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Traditional approaches to the asymptotic behavior of coupled wave equations have difficulties in the
formulation of a consistent version of the Bohr-Sommerfeld quantization conditions. These difficulties
can be circumvented by using the Weyl calculus to diagonalize the matrix of wave operators. In analyz-
ing the diagonalized wave equations, geometric phases enter in an important way, especially in the devel-
opment of Bohr-Sommerfeld quantization rules. It turns out that a version of Berry’s phase is incor-
porated into the symplectic structure in the ray phase space, influencing the classical Hamiltonian orbits,
the construction of solutions to the Hamiltonian-Jacobi equation, and the computation of action in-
tegrals. Noncanonical coordinates in the ray phase space are useful in carrying out these calculations
and in making the construction of eigenvalues and wave functions manifestly gauge invariant.

PACS number(s): 03.40.Kf, 03.65.Sq, 42.20.Cc, 02.40.+m

I. INTRODUCTION

This paper concerns the application of WKB theory to
systems of coupled, linear wave equations. The wave
fields that are coupled together are usually the com-
ponents of some vector or tensor of physical significance;
thus the wave equations we will consider govern mul-
ticomponent wave fields. Examples include electromag-
netic waves in plasmas, elastic waves in solids, light
waves in anisotropic and inhomogeneous media, gravita-
tional waves in general relativity, Pauli or Dirac spinors
in quantum mechanics, and nuclear wave functions in the
Born-Oppenheimer approximation. In this paper we will
deal especially with the problem of Bohr-Sommerfeld
quantization of multicomponent wave fields, and more
generally with the role of geometric phases in their WKB
analysis.

A complete set of WKB equations for multicomponent
wave fields has been worked out by Bernstein [1], who
had in mind applications to the propagation of elec-
tromagnetic waves in plasmas. The subject was later re-
viewed by Bernstein and Friedland [2]. The equations
presented by these authors are complete in the sense that
they apply in any number of spatial dimensions, they
make no assumptions about the form of the dispersion
matrix, and they give all the information needed to trans-
port amplitudes and phases of a wave along the rays of
the wave system. These works did not, however, deal
with the Bohr-Sommerfeld quantization problem for mul-
ticomponent wave fields, by which we mean the mul-
ticomponent generalization of Bohr-Sommerfeld quanti-
zation of scalar fields (in its modern form sometimes also
called Einstein-Brillouin-Keller [3] or torus quantization
[4]). Neither did these works recognize that one of the
phases occurring in the WKB problem is anholonomic,
although a contemporary paper by Budden and Smith
[5], working with a slab model and some special cases of
dispersion matrices, did make such a recognition.

The anholonomic, geometric phase occurring in the
multicomponent WKB problem is an example of Berry’s
phase [6], as has been pointed out by Yabana and Horiu-
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chi [7]. Given the current understanding of geometric
phases [8—11], it comes as no surprise that something like
them should appear in the asymptotic behavior of mul-
ticomponent wave fields, for as one moves along a ray of
the wave field, the local dispersion matrix, describing the
properties of the medium in the various directions and
the coupling among the components of the wave field,
changes adiabatically. Thus one must expect the disper-
sion matrix, regarded as a function of time (or other pa-
rameter) along the ray, to play the same role as the Ham-
iltonian matrix in Berry’s original analysis [6] of adiabat-
ic processes in quantum mechanics. This indeed is pre-
cisely how things work out.

The Bohr-Sommerfeld quantization problem for mul-
ticomponent wave fields has been considered by Berk and
Pfirsch [12] and Yabana and Horiuchi [7] with success
primarily in the case of one spatial dimension. Of the
two references, it seems that Yabana and Horiuchi made
the clearer statement of the one-dimensional quantization
condition, which turns out to be like the scalar case ex-
cept for two additional phases. One of these is Berry’s
phase, and the other is an additional phase which cannot
be represented by a differential form (as can Berry’s
phase). Yabana and Horiuchi also attempted to state a
multidimensional quantization condition, but were able
to do so only for special dispersion matrices. Their re-
sults are not obvious generalizations of torus quantization
as it is known for scalar wave fields, nor are they as
geometrically compelling. In Sec. II of this paper we pro-
vide a critique of this existing theory of multicomponent
wave fields, and provide our interpretation of the
difficulty in formulating a consistent quantization condi-
tion.

We break the impasse in the formulation of a quantiza-
tion condition by diagonalizing the matrix of wave opera-
tors [13], which we discuss in Sec. III. Our diagonaliza-
tion of the matrix of wave operators is equivalent,
through lowest order in the WKB ordering parameter, to
diagonalizing the dispersion matrix (a matrix of num-
bers), which is done in all treatments of this subject.
Nevertheless, the general analyses of Bernstein and Fried-
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land [1,2] and others do not actually diagonalize the ma-
trix of wave operators beyond lowest order, and in this
respect their work differs from ours. This distinction
may seem small, but the diagonalization of the matrix of
wave operators, in principle to all orders, has the definite
advantage that it reduces the multicomponent WKB
problem to a set of uncoupled scalar problems. Thus all
known results of scalar theory can be immediately tran-
scribed to the multicomponent case.

This is not to say that all the analysis subsequent to the
diagonalization of the matrix of wave operators is com-
pletely standard, for it turns out that the diagonalization
leads to gauge-dependent ray Hamiltonians (in the sense
of the gauge transformations of Berry’s [14] adiabatic
theory). This leads to the discussion of Sec. IV, which
has much to do with the proper interpretation of these
gauge-dependent ray Hamiltonians, and how to extract
gauge-invariant wave functions and quantization rules
from them. It turns out to be helpful in this process to
introduce certain noncanonical but gauge-invariant coor-
dinates on the classical ray phase space, because in terms
of these coordinates, both the ray Hamiltonian and the
equations of motion are gauge invariant, as are the La-
grangian manifolds representing physical, gauge-
invariant wave functions.

In our formulation of the quantization conditions,
Berry’s phase plays a fundamental role by being incor-
porated into the symplectic structure on the classical ray
phase space. From this position, Berry’s phase influences
the classical equations of motion, the very meaning of the
Lagrangian condition entering into solutions of the
Hamilton-Jacobi equation, and in the computation of ac-
tions and symplectic areas in phase space. When all is
said and done, our quantization condition is exactly the
same as in the scalar case, but with a different symplectic
structure on phase space from the usual one, and with a
different ray Hamiltonian from that used in the theory of
Bernstein and Friedland [1,2].

A definite limitation of this paper is our restriction to
Hermitian dispersion matrices. These are decidedly un-
realistic in many applications in optics, plasma physics,
and other areas, but are mathematically simpler than
general dispersion matrices. Our reasons for making this
restriction are partly that we are not completely satisfied
with existing treatments of non-Hermitian dispersion ma-
trices, and partly that the simpler case we consider is
sufficient to make our points about geometric phases and
quantization. In any case, Hermitian dispersion matrices
do occur in many applications, notably quantum-
mechanical ones, but others as well.

Another limitation is the fact that we have ignored the
problem of mode conversion, i.e., the coupling between
polarizations that occurs when there is a near degeneracy
in the dispersion matrix. This problem has been dealt
with from a rather general standpoint by Friedland and
Kaufman [15], from whom we have borrowed some tech-
niques important to our method, especially the use of the
Weyl calculus for diagonalizing the matrix of wave
operators.

The problem of multidimensional Bohr-Sommerfeld (or
Einstein-Brillouin-Keller) quantization for one-
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component wave fields is well known in some fields and
not in others. Since this paper is intended to appeal to an
interdisciplinary audience, it is perhaps appropriate to
provide some comments on this subject here. More de-
tails may be found in reviews such as those by Berry and
Mount [16] and Berry [17].

The standard quantization condition in one dimension
is that the integral @k dx, taken around a closed orbit,
should be either an integer or a half-integer. Textbook
discussions of higher-dimensional quantization are often
limited to the case in which the Hamilton-Jacobi equa-
tion is separable, for which the quantization condition as-
signs P k;dg; (no sum on i) to an integer n; or a half-
integer n;+1, giving one quantum number n; for each
degree of freedom. It is now recognized, however, that
separability is not a fundamental issue; rather, the funda-
mental issue is whether the classical motion is integrable.
For if the motion is integrable, then the orbits are quasi-
periodic and lie on tori in phase space, and solutions of
the Hamilton-Jacobi equation exist. The solutions that
are allowed for WKB purposes are those that give a
single-valued wave function. These are supported by tori
for which ¥, ﬁkidqi is quantized, where now the integral
is taken around a complete set of independent closed con-
tours on the torus, giving again one quantum number for
each degree of freedom. This is Einstein-Brillouin-Keller
quantization, which is described again in Sec. II. Since
the classical ray motion is not always integrable, this pa-
per also deals briefly with the nonintegrable case in Sec.
V.

II. REVIEW AND CRITIQUE
OF EXISTING THEORY

In this section we establish notation, review parts of
existing theory which will be of use to us later, and pro-
vide a critique of this theory, especially in regard to the
problem of Bohr-Sommerfeld quantization. We also pro-
vide a discussion of such issues as monopole strings,
which seems to be new in the context of multicomponent
WKB theory. We begin with the case of a scalar wave

equation.
Let the scalar wave field be ¥(x), where
x =(xy,...,xy). Usually we will not attempt to distin-

guish notationally between the one-dimensional case
(N =1) and that of higher dimensions, since usually the
required placement/\ of indices will be obvious. We let the
wave equation be Dy =0, where D is the wave operator,
regarded as being composed of the operators
% =(multiplication by x) and k= —ied/dx. We assume
that D is Hermitian. The formal ordering parameter € is
the expansion parameter of the WKB expansion. We use
carets to denote operators, and especially to distinguish
them from their classical counterparts or “symbols” (see
Appendix A). We denote the x-space kernel of the opera-
tor D by Kp(x,y), so that the wave equation can be writ-

ten
[ dy Kp(x,p)9(»)=0, 2.1)

and so that in Dirac bra-ket notation,



44 GEOMETRIC PHASES IN THE ASYMPTOTIC THEORY OF . ..

Kp(x,p)={(x|Dly) . (2.2)

The wave equation may be either a differential or integral
equation; if it is a differential equation, then K contains
derivatives of 8(x —y). If the wave equation contains the
time or derivatives with respect to time, then we simply
treat ¢ as one of the x’s. In quantum-mechanical applica-
tions, we obtain the usual formulas by replacing € by %,
and k by the momentum p. In applications to classical
wave fields, it is easiest to regard € as a dimensionless pa-
rameter, giving physical results when €=1, so that k is
the usual wave vector. In quantization or normal mode
problems, the operator D and its Weyl symbol D (x,k)
(see Appendix A) will contain a parameter such as energy
or frequency; for example, in the ordinary Schrodinger
equation, D (x,p)=p?2/2m + V (x)—E; and in application
to plasma physics, D (x, k) is often parametrized by w, so
that when D (x,k ;w)=0 is solved for w, we obtain the lo-
cal dispersion relation o =w(x, k).

The WKB ansatz is ¥(x)= A4 (x)eS*)/¢, where 4 (x) is
the real and positive amplitude and S (x) is the action.
(The total WKB wave function is a sum of such terms,
properly matched and phased.) The equations for the un-
knowns A4 and S are obtained by substituting this ansatz
into the wave equation ﬁz//=0 and expanding in powers
of e. The lowest two orders of the expansion are the most
interesting and analytically tractable, so most WKB
treatments stop with these; we shall follow this custom in
this paper, and always neglect terms of relative order €
and higher. If the wave equation is a differential equa-
tion, then the expansion can be carried out directly; but
for general wave equations, an approach based on the
Weyl transform is convenient (see Appendix A). In terms
of the Weyl symbol D (x,k) of the wave operator D, the
equation for S(x) is the Hamilton-Jacobi equation,
D (x,k)=0, where we set k =k (x)=03S(x)/0x in the ar-
gument of D. The equation for A4 (x) is the amplitude
transport equation,

9
ox;

]

[ 4 ()2 3R06K)

=0 s
ok,

(2.3)

where we use Latin indices i,j, ... torunover 1,...,N
and where again kK =35 /dx in D. We sum over repeated
indices, with an important exception to be noted later.

There are three methods of solving the Hamilton-
Jacobi equation for the action S(x) that will be of con-
cern to us. One of these is separation of variables; the
second is integrating along characteristics; and the third
method obtains the action S(x) from the knowledge
of a complete set of conserved quantities
A(x,k), ..., Ay(x,k) in involution, i.e., functions that
commute with one another and with D (x,k) under the
(x,k) Poisson bracket. We will call the third method the
“Liouville method,” since it is based on one of the
theorems of Liouville [18]. The second and third
methods will be of special interest to us because they are
easily generalized to noncanonical coordinates in phase
space.

The solutions S(x) of the Hamilton-Jacobi equation
are best viewed geometrically in terms of Lagrangian
manifolds [19,20] in phase space. A Lagrangian manifold
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is an N-dimensional surface in the 2N-dimensional phase
space which, when written in the form k =k (x), is ex-
pressed in terms of a curl-free wave vector, i.e., a vector
field k (x) satisfying 0k, /3x;=0k; /0x;; equivalently, it is
a surface upon which the canonical symplectic 2-form
dk Ndx vanishes. Given a Lagrangian manifold, we can
construct a corresponding action function by integrating
S(x)= f k(x)dx. In view of the curl-free condition on
k (x), the value of the action is independent of the path of
integration, which need not be a ray, i.e, an orbit of the
Hamiltonian D (x,k). If, furthermore, the Lagrangian
manifold is a subset of the (2N —1)-dimensional surface
D (x,k)=0, which we will call the “dispersion surface,”
then the function S(x) satisfies the Hamilton-Jacobi
equation. Conversely, every solution of the Hamilton-
Jacobi equation is associated with a Lagrangian manifold
imbedded in the dispersion surface. In the Liouville
method for solving the Hamilton-Jacobi equation, the
simultaneous contour surface or level set of the A4’s is au-
tomatically a Lagrangian manifold, as a consequence of
the A’s being in involution; and by varying the contour
values, the Lagrangian manifold can be made to lie
within the dispersion surface, thereby giving a solution of
the Hamilton-Jacobi equation.

If the Lagrangian manifold is topologically nontrivial
(typically a cylinder or a torus), then single valuedness of
the wave function requires that the actions be quantized,
i.e., that

-1 -

Ji——;ﬁr‘_k dx=n;+m; /4, (2.4)
where I'; is a closed contour on the Lagrangian manifold,
n; is the corresponding quantum number, and m; is the
Maslov index [20,21], an even integer. A Lagrangian
manifold satisfying this condition will be referred to as a
quantized Lagrangian manifold. When the Lagrangian
manifolds lying in the dispersion surface are topologically
nontrivial, then the only ones that are acceptable for
solutions of the Hamilton-Jacobi equation are those that
are quantized; but unless the parameter (energy or fre-
quency) of D(x,k) is appropriately chosen, such quan-
tized Lagrangian manifolds lying in the dispersion sur-
face generally will not exist. By varying the parameter,
however, the dispersion surface itself is varied, and solu-
tions can be found. The values of the parameter for
which this occurs are the eigenenergies or eigenfrequen-
cies. This is the modern form of the Bohr-Sommerfeld
quantization rule for scalar wave fields, otherwise known
as Einstein-Brillouin-Keller or torus quantization; it can
be stated somewhat more simply for the Schrodinger
equation, for which the parameter E enters into D (x,p)
in a sample way, due to the fact that the time-dependent
version of the Schrédinger equation is first order in time.

Consider now a multicomponent wave field ¥,(x),
satisfying the wave equation

D pt05=0 . 2.5)
We use Greek indices a,B=1,...,M, which we call
“spinor indices,” to index the components of the wave
field; ﬁaﬁ represents a component of the M XM matrix D
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of “orbital” operators, i.e., functions of X and k. We as-

sume D is Hermitian, (5aﬁ)7‘=ﬁﬁa. The multicom-
ponent WK B ansatz is
Yalx)= Ay (x)eSHe, (2.6)

where the amplitude 4 ,(x) is now a spinor with general-
ly complex components. The derivation of the WKB
equations is now more difficult than in the scalar case,
but can be worked out with the help of the Weyl
correspondence and variational principles [1,2,12,22].

The results are the following. At lowest order in € we
have

D o5(x,k) A 4(x)=0 2.7)

where D ,g(x,k) is a component of the M XM matrix

D(x,k) of Weyl symbols of the operator matrix D. The
symbol matrix Daﬁ(x,k), which we call the “dispersion
matrix,”” is itself Hermitian, Daﬁ(x,k)* =DBa(x,k). As in
the scalar case, k is to be replaced by dS /dx inside D 4,
so Eq. (2.7) is a simultaneous equation for S(x) and
A, (x).

We denote the eigenvalues of D g(x,k) by A (x, k),
where u=1, ..., M is a “polarization index,” and where
the subscript 0 will be explained later. We place polariza-
tion indices in parentheses to distinguish them from com-
ponent indices of spinors. The dispersion matrix may
have degeneracies at some points of phase space; we will
refer to these as “mode-conversion points” (not exactly
the same terminology used by other authors). The set of
mode-conversion points forms a surface in phase space
whose dimensionality follows definite rules, depending on
the symmetry properties of the dispersion matrix. For
example, if the dispersion matrix is a general complex
Hermitian matrix with no particular symmetries, then
the mode-conversion points typically form a surface of
codimension 3 in phase space. We will assume that the
eigenvalues AY*(x,k) are distinct and sufficiently well
separated (in a sense to be made more precise later) over
some region of interest in the (x,k) phase space, i.e., that
our region of interest is sufficiently far away from any
mode-conversion point. This is a major simplifying as-
sumption of this paper. Typically, a “region of interest”
is a Lagrangian manifold or a family of Lagrangian mani-
folds, representing physical solutions of the wave equa-
tion.

Equation (2.7) can be converted into an equation pure-
ly in S by noting that it can be satisfied for nonzero
A,(x) only if at least one of the eigenvalues of D van-
ishes. By our assumptions, at most one eigenvalue can
vanish at a time within the region of interest in phase
space; choosing one of these, we have a Hamiltonian
Jacobi equation for S.

A (x,k)=0 (2.8)

where again we set k=09S(x)/dx. Thus there is a
different Hamilton-Jacobi equation for each polarization,
as well as a different dispersion surface and a different ac-
tion S(x), which might with greater clarity be written
S™(x). The eigenvalue A" (x,k) serves as the ray Ham-
iltonian for polarization u.

ROBERT G. LITTLEJOHN AND WILLIAM G. FLYNN 44

We denote the eigenvectors of D g(x,k) by fiz")(x,k),
so that

D ,p(x, k)T (x, k)= A" (x, k)T (x, k) . (2.9)

This equation illustrates a convenient rule, which we fol-
low throughout this paper, of not assuming an implicit
summation on any index (such as p above) that appears
anywhere in an equation as a polarization index. Equa-
tion (2.9) defines a field of eigenvectors over all of phase
space, although the major subset of phase space of physi-

cal importance is the dispersion surface, upon which the
()

right-hand side vanishes. The eigenvectors 7#’ are as-
sumed to be orthonormal and complete,
TWr=8 z%mfg"*—s (2.10)

The phase conventions for the eigenvectors are chosen
in an arbitrary but smooth manner, insofar as possible,
over phase space. A change in the phase convention is
given by a scalar field 6(x,k), specifying the new eigen-
vectors in terms of the old,

T(x,k)—e®%Fr(x k) . (2.11)
Here and frequently below, we drop the polarization in-
dex (u) in an equation referring to a single polarization;
note, however, that both 6 and 7 depend on (u). Equa-
tion (2.11) is a gauge transformation in the sense of
Berry’s theory [6] of adiabatic processes in quantum
mechanics, in which the eigenvector 7 plays the role of
the adiabatically transported quantum state, D,z plays
the role of the Hamiltonian with slowly varying parame-
ters, and the (x,k) phase space plays the role of the pa-
rameter space. We will refer to various quantities as be-
ing gauge invariant or gauge dependent, depending on
their transformation properties under Eq. (2.11); for ex-
ample, the eigenvector 7 itself is gauge dependent.

For topological reasons, it is in general not possible to
find a phase convention for 7(x, k) that is smooth over all
of phase space. For example, if D4 is a complex Hermi-
tian matrix with no particular symmetry, then one may
expect to find a surface of codimension 2 in phase space
upon which 7 becomes discontinuous, due to its overall
phase. This surface typically also of codimension 2
within a particular dispersion surface, and joins up some-
where with the codimension 3 surface of mode conver-
sion points. The surface upon which 7 becomes singular
has the same mathematical structure as the string of a
monopole, so we will call this surface the “monopole
string.” Facts like these are widely appreciated in the
literature on Berry’s phase [8—11] but seem not to have
been applied to the asymptotic behavior of multicom-
ponent wave fields. Strings are important in the con-
struction of electron wave functions in the presence of a
magnetic monopole [23], for which the gauge transforma-
tions are ordinary gauge transformations on the magnetic
vector potential. The monopole string forces one to use
at least two different gauges in constructing the wave
function; as we will show in Sec. IV, completely analo-
gous situations arise in the multicomponent WKB prob-
lem.
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If S satisfies the Hamilton-Jacobi equation (2.8), then
the amplitude that satisfies Eq. (2.7) must be proportional
to the eigenvector 7 (all referring to a particular polariza-
tion ). Thus we can write

A, (x)=B(x)e"r (x,k) , (2.12)

where again k=4S /0x, and where the proportionality
factor is decomposed into its real and positive amplitude
B(x) and its phase y(x). The phase y(x) has no analog
in scalar WKB theory, for which, effectively, y =0. The
equations for B and y can be obtained from the O (e€)
terms in the WKB expansion; that for B is the amplitude
transport equation with A, as Hamiltonian,

OAy(x,k)
2 0V
x) ok,

1

d

O =0, (2.13)

i

with k=095 /0x in A,. Thus finding S (x) and B (x) given
Ao(x,k) is exactly the same problem as finding the action
and amplitude in scalar WKB theory.

As equation for the phase ¥y was derived by Bernstein
and Friedland [1,2]. Their result was later expressed in
terms of Poisson brackets by Kaufman, Ye, and Hui [22],
who wrote it in the form

9L — 72 70k} + /20D gy 787
where ¢ is the parameter of the rays of A, (¢ is not neces-
sarily time), and where the curly bracket is the x-k Pois-
son bracket. This equation gives the rate of change of ¥
along a ray of the Hamiltonian A, i.e., along the orbits
given by Hamilton’s equations,

(2.14)

dx _ )=
dr ~ M=
(2.15)
Ak _(ag)= — 20
a0 ax

The rays of interest lie in the dispersion surface
Ao(x,k)=0, and sweep out a Lagrangian manifold in that
surface.

The first term in Eq. (2.14) can be written
yp=i7%F,=ir'#, so the contribution of this term to y is
ys=i[rldr, 2.16)

where the B stands for “Berry.” This term is an example
of Berry’s phase, as first noted by Yabana and Horiuchi
[7]. The properties of yp are just as in the standard
theory of Berry’s phase, with phase space identified as the
parameter space. For example, the integrand of Eq.
(2.16) can be regarded as a differential 1-form in phase
space,

D7 g, + 2T gk,

Ox; ok;

_. t 0T
i,

ifdr=ir dz, ,  (2.17)

a

where z =(x,k) and where Latin indices a,b, ... are
reserved for phase-space coordinates and run over
1,...,2N. An interesting feature of this manifestation of
Berry’s phase is that the path through parameter space
along which the adiabatic transport takes place is actual-
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ly an orbit of the Hamiltonian A,. As expected, Berry’s
phase is not gauge invariant, but rather transforms ac-
cording to

Ys—Yp—0, (2.18)
so that the product re''® is overall gauge invariant.

The second term of Eq. (2.14) has no name, so we write
v, for it. This term can be integrated along orbits just as
well as the Berry’s-phase term, but the result cannot be
represented as a line integral of a differential form. Thus
the phase 7, is not “geometrical” in the same sense as
Berry’s phase; for example, it depends not only on the
path through phase space, but also on the rate at which
the path is traversed. The second term is, however,
gauge invariant, in spite of the fact that it is represented
in terms of the gauge-dependent eigenvector 7; for under
the gauge transformation (2.11), the second term trans-
forms according to

V2=V + 3D opl15{6, 75} —76{75,6})
=7}2+%k0(72[9’7a} —Ta{’r;’e} )

=y,— {770} =7, (2.19)
since 7 is normalized. (Here we use the algebra of Pois-
son brackets, e.g., { fg,h}=f{g,h}+{f,h}g, etc.) Thus,
in Eq. (2.12), all the gauge dependence on the right-hand
side cancels out, and A4,(x) is gauge invariant, as it
should be.

The development of the multicomponent WKB prob-
lem up to this point is complete in the sense that the am-
plitude and total phase of the wave 1,(x) can be deter-
mined by integrating along rays, assuming suitable initial
conditions have been given. Nevertheless, it presents cer-
tain difficulties when the Bohr-Sommerfeld quantization
problem is considered. These are least severe in the one-
dimensional case, which we consider first.

Suppose the dispersion surface Ay(x,k)=0 is a closed
curve in the two-dimensional (x,k) phase plane, which
can be varied by varying the parameter (energy or fre-
quency) of Ay. The dispersion surface coincides with an
orbit of A, and is also a Lagrangian manifold. Therefore
we have S (x)= f k(x)dx along the orbit in the usual way
for one-dimensional WKB problems. The wave function
will be single valued on going around the orbit if the total
phase, including S, ¥, and the Maslov phase is is an in-
teger multiple of 277. The phase S is the x-k area of the
orbit, and the Maslov phase is (usually) 7. The phase
Yy =vp 17, is of the same order as the Maslov phase and
presumably will affect the quantization condition in the
same way as the Maslov phase, i.e., by a shift in the quan-
tized value of the action by a fraction of an integer. (This
presumption is verified in a numerical study by Yabana
and Horiuchi [7].) The Berry’s-phase contribution to ¥ is
the net accumulated phase due to parallel transport of
the polarization vector 7 around the orbit, and can be in-
terpreted as the net “angle flux” intercepted by the orbit.
The sum of S and y 5 can be regarded as the total area of
the orbit, if we use a modified rule for computing the
area. That is, if we write Q.=dk Adx for the usual,
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canonical symplectic 2-form on phase space, and
Qp=idt} Ndr, for Berry’s 2-form, then we have

S +eyp= fmbhaﬁenB , (2.20)
representing the area of the orbit with respect to the
modified 2-form Q, +eQp.

The idea of including Berry’s 2-form in the symplectic
form on phase space is an appealing one, but it is applied
only selectively. That is, although the area of the orbit is
computed in Eq. (2.20) by using the total 2-form, equa-
tions of motion of the orbit itself, Egs. (2.15), use only the
standard canonical structure. Furthermore, in the case
of higher dimensions, we must find Lagrangian manifolds
in order to solve the Hamilton-Jacobi equation, Eq. (2.8).
A Lagrangian manifold is one upon which the symplectic
form vanishes, but in Eq. (2.8), it will be only the canoni-
cal form which vanishes, not the total 2-form of Eg.
(2.20). (This is not an issue in the one-dimensional prob-
lem, for which all curves in the phase space are Lagrang-
ian manifolds.) Therefore one must say that the idea of
using the total 2-form of Eq. (2.20) is not one that seems
to lead to particular elegance or symmetry. In any case,
there is still the phase y,, which cannot be interpreted in
terms of a modified rule for computing the symplectic
area.

This is not to say that one cannot select out the quan-
tized orbits in a one-dimensional problem by demanding
single valuedness of the wave function; indeed, this has
been done by Yabana and Horiuchi. It is merely to say
that the quantization rule is less appealing and less tract-
able than in the case of scalar WKB theory.

Things get worse for the higher-dimensional case, how-
ever. To be specific, suppose we find that the solutions of
the Hamilton-Jacobi equation (2.8) in a multidimensional
problem are tori. What then are the conditions to be im-
posed to qualify certain of these tori as “quantized?” Of
all the contributions to the total phase of the wave func-
tion, the action S and the Maslov phases are exactly as in
scalar WKB theory. In particular, S is given by the in-
tegral f k dx along a contour on the torus; although S
might be constructed initially by integrating k dx along
the rays of the Hamiltonian A,, nevertheless the contour
can actually be taken along any path on the torus since
the torus is a Lagrangian manifold. This fact is impor-
tant when the Hamilton-Jacobi equation is solved by sep-
aration of variables or by the Liouville method because
the Hamiltonian flows generated by the conserved quanti-
ties give rise to contours on the torus that are indepen-
dent of the orbits of the Hamiltonian in the Hamilton-
Jacobi equation. It is often desirable to integrate k dx
along these alternative contours. Furthermore, the La-
grangian property of the torus implies that the action in-
tegrals of Eq. (2.4) are invariant with respect to continu-
ous deformations of the contours I';, so that the net
phase shift due to S on going around the torus does not
depend on where on the torus the contour is located (see
Fig. 1). This is an important consistency relation in sca-
lar WKB theory, guaranteeing that a torus will satisfy
the quantization condition as a whole, and not just at one
location on the torus.
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FIG. 1. The phase increment due to the action S on going
around a Lagrangian torus is invariant when the path is con-
tinuously deformed. Thus the two closed paths in the figure
give the same phase increment. This fact is important in estab-
lishing the consistency of torus quantization for scalar wave
fields.

In multicomponent WKB theory, however, we also
have to include the phase ¥y =yz+7,. Although the
Berry’s phase y 5 can be represented in terms of a line in-
tegral, we cannot expect the result to be independent of
path on the torus, since the torus is a Lagrangian mani-
fold only with respect to the canonical symplectic form
Q., not with respect to Berry’s 2-form Q5. The situation
in regard to Y, is even worse, since it cannot even be
represented as a line integral. Thinking along these lines,
we begin to doubt whether it is even possible to make a
consistent definition of a quantized torus when the phase
v is included, in spite of the obvious fact that the original
wave equation does possess eigenfunctions and eigenval-
ues. It seems that problems of this sort prevented Berk
and Pfirsch [12] and Yabana and Horiuchi [7] from for-
mulating a satisfactory quantization condition in the mul-
tidimensional case.

We turn now to a reformulation of the multicom-
ponent WKB problem, which circumvents these
difficulties, and allows us to formulate the desired quanti-
zation condition in a clear and general manner. As we
will show, it also has several other advantages.

III. DIAGONALIZING THE MATRIX
OF WAVE OPERATORS

In this section we pursue an idea going back at least to
Clemmow and Heading [13] of diagonalizing the matrix
D of orbital wave operators. The techniques we use for
this procedure, such as introducing a linear transforma-
tion on the wave field and using the Weyl calculus for the
analysis, are closely patterned on the work of Friedland
and Kaufman [15]. Indeed, the work of Friedland and
Kaufman is more general than our analysis here, in that
they considered the problem of mode conversion. The
main difference between their approach and the one we
take here is that they did not quite diagonalize the matrix
of wave operators; instead, they diagonalized only the
dispersion matrix, recovering the formulas discussed in
Sec. II. .

We begin by introducing a new matrix U of orbital
operators, and a new wave field ¢,(x) defined by

$o=0.9, . 3.1)
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We require that U be unitary and therefore invertible, so
that

0,,(05,)1=8,5 (0,)'0,,=5,,. (3.2)
We also require that 18] diagonalize ﬁ, i.e., that

O'DU=A=(a diagonal matrix) , (3.3)
where (O )ap=( o Ba ). We write

A=W, , (3.4)

SO thatj (#) represents the orbital operators on the diago-
nal of A. We also set ¢(“)=¢y, so that the wave equation
in diagonalized form is

AWgw =0 3.5)

The diagonalization decouples the polarizations, and
each individual polarization is described by a scalar wave
equation. Thus the multicomponent problem is reduced
to the scalar problem.

If such a U can be found, then many advantages fol-
low. First, since each polarization satisfies a scalar wave
equation, all the results of scalar WKB theory follow im-
mediately. This includes the standard scalar theory of
Bohr-Sommerfeld quantization, so that all the difficulties
discussed in Sec. II concerning multicomponent Bohr-
Sommerfeld quantization are at once circumvented. Oth-
er important results of scalar theory can now be tran-
scribed to the multicomponent case, such as Van Vleck
formulas for Green’s functions [24], periodic-orbit repre-
sentations for densities of states [25], and wave-packet
techniques [26]. It seems that periodic-orbit expansions
have not previously been considered for multicomponent
wave fields; we will comment on them further in Sec. V.
Furthermore, the diagonalized operators A need not
necessarily be treated by WKB theory; for example, if
caustics or wave chaos makes the WKB analysis of Eq.
(3.5) difficult, it may be possible to solve the wave equa-
tion directly. This is the approach commonly taken in
the Born-Oppenheimer approximation, which is closely
related to the methods described here, and which we will
say more about in Sec. V. N

We find the desired matrix of operators U by finding its
corresponding matrix U(x,k) of Weyl symbols. We be-
gin by deriving the condition on the symbol matrix that
the corresponding operator matrix should be unitary.
We do this by applying the Moyal formula, Eq. (A3), to
the second of Egs. (3.2). We assume that the symbol ma-
trix U can be expanded in powers of €,

U(x,k)=U0(X,k)+eUl(x,k)+ tet (3.6)

and we also expand the Moyal formula, as in Eq. (A4).
This allows us to solve for U order by order.

The representation of U as a power series in €, as
shown in Eq. (3.6), is definitely an assumption, to be test-
ed by the success or failure of the program. Actually, un-
itary operators often have symbols which are not slowly
varying in phase space; this is the case for the time evolu-
tion operator in quantum mechanics. However, as shown
by Friedland and Kaufman [15], it turns out that the ex-
pansion of Eq. (3.6) is justified if we stay away from
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mode-conversion points.
At zeroth order in €, the expansion gives simply
ulu,=1, 3.7

so that Uy(x,k) is a unitary matrix (or a field of unitary
matrices over phase space). At first order, we find

UlU,+UlU,+(i /2){U}, Uy} =0, (3.8)

where, when we write { A,B}, we mean the matrix whose
aff component is given by { 4,,,B,5}. Thus the rule is
that the positioning of the matrices determines the distri-
bution of indices, exactly as in matrix multiplication. For
matrices, it is not true that { A,B}=—{B, A}. We now
solve Eq. (3.8) for U, by first writing

U,=—iUyG+iA), (3.9)

where both G and A are Hermitian, so that we have
decomposed iUgUl into its Hermitian and anti-
Hermitian parts. Substituting this into Eq. (3.8) and pro-
jecting out the Hermitian and anti-Hermitian parts, we
find

A=—(i/4){U},U,} , (3.10)

but we find no condition at all on Q

Altogether, the result is that if U is a unitary matrix of
orbital operators, then its symbol matrix, if it can be
represented as a power series in €, has the form

U=U,[I—ie(G+L{U},Uy})+0(e))], (3.11)

where U, is unitary and G is Hermitian. Neither U, nor
G is further determined by the requirement that U be un-
itary. No new_ information is obtained by the unitarity
condition on U in the reverse order [the first of Egs.
(3.2)]. We find that the symbol matrix of a unitary matrix
of operators is not itself unitary; it is unitary at lowest or-
der, but the term represented by Eq. (3.10) spoils the uni-
tarity of the symbol matrix at next order,

Next we require that U diagonalize D, as in Eq. (3.3).
This will determine both U, and, in principle, G. We as-
sume that the symbol matrix D is not ordered in €, but
we still find it necessary to order the symbol matri)\( A,
which is diagonal like the operator matrix A it
represents. We write A“)(x,k) for the diagonal elements
of A, and order these according to A=A,+eA;+ -,
or

AW(x, k)=A(x, k) + e x, k) + - - - (3.12)

The Moyal formula must be applied twice in transcrib-
ing Eq. (3.3) to symbols. At lowest order, we find
U{DU,=A,, (3.13)

so that U, is a unitary matrix which diagonalizes D, and
so that the eigenvalues of D are A§*). Thus the notation
A§” has the same meaning here as in Sec. II. As for the

eigenvectors 7' of D, these are the columns of Up,
T4 (%, k) =Ulg, (%, k) . (3.14)

At next order, we have
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ulDpU,+UDU,+ (i /2){U},D}U,
+(i /2){UlD, Uy} =A, .
(3.15)

For subsequent steps we introduce some useful notation
by placing presuperscripts before matrices when matrix
multiplication does not take place from left to right. For
example, if A, B, and C are matrices, we write
AB=2B'4, (ABC)'=>AT?B"IC', etc. When matrices
are used in Poisson brackets, we use the sequencing num-
bers to indicate the distribution of indices when an ex-
pression is transcribed to index notation. For example,
{'4,°B}?C is the matrix whose af component is
{AgByp}C,p; and {A,B}=—{’B,'A}. When
sequencing numbers are not given, it is assumed that the
sequence is left to right.

Using these rules, we transform the fourth term on the
left-hand side of Eq. (3.15) as follows:

{UID, Uy} = {AUL, Up} =Ao{ U}, Uy} +2U8{ 1A, >Up} .
(3.16)

Similarly, the third term on the left-hand side of Eq.
(3.15) can be rewritten

(U}, D}U,={U{,DU,} —2D{'U{,’U,}
={U},Up} A+ {'U,3A0}2U,—2D{'U},°U, ) .
(3.17)

The middle term on the right-hand side of this equation
can also be written as —US{UO, Ay}, since
U3U0=I=const. Finally, the first two terms in Eq. (3.15)
are Hermitian conjugates; the first, for example, can be
rewritten with the help of Egs. (3.9) and (3.10):

UIDU,=—iA(G+1{U},Up}) . (3.18)

Altogether, we have transformed Eq. (3.15) into

i

i
Z AUl U} — EUg{UO,AO} +H.c.

—i[AO,G]—é DULLAU=A,, (3.19)

where the square brackets are the matrix commutator.
Next we demand that both sides of this equation be di-
agonal. The commutator vanishes on the diagonal,

—i[Ap, G, =iG,, (A =25 . (3.20)

We see that Eq. (3.19) will only determine the off-
diagonal elements of G. This makes sense, because the
diagonal elements of G do nothing except to bring about
an O (€) gauge transformation on the eigenvectors. That
is, if we replace Uy by Uy(1—i€Gy;,,), then the effect is a
rephasing of the uth column of U, i.e., the eigenvector
7%, by the phase factor e " Cumm1—i €G,, (no sum on
u). Therefore, without loss of generality, we can take the
diagonal elements of G to be zero.

The corrections A to the symbols of the operators
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A are obtained from the diagonal elements of Eq. (3.19).
Working out each of the terms, we find

)\.1 = —iT;{Ta,A.O} —(i/2)(DaB—7\.06aﬁ){T;,TB} N (3.21)

where Ay, A, and 7 all refer to a single polarization u.
This equation is very similar to Eq. (2.14), the main
difference being that here we have a correction to the
Hamiltonian, whereas there we had a correction to the
phase of the wave function. The analogy between the two
equations would be even stronger if a term involving
Aod,p were inserted into Eq. (2.14); there would be no
harm in doing this, since this term would vanish on the
dispersion surface A;=0. We cannot, however, drop this
term here, because it contributes to the equations of
motion.

We find it convenient to split A; into its two major
terms, by writing A=A,z +A,,. The first term is

Ap=—it {1, Ao} » (3.22)

where the B stands for “Berry”’; this term is gauge depen-
dent, transforming according to Az —A5+{6,Ay}. The
second term is

}\.12=—(i/z)(DaB_)\.osaB){T;,TB} 5 (3.23)

it has no name and is gauge invariant. The gauge invari-
ance of the part of A, involving D,z was proven in Eq.
(2.19), and the proof for the part involving A8, is simi-
lar.

The off-diagonal elements of G are chosen so that the
off-diagonal elements of A; in Eq. (3.19) will vanish.
Thus our ability to diagonalize the wave operator at first
order depends on our ability to solve for the off-diagonal
elements of G. From Eq. (3.20), it is obvious that this
cannot be done if D is degenerate, i.e., if Af’=AY" for
some pu7=v. The same is true if D is nearly degenerate, in
the sense that two of its distinct eigenvalues should differ
by an amount that is O (€), for in that case the ordering
scheme of Eq. (3.6) is invalidated. One can see that the
situation here is closely reflected in degenerate perturba-
tion theory in quantum mechanics. These points have
been discussed more fully by Friedland and Kaufman
[15]. In any case, we will always assume that D is far
from degenerate. As for the matrix G, it turns out that
we never need it at the order to which we are working;
this is in accordance with usual ideas of WKB theory, for
the correction terms U; can be thought of as O (e€)
corrections to the amplitude, which are usually ignored
in the simplest treatments.

We have therefore succeeded in diagonalizing the ma-
trix of wave operators to the order to which we are work-
ing, in which Eq. (3.21) is a principal result. We now
turn to WKB treatment of the diagonalized wave equa-
tions.

IV. WKB THEORY
AND BOHR-SOMMERFELD QUANTIZATION

As mentioned earlier, it is not strictly necessary to use
WKB theory to treat the diagonalized wave equations.
That is, we have computed the symbol A=2A,+ €A, of the
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wave operator X; by using the Weyl calculus to turn the
symbol back into its operator, we might consider solving
the diagonalized wave equation (3.5) directly. Of course,
there is still an approximation involved in this because we
have truncated the expansion of the symbol; but a direct
solution of the wave equation might be useful in order to
avoid difficulties of WKB theory, such as caustics or
chaotic rays.

Nevertheless, we will proceed in this section to use
WKB theory to solve the diagonalized wave equation
(3.5) and to convert the result back into an expression for
the original wave field ¥,(x). We will pay special atten-
tion to the Bohr-Sommerfeld quantization problem.

In principle, the approach is simple. The wave equa-
tion is 7A»¢=0 (we drop the polarization indices as much
as possible for the time being, it being understood that we
are working with a definite polarization u); to analyze
this by WKB theory, we posit the usual scalar WKB an-
satz

d(x)=B(x)eSxe 4.1)

The symbol A(x,k)=2Ay(x,k)+ €A (x,k) is the ray Hamil-
tonian for the field ¢(x); thus S(x) satisfies the
Hamilton-Jacobi equation

Alx,k)=0, 4.2)
and B (x) satisfies the amplitude transport equation

RN 2 0MX,K) |

ax, B(x) 78k,~ 0, 4.3)
where in both equations k in A is replaced by

k(x)=0S(x)/3x. Note that S(x) and B(x) here differ
from their counterparts in Sec. II in that the Hamilton-
Jacobi and amplitude transport equations involve the full
ray Hamiltonian A(x, k) and not just its lowest-order part
Ao(x,k). For the same reason, the dispersion surface
A(x,k)=0 in phase space is different, as are the Lagrang-
ian manifolds imbedded in it.

Having found a solution ¢(x) by these means, we must
transform it back to the original physical wave field
1,(x), using Eq. (3.1). Since the components of U are or-
bital operators, we write Eq. (3.12) in the form

1/Ja(x)=fdy(x|0au|y Yo(y) .

Here we are assuming that only one polarization ¢=¢*)
is nonzero. We know the symbol of 00# to lowest order
in € by Egs. (3.6) and (3.14), it is simply
T8 (x,k)=T7,(x,k). Using Eq. (A2) to express the x-space
kernel of an operator in terms of its Weyl symbol, we
have

4.4)

1 e
a( )= dy dk ik(x —y)/e
Yalx (277'6)Nf > are

X7, x—;l,k B(peiSW/e | 4.5)

Evaluating this by the stationary-phase approximation to
lowest order, at which the correction terms to U,, =7,
are not needed, we find
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Yo (x)=To(x,k)B (x)eS ¢+ 0(e) , (4.6)
in which k =38 /0x in 7. This is a simple result, which
reproduces the multicomponent WKB ansatz of Sec. 11
and Eq. (2.12), but without the extra phase ¥. One might
say that ¥ has been absorbed into S by the change in the
ray Hamiltonian and the consequent change in the equa-
tion which S must satisfy.

Let us now question how Eq. (4.6) changes under a
gauge transformation. Certainly we demand 9,(x) to be
gauge invariant, and we know how 7 transforms [Eq.
(2.11)]. Therefore if the right-hand side is to be gauge in-
variant overall, then the change in 7 must be compensat-
ed by a change in S, i.e., S must transform according to
S(x)—S(x)—e€b(x,k), where k=05 /9x. We will give
an explicit proof of this transformation law below. The
gauge dependence of S is consistent with the fact that the
ray Hamiltonian contains the gauge-dependent term A,p.
In geometrical terms, the Lagrangian manifold that sup-
ports the solution S(x) to the Hamilton-Jacobi equation
will change when we do a gauge transformation, because
the Hamiltonian itself and therefore the dispersion sur-
face defined by it change. Since these objects are all
gauge dependent, it is important to understand what the
truly gauge-invariant geometrical constructions are in the
classical phase space because only these can represent
physical reality.

Similar considerations arise when we consider Bohr-
Sommerfeld quantization. In a sense, Bohr-Sommerfeld
quantization is straightforward; we simply look for the
invariant tori of the total ray Hamiltonian A=A,+e€A,,
and then quantize the actions according to Eq. (2.4). But
if the tori are not gauge invariant, then it is not clear how
we can get a gauge-invariant quantization rule, as we ex-
pect.

In our analysis of this problem, we have gradually
come to understand that the phase-space coordinates
(x, k) themselves are, in a sense, gauge dependent, at least
when they are used to describe the dynamics of a single
polarization which has been decoupled from the others.
These coordinates are not gauge dependent when used to
describe the original wave field 1,(x) because in the origi-
nal description, no gauge-dependent eigenvectors have
been introduced yet. An example of what we mean by
these statements is seen when we transform a physical
wave operator such as D from the original matrix form
to its diagonalized form, and express the latter in terms of
symbols. In the original form, the wave operator D ;\md
its symbol matrix D are gauge invariant; but when D is
diagonalized, the symbol A of a diagonal element turns
out to contain the gauge-dependent term A;;. We now
understand this term to be, in a sense, a compensation for
the intrinsic gauge dependence of the coordinates (x,k),
when they are used to describe a single polarization. We
have found a similar phenomenon when the original wave
equation possesses conserved quantities, such as the an-
gular momentum in certain quantum-mechanical applica-
tions. We will report on these calculations in detail in the
future; for now we simply remark that a gauge-invariant
conserved quantity such as angular momentum,
represented by a wave operator, ends up having a symbol
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whose expression in the (x, k) coordinates is gauge depen-
dent, after the operator has been diagonalized like D in
order to represent its effect within a single polarization.

We develop this point further by arguing for the con-
cept of a covariant derivative. In order to simplify the
following discussion, we assume for the time being that
the eigenvectors 7 depend only on the configuration space
variables x (a common case in practice). The phase-space
variable k is the symbol of the operator —ied/dx, but
0/0x has different implications when acting on ¥,(x)
than when acting on ¢(x). In the former case, there are
no issues of gauge dependence; but in the latter there are.
To see this, we write ¢(x)=74(x),(x), as follows from
Egs. (4.1) and (4.6), and we consider a small increment
Ax. We have

%;%Ax — (x4 Ax W lx +Ax)— T (xW(x) . (4.7)

This equation involves a comparison of 7 at two neigh-
boring spatial points x and x +Ax at which differing
phase conventions can be applied. Thus the operator
0/0x itself, when applied to ¢, should be thought of as
gauge dependent.

On the other hand, the theory of Berry’s phase [14]
gives rise to a concept of parallel transport of polariza-
tion vectors, which allows one to make an intrinsic com-
parison between polarization vectors at two neighboring
spatial points. We let 7(x +Ax) be the vector which is
the parallel transport of 7 from x to x + Ax; it can differ
from 7(x + Ax) only by an infinitesimal phase factor

F(x +Ax)=(1+iAy)r(x +Ax) . (4.8)

Since the rule of parallel transport is x)Fx +Ax)=1,
we have

Ay=iTT%;;Ax .

In terms of the parallel transported vector, we define a
covariant derivative operator D,, whose action on

=721, is given by
(D, d)Ax =F %(x +Ax M (x +Ax)—15(x)P,(x) ,

(4.9)

(4.10)

in analogy with Eq. (4.7). In contrast to d/9x, the opera-
tor D, can be thought of as gauge invariant. By combin-
ing these results, we relate D, to d/9x, finding
d + OT
D, =—+7—.
* 3x | ox
Now we multiply by —ie and transcribe operators to
symbols. This gives

(4.11)

k'=k—iert 9T
ox
where k' is the symbol for —ieD,. Therefore the vari-
able k', unlike k£, may be thought of as gauge invariant.
Next we consider vectors 7, which depend on k as well
as x, and repeat the analysis above. We find a new co-
variant derivative operator
S

d
D=3 7 5k -

(4.12)

(4.13)
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H“
and a new, gauge-invariant phase-space variable x’,
or
'=xtier—— , 4.14
x'=xtier — (4.14)
which is the symbol of +ieD,.
Combining Egs. (4.12) and (4.14), we write
z)=z,—ier'{1,2,} , (4.15)

~where z=(x,k) and z'=(x',k’). We regard the primed

variables z’ as representing a new coordinate system in
phase space; as we will show in several ways, these coor-
dinates are to be thought of as intrinsically gauge invari-
ant when describing the dynamics of a single polariza-
tion.

For example, let us express the ray Hamiltonian A in
terms of the primed coordinates. We transform the
Hamiltonian as a scalar, writing A'(x’,k’)=A(x,k). A
correction term arises in the transformation of A, for we
have

Ao(2)=Ag(z' +ier {r,2'})
=Ao(z')Fier {1,A0}

=Ag(z')— €A p(z") . (4.16)

In the O (€) term, we are of course free to replace z by z'.
We see that the correction term from A, exactly cancels
the Berry’s-phase term A, so that overall we have

A(z')=Ay(z') +ehpy(2") . 4.17)

This is a pleasing result, for it shows that the ray Hamil-
tonian, properly expressed in terms of the gauge-
invariant, primed coordinates, is given by a gauge-
invariant expression. It was by looking for a transforma-
tion which would do this that we originally discovered
the primed coordinates.

Similarly, when conserved quantities such as angular
momentum, represented by symbols of operators acting
on a single polarization, are expressed in terms of the
primed coordinates, the resulting expressions become
manifestly gauge invariant. The details of this will be
presented in the future.

Gauge-dependent ray Hamiltonians much like A arise
in an important physical context, namely in the WKB
treatment of the (scalar) Schrodinger equation for a
charged particle in a magnetic field. Here the gauge
transformations are the usual transformations
A— A+Vg on the vector potential (we use bold face
symbols for 3-vectors), and the Hamiltonian is just
(1/2m)(p—e A/c)®. We also know how the wave func-
tion must transform, namely ¥(x)—e€®/#y(x), in or-
der to represent a definite physical state. In WKB
theory, we find a Lagrangian manifold imbedded in the
energy shell (dispersion surface) H =E, and compute an
action S(x)= fp-dx in the usual way. If we now do a
gauge transformation, then the Hamiltonian and the en-
ergy shell defined by it change accordingly. Therefore
the Lagrangian manifold imbedded in it must change as
well. More precisely, if the Lagrangian manifold is ex-
pressed in terms of the coordinates (x,p) say by functions
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p=p(x), then this functional form must change under
the gauge transformation, for the old Lagrangian mani-
fold will in general not even be embedded in the new en-
ergy shell. [Equivalently, the old momentum field
p=p(x) will not satisfy the new Hamilton-Jacobi equa-
tion H (x,p)=E.]

The question therefore arises, how do we know when
the new Lagrangian manifold in the new gauge represents
the same physical state as the old Lagrangian manifold in
the old gauge? The answer may be expressed in terms of
the kinetic momentum p’'=mv=p—e A/c, which is
gauge invariant and directly measurable in a physical
sense, unlike the canonical momentum p. The variables
(x,p’) are perfectly good coordinates in phase space, and
a given Lagrangian manifold can be expressed in terms of
them, say, by functions p’=p’(x), even though these
coordinates are noncanonical. Let us now suppose we
have found a Lagrangian manifold by solving the
Hamilton-Jacobi equation in some gauge, and let us ex-
press it in terms of the coordinates (x,p’) by functions
p'=p'(x). One can show, then, that if this expression is
held fixed but the gauge is changed, then in the new
canonical coordinates (x,p) the manifold is still Lagrang-
ian and in fact satisfies the new Hamilton-Jacobi equation
in the new gauge. Because of this property, it is reason-
able to assume that any two Lagrangian manifolds in any
two gauges will represent the same physical state if their
expressions in the noncanonical but gauge-invariant coor-
dinates (x,p’) are the same. In fact, one can show that if
the expression for a Lagrangian manifold in the coordi-
nates (x,p’) is held fixed, then under a gauge transforma-
tion the action S (x) changes precisely in such a manner
as to cause the WKB wave function to transform accord-
ing to Y(x)—e®®/%cy(x) as required. We will not
prove these statements because a closely related proof
will be given below for the ray Hamiltonian A and be-
cause they are physically reasonable anyway.

The coordinates (x,p’) constitute a prime example for
the theory of noncanonical coordinates outlined in Ap-
pendix B. The Hamiltonian in these coordinates is
|p’'|2/2m and is manifestly gauge invariant, and the varia-
tional form of the equations of motion is

e lp'l? . _
+—=A -dx— dt=0. 4.18
sf |p - Ax) | dx—- (4.18)
The fundamental Poisson brackets are {x;,x;}=0,

{x;,pj}=8;;, and {p/,p;}=(e/c)€;, B, where B is the
magnetic field. Action integrals are computed by

1

4.1
Py , (4.19)

'~dx+§A-dx

involving the gauge-invariant magnetic flux in the second
term.

Returning now to our multicomponent WKB problem,
we will show that our coordinates z'=(x’,k’) in Eq.
(4.15) are noncanonical, very much like the coordinates
(x,p’) above. We have already transformed the ray Ham-
iltonian to the primed coordinates and obtained Eq.
(4.17); we will now transform the symplectic 1-form, as in
Eq. (B4), and extract an exact differential, as in Eq. (B6).
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If we write £(z)=(k,0) for the components of the sym-
plectic 1-form in the canonical coordinates z =(x,k),
then we find

kdx =£,(z)dz, =&,(z' +ier {r,2'})
X [dz, +ied(r'{7,z.})]
=¢,(z')dz, +ie7j{ 7,2} Qp,dz, +edg ,

(4.20)
where (Q is defined by Eq. (B8) and where
—i .t - _; 197
g(z)=it'{r,2,}€,(2)=it {7,x;}k;=—iT ok, k; .
(4.21)

(In Appendix B we used contravariant and covariant in-
dices to emphasize the tensorial character of various
quantities under phase-space transformations; here for
simplicity we use uniformly lower indices.) In Eq. (4.20),
we can set O, =—TI,, [defined in Eq. (B13)], since the
coordinates z are canonical. Again, we are free to write
either z or z' in the O (€) terms.

The middle term on the right-hand side of Eq. (4.20)
can be simplified by writing

or

it {7,2,}Qp,dz,=—it 5, TesToadz,
[4
. + OT .
=i ngza=w)rd‘r; 4.22)

a

we see that it is Berry’s differential 1-form. Therefore we
can write §,(z)dz, =§(z")dz, +edg, where

g;(z')=§a(z')+ierfsa—? , 4.23)
Za
or, equivalently,

£ dz,=k'dx'+ierdr . (4.24)

In the primed coordinates, the total symplectic 1-form
contains the canonical expression k'dx’, plus Berry’s 1-
form as a correction. Thus action integrals can be com-
puted in the primed coordinates according to

=1 Grrde'+iert
J zwﬁ(kdx +ierldr)

=1 (dk' Adx'+ied Adr)

27T area

(4.25)

this gives a modified but gauge-invariant rule for comput-
ing areas in phase space, as suggested already in Eq.
(2.20).

The exact differential € dg does not affect the equations
of motion, so we can write the variational principles for
the equations of motion in the two coordinate systems z
and z' as follows:

8 [ k dx —[Ao(z)—ier' {7, Ao} +€hyy(2)1dt
=5 [ (k'dx'+ier'dr)

—[Ag(z") Fery(z')]de=0 . 4.26)
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Thus the effect of the coordinate transformation z —z’
has been to shift the Berry’s-phase term from the Hamil-
tonian into the symplectic 1-form. We feel that this is
where it belongs, for with Berry’s phase in this location,
all physical computations involving the rays are manifest-
ly gauge invariant. For example, the components of the
symplectic 2-form are

Qu=—Tgptie | —F 7=+ 4.27)

the second term represents Berry’s 2-form and is gauge
invariant. By inverting the matrix Q;, we obtain the fun-
damental Poisson brackets J,, = {z,,z; }, which are gauge
invariant like Q;,. Since both the fundamental Poisson
brackets and the ray Hamiltonian A’ =A,+ €A, are gauge
invariant, so are the equations of motion 7, ={z,,A'}. So
also are the Poisson brackets of observables whose ex-
pressions in the primed coordinates are gauge invariant;
as mentioned earlier, physically meaningful quantities
such as angular momentum have such gauge-invariant
expressions in the primed coordinates (but not in the
unprimed ones). Incidentally, we recommend that when
inverting Q, to get the fundamental Poisson brackets
J.p, the inversion be carried out exactly, without truncat-
ing at O (€); in this manner, important identities such as
the Jacobi identity and various conservation laws will
have an exact representation.

A word of warning is in order in Eq. (4.26), for there is
apparently a shortcut in transferring the Berry’s-phase
term from the Hamiltonian to the symplectic 1-form,
which, however, is incorrect. That is, if we write,

dar

dt

then it appears that we have accomplished the transfer-
ral. The reason this is incorrect is that we have
effectively used Z={z,A,} in the second equality; while
these are the correct equations of motion (to lowest or-
der), nevertheless it is not legitimate to use the result of a
variational principle before the variation is carried out.
In fact, in actually deriving Eq. (4.26), we have used only
coordinate transformations and the addition of exact
differentials to the phase-space Lagrangian, both of
which are legitimate operations. Actually, it is a good
thing that Eq. (4.28) is not correct, for it is a different re-
sult from that shown in Eq. (4.26). For, although Eq.
(4.28) seems to cause the form of the phase-space La-
grangian to change into the desired form, it does not
change the coordinates. When carried out to higher or-
der in €, a trick such as Eq. (4.28) does not even agree in
form with the correct result.

Having established the importance of the noncanonical
coordinates z’, we now consider noncanonical methods
for solving the Hamilton-Jacobi equation. We do not
propose to transform the Hamilton-Jacobi equation or
the action function S(x) to noncanonical coordinates;
while it seems that such a transformation could be
defined, the result would be somewhat nonstandard, and
for the most part does not seem to be needed anyway. Of
course, for some purposes, such as the determination of

—Agdt=ier {r,Ao}dt =ier “—dt=ier'dT , (4.28)
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Bohr-Sommerfeld eigenvalues, we do not need S (x), but
only invariant Lagrangian tori which are imbedded in the
dispersion surface. The actions of these tori must be
quantized as in Eq. (2.4).

The Liouville method can be an effective way of finding
invariant Lagrangian manifolds and is easily transcribed
to noncanonical coordinates. Suppose, for example, we
have found N conserved quantities 4, ..., Ay in invo-
lution, expressed as functions of z’. If 4 represents phys-
ically meaningful quantities, such as angular momentum,
then the expressions of the A4 in terms of z’ will be gauge
invariant. The involution condition { 4;, 4;}=0 is also
gauge invariant in the coordinates z’, as is the condition
that they be conserved, { A;,A'} =0. The level sets of 4
are the N-dimensional surfaces A4,(z')=a;, where a are
the contour values; these level sets are Lagrangian mani-
folds, and can be represented analytically by solving the
equations A;(x',k')=a; for k', giving k'=k’'(x’',a). By
varying a and possibly the parameter (such as frequency
or energy) of the ray Hamiltonian A'(z’), we can find La-
grangian manifolds lying within the dispersion surface. If
these Lagrangian manifolds are topologically nontrivial,
they must be quantized by computing the actions; by Eq.
(4.25), the action integrals are gauge invariant and can be
computed entirely within the coordinates z’. We have ac-
tually used this method in applications to particles with
spin in quantum mechanics, as we shall explain in the fu-
ture.

The Liouville method need not be used only for quanti-
zation, i.e., bound state, problems, but is also useful for
unbound systems. For example, Green’s functions are
important in calculations involving antennas in the radia-
tion of electromagnetic waves in plasmas, and their
asymptotic behavior can be described in terms of La-
grangian manifolds in phase space, just like any other
WKB wave function [24]. The Liouville method can be
applied to Green’s functions because the complete set of
commuting observables whose level sets are the relevant
Lagrangian manifolds is the set of the components of the
initial position of a family of rays. Similar considerations
apply in scattering problems, for which the complete set
of commuting observables are the components of the ini-
tial momentum or wave vector, far from the scattering
region.

Lagrangian manifolds can also be determined by in-
tegrating along orbits of the ray Hamiltonian. If this is
done in the coordinates z’, in which the equations of
motion are gauge invariant, then a representation for the
Lagrangian manifold in the primed coordinates, specify-
ing a definite physical state, emerges automatically. In
bound problems, the orbits are typically dense on their
tori, and serve to define them; in unbound problems such
as scattering problems, the integration of rays often be-
gins from an initial surface, so that the rays sweep out the
desired Lagrangian manifold inside the dispersion sur-
face.

As for bound problems, the fact that tori can be found
and represented by purely gauge-invariant means and the
fact that the action integrals are also gauge invariant give
us a Bohr-Sommerfeld quantization rule for multicom-
ponent wave fields which applies in any number of spatial
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dimensions, which is manifestly gauge invariant, and
which has the same geometrical clarity as in the scalar
case. The formulation of such a quantization rule was
one of the major goals of this paper. Notice that, unlike
the superficial incorporation of Berry’s phase in the com-
putation of areas in Eq. (2.20), here Berry’s phase enters
at a fundamental level. Not only are action integrals and
symplectic areas computed with the inclusion of Berry’s
phase, but so are the equations of motion, through the ex-
tra terms in the symplectic 2-form and in the fundamen-
tal Poisson brackets. Furthermore, Lagrangian mani-
folds are manifolds upon which the total symplectic 2-
form, shown in the second integral in Eq. (4.25) and in-
cluding Berry’s 2-form, vanishes. Therefore open in-
tegrals of the symplectic 1-form on the Lagrangian mani-
folds are invariant with respect to continuous deforma-
tions of path; one encounters none of the awkwardness
discussed in Sec. II when attempting to construct a con-
sistent quantization condition. Notice also that in order
to compute the eigenvalues, it is never actually necessary
to commit oneself to a particular gauge for 7(x,k). This
is true even in the computation of action integrals, if
Stoke’s theorem is used as in Eq. (4.25).

For unbound problems where quantization is not an is-
sue, especially when one wishes to integrate along rays,
one might argue that all the present preoccupation with
Berry’s phase and noncanonical coordinates is unneces-
sary, and that it would be simpler just to use the ray and
transport equations presented in Sec. II. Nevertheless,
because unbound systems are often described by complete
sets of commuting observables, and because physical ob-
servables are represented by gauge-dependent quantities
in the canonical z coordinates, we feel that the considera-
tions raised here are important not only for quantization
problems, but also for unbound problems. A detailed de-
velopment of these subjects is too substantial to go into
here; we hope to deal with them more explicitly in the fu-
ture.

Let us now consider the determination of wave func-
tions, which requires the knowledge of the action S (x).
The action is intrinsically gauge dependent, so the calcu-
lation cannot be carried out exclusively in the coordinates
z'. It is possible, however, to treat the calculation of
S(x) as a final, gauge-dependent step, superimposed on
otherwise gauge-invariant procedures. For example, in
the Liouville method, once the functions k'=k’(x’) are
determined, they may be transformed by Eq. (4.15) into
the functions k =k(x), which will automatically
represent a curl-free wave-vector field. One can then in-
tegrate immediately, obtaining S(x)= f k(x)dx. Alter-
natively, when integrating along orbits in the z’ coordi-
nates, one can compute S (x) by accumulating an integral
S(x)= [“(k'dx'+ier'dr)+elg(z')—g(2)], (4.29)

Zo
where z, and z' are, respectively, the initial and final
points on the orbit.

In the computation of S(x), by whatever means, it is
necessary to choose a gauge for 7(x,k). This is a step
that inevitably contains an arbitrary element, and which
will therefore make all explicit formulas more obscure
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and difficult to interpret. This is partly why we have
developed the theory as far as possible with gauge-
invariant constructions.

Furthermore, one may well encounter monopole
strings when choosing a gauge. For example, if the wave
field ¥,(x) has two components, then the vectors 7,(x,k)
can be modeled as two-component Pauli spinors.
Quantum-mechanical rotation operators can be applied
to these, showing that two-component, normalized eigen-
vectors 7, to within an overall phase, are represented by
points on a sphere. This sphere is essentially the same as
the Poincaré sphere, which is used for describing polar-
ization states of light in optics. Of course, the original
wave field need have nothing to do with spinors or quan-
tum mechanics for this formalism to be useful. Spinor
formalism of this kind is widely discussed in the literature
on Berry’s phase [8—-11], but seems not to have been used
much in applications in plasma physics. In any case,
monopole strings arise because it is impossible to define a
smooth phase convention for 7 over the sphere; instead,
there must be a singularity at at least one point on the
sphere. This point can be thought of as the point where
the monopole string, emanating from the center of the
sphere, crosses the surface. The location of the string can
be moved to any place on the sphere by a gauge transfor-
mation, but the string cannot be transformed away.
Often when working in the northern hemisphere, it is
convenient to choose a gauge which places the string at
the south pole, and vice versa. One then has two gauges
which overlap by extending each a small amount across
the equator.

In the WKB treatment of the multicomponent wave
field, a definite physical state will correspond to a definite
Lagrangian manifold in the phase space. In N spatial di-
mensions, the Lagrangian manifold will be N dimension-
al, so that when computing the action S(x), it will be
necessary to choose phase conventions for 7(x,k) over
the N-dimensional Lagrangian manifold. At each point
of the Lagrangian manifold, the eigenvector = will corre-
spond to some point on the sphere discussed in the
preceding paragraph, so that the WKB problem gives us
a mapping from the N-dimensional Lagrangian manifold
to the two-dimensional sphere. If this mapping should
cover the entire sphere, which it is likely to do for large
enough N, then the monopole string will be unavoidable
in any gauge. It will then be necessary to use two or
more choices of gauge, with overlap regions, to cover the
Lagrangian manifold. The different actions S(x) in the
different gauges will have to agree in the overlap region,
in the sense that if one action S(x) in one gauge is prop-
erly transformed to the other gauge, then it will give the
same action function S(x) as already computed in the
other gauge. The necessity of dealing with monopole
strings is not limited to the formalism of this paper, but
would also arise in the traditional formalism discussed in
Sec. II.

Let us now give an explicit proof that the action S (x)
transforms according to S —.S —e€6 under a gauge trans-
formation, if the representation of the Lagrangian mani-
fold in the coordinates z’ is held fixed. This will also veri-
fy the claim made earlier, that a Lagrangian manifold
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whose representation is fixed in the z’ coordinates
represents a definite physical state.
Let the Lagrangian manifold be represented by
k =k(x) in some gauge, and let this relation be
'=k’(x') when transformed to the primed coordinates.
The functional form of k’(x’) is held fixed during the
gauge transformation, which means that the functional
form of k (x) must change. By Egs. (4.12) and (4.14), we
express k (x) in terms of k'(x’), finding
or , ar 3k

= 1 t
k(x)=k'(x)t+ier ax T 3k ox

; (4.30)

the term in the large parentheses can be thought of as the
total derivative of 7 with respect to x. From this it fol-
lows that k (x) transforms according to

20 20 3k

kG —k(x)=€ |5+ 3 ax

, (4.31)

so that S (x)= [ k (x)dx transforms according to

S(x)—S(x)—eb(x,k(x)), (4.32)

as claimed.

Finally, we comment briefly on the amplitude trans-
port equation, Eq. (4.3). Since the O(€) corrections to
the amplitude B (x) are not needed at the order to which
we are working, we are free to exchange primed and
unprimed coordinates at will in Eq. (4.3). But if the
gauge-invariant equations of motion in the primed coor-
dinates have been used to find Lagrangian manifolds,
then these coordinates may be preferable. For example,
we can replace Eq. (4.3) by

—a~[B(x')2x,.’]=0 R

. (4.33)
ax;

where %/ ={x/,A’'}, so that the amplitude transport equa-
tion is manifestly gauge invariant and yet still has the
form of a continuity equation for a conserved current.
Thus all the standard techniques for solving for B (x) can
be applied.

When the Liouville method is used to find Lagrangian
manifolds, another approach is possible. If the conserved
quantities are A;,..., Ay, then it can be shown [24]
that the amplitude B (x) for the wave field ¢(x) has the
form

B(x)=|det{x;, 4;}|7'/*. 4.34)

The point of this is that the amplitude is expressed in
terms of Poisson brackets, so that if x is replaced by x’,
and if the A’s are represented by gauge-invariant expres-
sions in the primed coordinates (as they should be), then
the entire expression for the amplitude is manifestly
gauge invariant.

V. CONCLUDING REMARKS

One of the original motivations for this paper was to
generalize the Gutzwiller trace formula [25] which seems
to be understood at present only for scalar (spinless) par-
ticles, to the case of particles with spin. The Gutzwiller
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trace formula expresses the density of states of a
quantum-mechanical system as a sum over the periodic
orbits of the corresponding classical system. Explicitly, it
is

T;cos(S; /fi—p;m/2)
|det(M; —1)|'/?

1
pPE)=py(E)+— , (.1
mh <

where p(E) is the density of states, py(E) is the Fermi-
Thomas approximation to the density of states, where j
labels the classical periodic orbits, T; is the period of the
first repetition of the periodic orbit, S= $p dx is the ac-
tion of the periodic orbit, u; is its Maslov index [27], and
M; is the monodromy matrix in the surface of section.
Periodic orbits for densities of states have proven useful
in understanding shell structure in nuclear physics
[28-31] but, without generalization to the case of spin-
ning particles, have been unable to take into account the
important spin-orbit effects in the dynamics of individual
nucleons. Therefore we sought to generalize Eq. (5.1) to
include spin-orbit effects.

In the course of doing this, we found the role of
geometric phases in the asymptotic analysis of multicom-
ponent wave fields to be a more compelling subject than
our original goal. Indeed, once the other issues discussed
in this paper are understood, the generalization of Eq.
(5.1) to multicomponent wave fields becomes almost im-
mediate. The total density of states is a sum over polar-
izations; and within each polarization, all computations
can be carried out in the gauge-invariant coordinates z’.
For example, the periodic orbits themselves are gauge-
invariant because the equations of motion are; the actions
S; can be computed by Eq. (4.25); and the quantities
det(M; —1I) can be computed in any coordinates, canoni-
cal or otherwise. Therefore the entire trace formula for a
single polarization is manifestly gauge invariant.

We have explored several examples of multicomponent
wave fields and studied their quantization, as illustrations
of the calculations of this paper. A simple case that
occurs commonly in practice is one in which the eigen-
vectors T depend only on x and are independent of k.
Then the eigenvectors can be thought of as defined over
configuration space, not phase space, as can also Berry’s
1- and 2-forms. Also, the correction A, to the Hamil-
tonian vanishes, and x and x’ are identical; the primed
and unprimed coordinates differ only because k and k’
are different. In this case, Berry’s 2-form behaves
mathematically exactly like a magnetic field, affecting the
classical ray equations accordingly, and k and k’ appear
exactly like the canonical and kinetic momenta, respec-
tively, in charged-particle motion in a magnetic field.

An example of this, which is useful for purposes of il-
lustration, is the case of a spinning neutral particle, such
as a neutron or sodium atom, in an inhomogeneous mag-
netic field. The quantum Hamiltonian is

2
H=%-—u-B(x) , (5.2)

2

in which we assume the particle has spin . Writing

A(x,p’)=h(x,p’)—E for the classical ray Hamiltonian in
the gauge-invariant (x,p’) coordinates, we have
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”
h(x,p")=P—FuB(x), 5.3
(x,p") om TH (x) (5.3)
where the F sign indicates the choice of polarization.
The correction to the Poisson bracket coming from
Berry’s phase is expressible in terms of a pseudo-
magnetic-field F(x), defined by

20 D) (v
dx; dx;

F(x)=F#|1b

—b-Vb:Vb+(V-b)b-Vb | , (5.4)

where b=B/B. This vector, when integrated over an
area, is proportional to the solid angel swept out by b on
going around the boundary of the area; its properties
have previously been explored in connection with classi-
cal charged-particle motion in magnetic fields [32].

In terms of F, the gauge-invariant Poisson bracket is

of og _df og of . 98
s _—_ e . _=J O ol ==X == R 5.
(/8] ox dp’ dp’ Ox dp’ dp’ 5-5)
and the gauge-invariant equations of motion are
x=p'/m, p'=xuVB-+p'XF . (5.6)

The general problem of spinning particles in magnetic
fields has been extensively studied as a paradigm of
Berry’s phase, and the results reported here will contain
few surprises. However, as far as we know, the effect of
the pseudo-magnetic-field F on the classical equations of
motion has not been pointed out. The term involving F
in the equations of motion is small, but it would have an
effect on the semiclassical energy eigenvalues of the same
order as the Maslov index. This term might be observ-
able in the quantized behavior of particle motion in traps,
if the magnetic field were sufficiently inhomogeneous.
Another example where the eigenvectors 7 depend only
on x is the Born-Oppenheimer approximation. Here the
“spinor” indices refer to electronic quantum numbers,
and the wave function ¥,(x) is a nuclear wave function,
with x being the nuclear coordinates. Actually, it is pos-
sible to distinguish two different approximation schemes
which are given the Born-Oppenheimer label. In one of
these (the original approximation of Born and Oppenhei-
mer), both the vibrational and electronic quantum num-
bers are held at O (1), while the small mass ratio m /M is
scaled to zero (conveniently by holding the electron mass
m fixed, while letting the nuclear mass M go to infinity).
This version of the Born-Oppenheimer approximation
does not precisely fit the analysis of this paper, for the nu-
clear wave functions do not have WKB form as e—0, but
rather have the form of a function of x/€, where
e=(m/M)"* Nevertheless, the use of symbol calculus
as in Sec. III to diagonalize the operator matrix is still
applicable, and shows, for example, how the Born-
Oppenheimer approximation could be generalized to in-
clude mass polarization terms, which would cause the
eigenvector 7 (the electronic eigenstate) to depend on
both the nuclear coordinates and momenta. Another ver-
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sion of the Born-Oppenheimer approximation is useful in
scattering problems, or for dealing with highly excited vi-
brational states. In this case, one can treat the nuclear
kinetic energy and the electronic quantum number as
O(1), and take m /M —0. Now the nuclear wave func-
tion does behave as e®¥™/¢ a5 €0, where now
e=(m/M)'"2,

Certainly the most interesting example of multicom-
ponent quantization we have considered is our original
problem of spin-orbit coupling. Space does not permit us
to present all our calculations on this subject; instead, we
will simply present some salient conclusions, and promise
the details for the future. In the Pauli equation including
the spin-orbit term L-S, the spinor eigenvector depends
on the orbital angular momentum L. It is therefore a
nontrivial spinor field over phase space, one which can-
not be represented as a lift from configuration space. The
correction term A, in the Hamiltonian does not vanish,
and in fact is essential to get the right eigenvalues. The
Berry’s-phase term in the Hamiltonian in the unprimed
coordinates A;p(z) vanishes for this problem, and this
fact led us originally to suppose that one would not need
the noncanonical, primed coordinates. Later we realized
that even in this case, the primed coordinates are essen-
tial for complete understanding, for, although Berry’s 1-
form vanishes when taken along the flow of the classical
ray Hamiltonian, it does not vanish when taken along the
flow of other conserved quantities, such as angular
momentuim.

The role of angular momentum is very interesting in
this problem. Neither the orbital nor spin angular
momentum of the multicomponent wave system can be
expressed as a symbol in the phase space of a single polar-
ization because they are not diagonalized by the same
matrix U, which diagonalizes the Hamiltonian. Thus one
cannot say what the orbital angular momentum is in the
classical phase space. However, the total angular
momentum J=L+S is representable in the classical
phase space of a single polarization, and is conserved. In
fact, the classical orbit lies in a plane perpendicular to J,
and H, J?, and J, form a convenient triplet of conserved
quantities with which to apply the Liouville method.

The wave functions are also interesting. When the 3-
torus in phase space is mapped onto the two-dimensional
Poincaré sphere, the image is a one-dimensional line of
constant latitude. Thus monopole strings can be avoided
on any individual Lagrangian manifold. But when the
whole family of states corresponding to all possible values
of the magnetic quantum number are considered, then
one encounters monopole strings and must use two
gauges. Thus there are two different expressions for the
wave functions, depending on the magnetic quantum
number. These expressions reproduce the asymptotic be-
havior of the Clebsch-Gordan coefficients, in two
different ways. Altogether the spin-orbit problem pro-
vides a rich and detailed example of the considerations
raised in this paper, with many interesting surprises.

We also hope to apply some of these ideas to the prop-
agation and quantization of electromagnetic waves in
plasmas. We will report on these developments in the fu-
ture.
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Note added. We would like to call the reader’s atten-
tion to several references dealing with some of the same
topics as this paper. In a series of papers, Kuratsuji and
Iida [Prog. Theor. Phys. 74, 439 (1985); Phys. Lett.
111A, 220 (1985); Phys. Rev. Lett. 56, 1003 (1986); Phys.
Lett. B 184, 242 (1987); and Phys. Rev. D 37, 441 (1988)]
have used path integrals to study coupled quantum sys-
tems, in which one (fast) subsystem is driven adiabatically
by the other (slow) subsystem. They find that Berry’s
phase is naturally incorporated into the effective La-
grangian for the slow component, which appears in the
phase of the path integral. These authors have taken
semiclassical limits, and have emphasized the resulting
modification of the classical symplectic form due to the
incorporation of Berry’s phase, much as in our Eq. (4.24).
They have also stated a semiclassical quantization condi-
tion, which uses action integrals just as in our Eq. (4.25).
Their derivation of this quantization condition is based
on periodic-orbit sums as in the Gutzwiller trace formula;
since they do not treat amplitude determinants in detail,
their derivation as it stands is only valid for systems of
one degree of freedom. But their results are, in fact, valid
for systems of higher dimension, as is shown in detail in
this paper. Kuratsuji and Iida do not explicitly compute
or display the term A, shown in our Eq. (3.23), which is
just as necessary as the Berry’s-phase correction to the
symplectic form to get the correct eigenvalues, but they
do discuss some examples based on coherent states, in
which the term A, seems to be hidden in the coherent-
state version of the classical Hamiltonian. They also dis-
cuss the modified Poisson bracket, obtained by inverting
the matrix of the symplectic form, as in our Appendix B.
Work related to this paper is also reported by Karasev
[Funct. Anal. Appl. 24, 102 (1990)], who considers vari-
ous ranges for both # and the adiabaticity parameter in
coupled quantum systems. Karasev uses symbol matrices
much as we do, and displays the O (#) corrections to the
ray Hamiltonian, expressed in terms of projection opera-
tors. He also gives expressions for the wave functions as
integrals over coherent states. Karasev’s work is more
mathematically rigorous than this paper or the other
references we cite.

APPENDIX A: THE WEYL TRANSFORM

This appendix summarizes our conventions for the
Weyl transform and gives the main formulas we use. We
have found McDonald [33] to be a good reference for fur-
ther details.

The Weyl transform maps operators into their corre-
sponding ‘‘symbols,” which are functions of (x,k), and
which represent those operators just as the classical g and
p represent the quantum operators § and p. The symbol
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I®

A (x,k) of the operator A4 is given by
Ax, k)= [d —ik:/e< +i’2} _.§_> Al
(x,k) f s e x+3 x=>) (A1)

where € is the same ordering parameter as in the main
text. The unique inverse of the Weyl transform is given
by

—x’)/eA

(x| A|x'y=—1 &
(27e)

Nfdk elk(x

x +x’
2

(A2)

For example, the symbols of X and k are x and k, respec-
tively. An important property of the Weyl correspon-
dence is its reality: if the Weyl symbol of 4 is A4(x,k),
then the Weyl symbol of Alis 4 (x,k)*.

If 4,B,C are o erators A (x, k),B(x,k),C(x,k) their
symbols, and if C=A4B, then according to the Weyl
product rule or Moyal formula [34]

i€
2

C(x,k)= A (x,k)exp

(A3)

where the arrows indicate the directions in which the
operands of the partial differential operators lie. When
the exponential is expanded, this formula becomes

C(x,k)=A(x,k)B(x,k)+%{A,B}+O(62), (A4)
where { 4,B} is the (x,k) P01sson bracket. Similarly, the
commutator relation @—[A B), when expressed in
terms of symbols, becomes

C(x,k)=ie{ A4,B}+0(€®) . (AS)

For the purposes of this paper, the higher-order correc-
tion terms in Egs. (A4) and (A5) are not needed.

APPENDIX B: NONCANOINCAL COORDINATES
IN CLASSICAL MECHANICS

All the modern mathematical treatments of classical
mechanics, such as Arnold [19] or Abraham and
Marsden [35], formulate their results in a coordinate in-
dependent manner, and therefore in a sense also cover
noncanonical coordinates. A considerably less formalis-
tic treatment of noncanonical coordinates may also be
found in Cary and Littlejohn [36]. In this appendix, we
simply summarize notation and quote the principal for-
mulas which are of use in the main text.

Hamilton’s equations are equivalent to the variational
principle

8fpdq

This is distinct from Hamilton’s principle in the usual
sense in mechanics, not because of the integrand, which is
just L dt (L is the Lagrangian), but because both g and p
are varied independently. Thus Eq. (B1) is a variational
principle in phase space, and can be transformed to any
new coordinates in phase space, even noncanonical ones.

—H(q,p)dt =0 (B1)
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It is not restricted to the point transformations of ordi-
nary Lagrangian mechanics.

We let z =(g,p), so that z is a 2N vector, and we define
another 2N vector £=(p,0), so that the variational prin-
ciple can be written

8 [ &,(2)dz°—H (2)dt=0 . (B2)

Here we let indices a@,b, ... run over 1,...,2N. Next
we write z'=2z'(z) for any new coordinates on phase
space. Transforming Eq. (B2) to the new coordinates, we
have

8 [ &,(z")dz""—H'(z")dt =0, (B3)
where £ has transformed as a covariant vector
o 0zb
E.(2")= 32 &p(2) (B4)
and H as a scalar
H'(z')=H(z) . (B5)

Furthermore, the equations of motion are left un-
changed if any exact differential is added to the integrand
of the variational principle. We call this is “gauge trans-
formation in phase space,” and its effect on & is

£,(2)—E,(2)+28E) (B6)
az*
where g (z) is the gauge scalar.

Thus the form shown in Egs. (B2) and (B3) is generally
covariant in phase space, and with the understanding of
the transformation laws (B4) and (B5), we can drop the
primes, reinterpreting z as the symbol for arbitrary coor-
dinates in phase space, canonical or otherwise.

The variational principle implies equations of motion
of the form

.p_ OH
Dap2™= 3z’

(B7)

where

5255
agb aga
Qp=T"T"—"". (B8)
@ axe Azt
We introduce the inverse matrix J® of Q,,,
JQ, =8°, (B9)

in terms of which the equations of motion can be written
»OH _
4

z9=Jge {z°,H} . (B10)
Combined with the chain-rule property of the Poisson

bracket, this equation implies

Jo={z92%} , (B11)

so that for any two functions f(z),g(z), expressed in
terms of the possibly noncanonical coordinates z, we have

_ Of ;a8
{f.g} wralaeerg
Both Q,, and J are invariant under gauge transforma-
tions in phase space; these objects are antisymmetric ten-
sors in phase space of, respectively, the covariant and
contravariant kinds.
Canonical coordinates are characterized by the fact

(B12)

that J%= —Q,, =T, where T is the constant matrix
0 I
=1-1 0l (B13)

In noncanonical coordinates, the components of J and Q
are generally functions of z.

Finally, the principal differential forms of interest in
phase space are the symplectic 1-form

§=§,dz° (B14)
and the symplectic 2-form
0=df=10,dz Ndz" . (B15)
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