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Discrete model for DNA-promoter dynamics
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We introduce a discrete model for DNA that takes into account the information about specific base
sequences along the double helix. We use this model to study nonlinear wave dynamics of the T7A

&

DNA promoter. As results we show the existence in the promoter of a dynamically active region in
which static solitons acquire finite velocities, which contrasts with regions where solitons simply remain
static. Furthermore, when they pass through this region moving solitons are accelerated, decelerated, or
rejected, depending on their initial velocities. The possibility that these dynamical effects play a role in
the mechanism of genetic activation is suggested.

PACS number(s): 87.10.+e

I. INTRODUCTION

The possibility that vibrational energy in DNA might
be trapped into solitary-wave excitation has received con-
siderable attention in the past decade. This idea was ini-
tially suggested by Englander et al. [1] to explain the ex-
istence of transiently open states in DNA and was further
developed in terms of mechanical systems consisting of
chains of pendula (bases) coupled by springs (the sugar-
phosphate backbone) by several authors [2—10]. In these
models the attention was directed to the degrees of free-
dom characterizing base rotations in the plane perpendic-
ular to the helical axis around the backbone structure
(plane base rotator). In the continuum limit these models
lead to the well-known sine-Gordon equation, or to equa-
tions closely related to it, in terms of which several
dynamical properties of DNA were investigated [2—10].
In particular, the effects of weak inhomogeneities in sim-
ple DNA fragments, consisting of uniform base sequences
of a given type followed by uniform base sequence of the
other type, were considered in terms of a parametrically
perturbed sine-Gordon equation [8]. Other nonlinear
models of DNA, based on different choices of the dom-
inant degrees of freedom involved and modeling different
aspects of DNA dynamics, were also developed [11—15].
In all these models, however, little attention was devoted
to specific base sequences of natural DNA.

In the present paper we propose a model for DNA that
uses the information about the specificity of base se-
quences of real DNA to investigate the possible connec-
tion existing between base sequences, dynamics, and
functioning of the molecule. We expect this connection
to play an important role in the mechanism of genetic ac-
tivation, where the specificity of DNA promoters is cru-
cial both for the binding of specific proteins (RNA-
polymerase) to DNA and for the transport of such pro-
teins from the promoter to the fragments corresponding
to the genes. It has been suggested that the binding pro-
cess may involve a conforrnational distortion of DNA
double helices that can be described by a solitary-wave
excitation (also called a soliton) [9]. Such excitation can
travel along DNA without dispersion, carrying the bond-

ed protein in the coding region corresponding to the
gene. The distance from the promoter to the target
(gene) might be quite large, sometimes more than 1000
bases, so that a question naturally arises: Where does
this excitation find the energy to cover such a large dis-
tance? Although the activation mechanism is not yet ful-
ly understood, it is known that there exists in the pro-
moter region an activation region that gives energetic in-
put to the transport process. To investigate this problem,
we think it is crucial to take into account the nonunifor-
mity of the DNA induced by specific base sequences
characterizing promoter regions. To this end we consid-
er the base-rotational motion around the sugar-phosphate
backbone structure in terms of a discrete sine-Gordon
equation modeling a chain of pendula connected by
springs, each pendulum representing a specific base pair,
and including base information through the potential
function modeling the hydrogen bonds between base
pairs. By noting that the hydrogen bond involved in the
pairings is double for adenine-thymine (A-T) and triple
for guanine-cytosine (G-C), we obtain a simple rule to
construct a chain corresponding to a specific DNA se-
quence, i.e., we fix the ratio between the strength of the
potential functions of A-T and G-C pairs to be —', , while
the ratio between anharmonicity (base rotation) and
dispersion (backbone springs) is kept as a free parameter
to be fixed by experimental data. As a result we show the
existence in the chain corresponding to T7 A

&
promoter

of a region in which a static solitary-wave excitation ac-
quires, as a consequence of the nonuniform background,
a finite velocity along the chain, in contrast with what
happens in the rest of the chain, in which the wave sim-
ply remains static. Furthermore, nonstatic solitons pass-
ing through this active region are accelerated, decelerat-
ed, or refIected depending on their initial velocities. The
possibility that these dynamical effects may play a role in
the mechanism of genetic activation is suggested.

The paper is organized as follows. In Sec. II we intro-
duce the discrete system we used to model DNA pro-
moter dynamics. In Sec. III we numerically investigate
the dynamics of a soliton in the T7A

&
promoter region,

and the results are qualitatively described in terms of a

1991 The American Physical Society



DISCRETE MODEL FOR DNA-PROMOTER DYNAMICS 5293

continuous parametrically perturbed sine-Gordon equa-
tion. In the last section we summarize the main results of
the paper.

II. MODEL

Let us start by considering the so-called B form of the
DNA molecule, whose conventional structure is schemat-
ically shown in Fig. 1. In this figure the thick lines
represent the backbone double-helix structure, the hor-
izontal lines terminated by conjugated letters denote
complementary bases pairing, with the double and triple
symbol between them representing hydrogen bonds. We
concentrate our attention on the degrees of freedom
characterizing base rotations in the plane perpendicular
to the helical axis around the backbone structure. This
dynamics plays an important role for DNA functioning
since, under certain circumstances, it can open the hydro-
gen bonds between conjugated pairs, exposing the un-
paired bases to the action of external ligands. To model
this motion we assume that each base of a strand is cou-
pled with the next-neighbor bases of the same strand by
the elastic backbone restoring forces, and with the com-
plementary base in the opposite strand by the anharmon-
ic potential used to model the hydrogen bond. We take
as canonical variables the defiection angles f; and 8; that
two complementary bases form with the line passing from
the attaching points of the bases to the strands. For the
potential between base pairs we use a simple cosine func-
tion. The Hamiltonian for such a model is then written
as

+k;(8;,—8;) +i);[1—cos(P; —8,.)]], (1)

where k, and k; denote the backbone spring constants
along the two helices, I, is the moment of inertia of the
individual bases, N is the number of base pairs in the
chain, and g; is a nonlinear parameter used to model the
strength of hydrogen bonds between complementary
bases. As mentioned before, we choose the coeKcients g;
in Eq. (1) according to the rule g; =A,;P with A, ; =2 if it
refers to A-T or T-A pairs, A, =3 otherwise, with P a free
parameter to be determined later. For simplicity in the
following we consider only uniform restoring forces and
uniform moments of inertia along the two strands of
DNA, so we fix k,. =k.=E, I, =I, and i,j=1, . . . , N.
The equations of motion obtained from Eq. (1) are then

&f; =&(p;+ )
—2';+g;, ) ——A, , sin(g, —8, ),

I8, =K(8, +) —28, +8, ))——A, ; sin(8, —f, ),
(2)

from which we obtain the following equation for the an-
gle difference P,. =g; —8; between complementary bases:

P; =(t, + )
—2P;+P;, ——A, ; sin(P; ) . (3)

In this equation time has been scaled according to
t ~U'I/k t, so as to leave as a parameter in the equation
just the ratio P/K between anharmonicity and dispersion.
To get an estimate of this parameter we use the values of
/3 and K reported in Ref. [7], which were derived by com-
bining information from the sine-Gordon model with ex-
perimental measurements. This leads to a value of P/K
between 10 and 10 . These values are found to be
consistent with the requirement of existence and stability
of solitary-wave solutions for Eq. (3), as shown in the next
section. Finally, we note that in the case of uniform non-
linear parameters, A, ; = A, , i = 1, . . . , N, Eq. (3) reduces, in
the continuum limit, to the well-known sine-Gordon
equation

P „—P« —sin(P) =0,
with exact soliton solutions

P(x, t ) =4 tan ' [exp[y(x vt —xo)]J, —

(4)

(5)

In the next section Eq. (5) will be used as an initial condi-
tion to integrate Eq. (3) with the A, values corresponding
to the T7A& promoter.

III. NUMERICAL EXPERIMENT AND ANALYSIS

FIG. 1. Schematic structure of the B form of the DNA.
Double and triple symbols denote hydrogen bonding between
complementary bases.

In order to investigate dynamical effects due to the
specificity of base sequences, we integrate Eq. (3) with A, ;
values corresponding to the T7A &-promoter base se-
quence S reported in Table I with P/K fixed to 2X10
From biochemical studies it is known that RNA polym-



TABLE I. Sequence of 168 bases corresponding to promoter T7 A1. The double arrows delimit the
region in which RNA polymerase can interact with the double helix, while the numbers in parentheses
refer to the standard numeration used in biology.

T T G T C T T T A T T A A T A C A A C T C A C T A T A A G G

A 6 A G A C A A C T T A

A T T T A A A A T T T A

T A A A C T C T A A C C
(+1)

A T C 6 A G A 6 6 G A C

A A 6 A 6 A C T T A A A A 6
50

T C A A A A A G A G T A T T

T A T A 6 6 A T A C T T A C

A T T A

6 A C T
( —1)

A 6 C C

A C 6 G C G A A T A 6 C C A T C C C
140

A A T C 6 A C A C C 6 6 6 6 T C A A

lymerase can bind to DNA in the region going from base
pair (BP) 51 to BP 140, so we expect this region to be
dynamically active. To avoid the inAuence of boundary
conditions on promoter dynamics we have constructed
from sequence S in Table I a longer sequence of 1000
bases according to the rule

S(1,5)+9S(1,50)+S(51,140)

+ 16S(140,168)+S(162,168),
where the symbol kS(i,j ) denotes the subsequence of S
going from BP i to BP j repeated k times. In this longer
sequence the promoter region extends from BP 455 to BP
545, so that we could safely use reflexive boundary condi-
tions in the numerical simulation. To investigate
differences in soliton dynamics in this region we have per-
formed several integrations of Eq. (3) with the initial posi-
tion of the static soliton varied inside the promoter re-
gion. In Fig. 2 we show the time evolution of a solitary

wave placed outside the promoter in correspondence to
BP 415, from which we see that the initial solitary wave
remains static. Increasing the initial position through the
promoter region from BP 415 up to BP 505 by incre-
ments of 1 does not introduce significant differences in
dynamics, except for small oscillations around the initial
base-pair value. In Fig. 3 we report the time evolution of
an initial soliton placed inside the promoter region at BP
510. From this figure it is clear that the wave acquires a
velocity U=0. 18 towards the left end of the chain, is
rejected without loss of energy at the boundary, and is
rejected again at the promoter region with velocity
U =0.18. This behavior is enhanced when the initial posi-
tion is increased from BP 510 to BP 535. In Figs. 4 and 5
we report the soliton time evolution for initial positions
at BP 525 and BP 535, respectively. From these figures
we see that the effect is stronger at BP 535, where the
wave also reached the maximum velocity U =0.3.
Beyond BP 535 this dynamical behavior is drastically re-
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FIG. 2. Time evolution of a solitary wave with initial veloci-
ty U =0 placed outside the promoter region at BP 415.

FIG. 3. Time evolution of a solitary wave with initial veloci-
ty V=0 placed inside the promoter region at BP 510.
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FIG. 4. Same as in Fig. 3 but with intial position at BP 525.

FIG. 6. Same as in Fig. 3 but with initial position at BP 540.

duced. In Figs. 6 and 7, we report the time evolution of
an initially static soliton placed at BP 540 and BP 555, re-
spectively, from which we see that at BP 540 the wave ac-
quires a small velocity (u —=0.08). towards the right end
of the chain, while at BP 555 the wave simply remains
static. In Fig. 8 we show the effect of background inho-
mogeneity on a moving soliton placed at BP 900 with an
initial velocity u =0.3. From this figure we see that the
soliton is accelerated by the promoter region when it
travels from the right to the left, and is deccelerated
when it travels in the opposite direction.

These results show the existence of a dynamically "ac-
tive" region going from BP 510 to BP 540 inside the

T7 A
&

promoter. When an initially static soliton is inside
this region, the wave receives an energetic input to travel
along the DNA chain, the direction of the motion de-
pending on the initial position of the soliton and the
effect being weaker when the wave is placed to the left of
BP 535. Furthermore, the above dynamical behavior
disappears as the wave moves far away from this region.
The above dynamical behavior can be understood in
terms of a chain of pendula, with lighter and heavier
masses corresponding to A-T and to G-C base pairs, re-
spectively. A soliton placed on the top of the heavier-
pendulum region has a bigger rest mass than the one
placed on the lighter one. On a nearly uniform back-
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FIG. 5. Same as in Fig. 3 but with initial position at BP 535. FIGt 7. Same as in Fig. 3 but with initial position at BP 555.
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FIG. 8. Time evolution of a solitary wave with initial veloci-
ty v =0.3 placed inside the promoter region at BP 900. FIG. 9. Averaged di8'erence between the numbers X& c and

XA T of G-C and A-T pairs contained in a DNA fragment of X,
BP inside the promoter region. The average is calculated with
respect to X, and N, is increased from 10 to 50 in increments of
1.

ground the solitary wave remains static or oscillates
around some equilibrium position, while in the transition
region where the wave partially overlaps the "heavier"
part of the chain there is an effective potential that im-
parts motion to the wave. The kinetic energy acquired by
the wave can be approximated by the difference between
its initial and final rest masses. From Table I we see that
the base sequence of the T7 A, promoter contains a re-
gion going from BP 110 to BP 140 (from BP 515 to BP
545 in the long chain, respectively) in which G-C pairs
are more frequent, in contrast with the rest of the se-
quence, in which the A-T pairs are equal in number or
are more abundant. The parameter that plays a crucial
role in the above dynamical behavior is %&, the number
of base pairs along the DNA double helices over which
the wave extends, which in turn depends on the ratio be-
tween the anharmonicity and the dispersion parameters.
In our simulation the solitary wave extends over 35 base
pairs, i. e., almost three turns of DNA double helices.
%'e checked that the above dynamical behavior is qualita-
tively preserved if we decrease the size of the wave down
to 20 base pairs (two turns of DNA helices). In Fig. 9 we
reported the averged difference between the numbers
Xz c and XA T of G-C and A-T pairs, respectively, con-
tained in a DNA fragment of 1V, base pairs inside the
promoter region, versus the site i around which X, is cen-
tered. Here the average is calculated with respect to N„
with X, increased from 10 to 50 in increments of 1.
From this figure the existence of a transition around site
515 from a region dominated by A-T pairs to a region in
which G-C pairs are more frequent is evident.

Although these phenomena refer to a discrete chain,
they can be qualitatively described in terms of a continu-
ous sine-Gordon equation with a smooth spatial homo-

geneity modeling the transition from a uniform A-T re-
gion to a uniform G-C region [8]. This leads to con-
sideration of the continuous parametrically perturbed
sine-Gordon equation [8,16]

P«
——sin(P) =e(x ) sin(P), (6)

where e(x ) represents a smooth function of space going
from a=0 to some finite value @=5 as x goes from —~
to + ce (here the smoothness of e is assumed to avoid the
creation of background radiation). As shown in Ref.
[16],the energy

f [ —,'(P +$, )+ [1+@(x)][1—cos(P)]]dx (7)

is a conserved quantity and therefore

y(v;) =&1+5,
y(vf )

(8)

vf = [u, ( I+5)—5]'i (9)

according to whether u, is greater or less than
[8/(1+8)]' . Furthermore, we have uf )v; or uf (v;
depending on whether 6&0 or 6)0; i.e., if the soliton
moves from a uniform region of A-T bases into a uniform
region of G-C bases or vice versa [8,16]. Finally, we note

where u; and uf denote, respectively, the initial and final
velocity of the soliton, y is the Lorentz contraction fac-
tor, and &1+5 is the ratio between the soliton rest
masses corresponding, respectively, to the regions a=0
and @=5. From Eq. (8) it is clear that the soliton will be
rejected with velocity uf = —u; or transmitted with ve-
locity
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that this analysis is in qualitative agreement with the
above numerical results.

IV. CONCLUSION

In summary, we have introduced a discrete model for
DNA that takes into account the information about
specific base sequences along DNA double helices. In the
case of the T7 A

&
promoter we have demonstrated the ex-

istence of a region in which a static solitary-wave excita-
tion acquires a finite velocity, in contrast with regions in
which it remains static. Furthermore, it has been shown
that moving solitons passing through the T7 A &-

promoter region experience an acceleration, deceleration,
or reAection, depending on the modulus and on the direc-
tion of the incoming velocity. A preliminary investiga-

tion indicates that this result will generalize to other
DNA promoters of the T7 family, as will be reported
elsewhere. We think the above dynamical behavior is of
particular importance because it can explain the func-
tioning of DNA promoters as energetic activators of the
RNA-polymerase transport process.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge Dr. Ludmila Yakushe-
vich for interesting and stimulating discussions and Dr.
S. G. Kamzolova and Dr. O. N. Ozoline for sending me
information about the promoter I used in the paper.
Financial support from INFM {Italy) is also acknowl-
edged.

[1]S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A.
Krumhansl, and S. Litwin, Proc. Natl. Acad. Sci. U.S.A.
77, 7222 (1980).

[2] S. Yomosa, J. Phys. Soc. Jpn. 51, 3318 (1982); 52, 1866
(1983).

[3] S. Takeno and S. Homma, Frog. Theor. Phys. 70, 308
(1983).

[4] S. Yomosa, Phys. Rev. A 27, 2120 (1983);30, 474 (1984).
[5] S. Homma and S. Takeno, Prog. Theor. Phys. 72, 679

(1984).
[6] Chung-Ting Zhang, Phys. Rev. A 35, 886 (1987).
[7] V. K. Fedyanin and L. V. Yakushevich, Stud. Biophys.

103, 171 (1984).
[8] L. V. Yakushevich, Stud. Biophys. 121, 201 (1987).
[9] R. V. Polozov and L. V. Yakushevich, J. Theor. Biol. 130,

423 (1988).

[10]L. V. Yakushevich, Phys. Lett. A 136, 413 (1989).
[11]J. A. Krumhansl and D. M. Alexander, in Structure and

Dynamics: Nucleic Acids and Proteins, edited by E.
Clementi and R. H. Sarma (Adenine, New York, 1983), p.
61.

[12] E. Balonovski and P. Baconsfield, Phys. Lett. 93A, 52
(1982); 95A, 454 (1983);Phys. Rev. A 32, 3059 (1985).

[13]A. C. Scott, Phys. Rev. A 31, 3518 (1985); Phys. Scr. 32,
617 (1985).

[14]V. Muto, Ph. D. thesis, The Technical University of Den-
mark, Lyngby, 1988.

[15]V. Muto, J. Halding, P. L. Christiansen, and A. C. Scott,
J. Biomol. Struct. Dyn 5, 873 (1988).

[16]M. Salerno, M. R. Samuelsen, P. S. Lomdahl, and O. H.
Olsen, Phys. Lett. 108A, 241 (1985).


