
metry arguments if we assume that the nonequilibrium
deviation of an arbitrary scalar quantity can be formally
developed in a power series of the perturbation. For an
isotropic system subjected to a tensorial perturbation, the
nth coefticient of the expansion must be isotropic tensors
of rank 2n. If we consider traceless velocity gradients
and if, following the rheological invariance principle
[1(a)), we require that a purely rotational liow (antisym-
metric velocity gradient) must not induce any nonequili-
brium deviation, it follows that the first nonvanishing
term in the expansion is, for all Rows, a second-order
term linear in I 2. For the pressure, the slope e could

-=----+—-+—.—-- t---=---~
h,e,*„

0.4

0.2
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s
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FIG. 3. Variation of the reduced pressure and the reduced
internal energy per particle in various Bows as a function of I 2.
Symbols are as in Fig. 2.
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easily be related to the coeKcients of the RME for
compressible Auids. A RME global analysis of our re-
sults, including additional data on normal stress eQ'ects,
will appear separately [15].
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