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Effects of finite laser coherence in quasielastic multiple scattering
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We have studied the amplitude and temporal correlations of intensity fluctuations of multiply scat-
tered light transmitted through a colloidal suspension. When the coherence length l, of the incident

light becomes comparable to the width of the probability distribution of photon-path lengths, both the
amplitude and dynamics of intensity Auctuations become functions of l, . In this article we present a sim-

ple theory that relates these coherence effects to the photon path-length distribution P(L). We have

tested this theory using P (L) calculated from computer simulations and from the diffusion approxima-
tion, and find that our theory qualitatively accounts for the observed dependences on coherence length.
Our results indicate when the effects of finite laser coherence must be taken into account in quasielastic
multiple scattering. In the few-scattering regime of quasielastic multiple scattering, we find that the in-

tensity autocorrelation function generally has a stretched-exponentia1 form, and we discuss the origin of
this behavior.

PACS number(s): 42.20.—y, 82.70.Dd

I. INTRODUCTION

In difFusing-wave spectroscopy (DWS) [1—3], photons
entering a strongly scattering sample are "trapped" in the
medium so that, before they can find their way out, they
travel distances much larger than the dimensions of the
sample [3,4]. Under these conditions, the intensity auto-
correlation function g2(r) of the exiting light can be un-
derstood on the basis of the time dependence of path
lengths in an ensemble of diffusive photon paths. Gen-
erally, however, possible corrections to the measured au-
tocorrelation functions due to the finite phase coherence
length of the light source are not considered. Such effects
should be expected when the width of the path-length dis-
tribution becomes comparable to the coherence length l,
of the incident light. Maret and Wolf considered these
efFects in Ref. [5], where they present an expression for
the field autocorrelation function for a light source hav-
ing a finite coherence length, and discuss the effects of
finite laser coherence in the backscattering geometry. In
this article, we offer a detailed discussion of the effects of
the finite coherence length of the light source on both the
amplitude and dynamics of the intensity fluctuations of
multiply scattered light in the transmission geometry.
We have performed light-scattering experiments on a col-
loidal suspension in an intermediate regime between ordi-
nary quasielastic single scattering (QELS) and DWS. We
will refer to this experimental regime, which includes
both the few-scattering and diffusive limits of multiple
scattering, as quasielastic multiple scattering (QEMS).
This choice of experimental conditions allows us to ex-
plore the effects of finite phase coherence for experimen-
tal conditions ranging from the few-scattering regime to
the near-diffusive regime, and to examine the conditions
under which the diffusion approximation breaks down.

The ordinary quasielastic single light-scattering tech-
nique enables one to measure spectral displacements
much smaller than the width of the laser line. This is be-
cause the laser Auctuations are essentially phase Auctua-
tions, and because what is measured is not the field auto-
correlation function g, (r), but rather the intensity auto-
correlation function g2(r). This high resolution remains
as long as the scattering volume is smaller than the
coherence volume of the incident radiation. In QEMS,
the intensity reaching the detector represents the interfer-
ence between field contributions coming from different
paths after varying numbers of scattering events. For
strongly scattering media, the exiting radiation can con-
tain contributions from paths whose difference in length
is greater than the coherence length l, of the incident ra-
diation. The interference of such paths fluctuates with a
mean period of the order of the coherence time ~, = l, ic.
For an argon laser without a single moding etalon, such
as the one used in the experiments described below, ~, is
about 50 ps, many orders of magnitude smaller than the
minimum time resolution of a standard correlator. As a
result, the correlation function decays by a significant
fraction of its initial value in a time too short to be
detected by the correlator. The measured drop in the in-
tensity autocorrelation function is consequently smaller
than what would be measured for a perfectly coherent
light source. The finite coherence of the light source also
affects the dynamics of g2(r), because it decouples contri-
butions to intensity fluctuations from paths having
lengths that differ by more than one coherence length.

The article is organized as follows. In Sec. II we de-
scribe the experiment and present our experimental re-
sults, which demonstrate the effects of finite coherence
length on the amplitude and dynamics of intensity Auc-
tuations. In Sec. III we discuss the origin of the observed
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effects and derive an expression for g2(r) for a light
source having a finite coherence length. The central
quantity that enters into this expression for gz(r) is the
path-length distribution function P(L). In Sec. IV we
calculate the path-length distribution function for the ex-
perimental geometry from computer simulations and
from the diffusion equation, and compare the results de-
rived from P(L) with the experimental results. The ex-
periment probes a regime intermediate between QELS
and DWS, and we show that the diffusion equation does
not adequately describe the behavior of multiply scat-
tered light in this regime. In Sec. V we discuss the time
dependence of the measured correlation functions and
compare these correlation functions with those obtained
from computer simulations and from the solution of the
diffusion equation. Our results demonstrate that a
knowledge of P(L) alone is not sufficient to explain the
form of the g2(r) in the few-scattering regime of QEMS.
Finally, in Sec. VI we apply our theory to a discussion of
the effects of finite coherence length on the dynamical
properties of the transmitted light in the diffusive regime.
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II. EXPERIMENTAL RESULTS

Because in QEMS the scattering volume is the entire
cell, both the position and the direction of the detection
line have to be specified. The results described here have
been obtained in transmission with a variable distance d
between the axis of the incident laser beam and the paral-
lel axis of the detection line. We present experimental re-
sults for g2(r) as a function of d and of l, .

The samples we have used are colloidal suspensions of
0.91-pm-diam polystyrene spheres in water-glycerol mix-
tures. The scattering mean free path was l=5.05+0.05
mm in the preparation used here. The cell is large [21.2
X 46 (horizontal) X 17mm (vertical)]. The light source is
a 514.5-nm argon laser. The beam propagated horizon-
tally and entered the cell at normal incidence at a fixed
point on the long lateral side. The incident light was
vertically polarized and focused in the center of the cell.
The scattered light was collected in the forward direction
through a pair of pinholes. The axis defined by the two
pinholes was parallel to the incident beam, and its dis-
tance d from the axis of the incident beam has been used
as an independent variable. We used nine values of d
ranging from 3.81 to 25.40 mm. The photon mean free
path in this experiment is much longer than the typical
values encountered in DWS [1,6,7]. We chose this exper-
imental configuration to enhance the effects of finite laser
coherence.

The laser has been used both with and without an in-
tracavity single moding etalon. The full width at half
maximum of the laser spectrum in the configuration
without the etalon has been measured for various laser in-
tensities using a spectrum analyzer. This yields coher-
ence lengths l, ranging from 42 (100 mV, minimum
power) to 13.5 mm (1400 mV, maximum power). The
coherence length for a single mode has been assumed to
be longer than 3 m, a value equivalent to l, = ~ for all
the following calculations, being much longer than any
other characteristic length in the experiment.
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FIG. 1. (a) Experimental intensity autocorrelation functions
obtained for d =25.4 mm and for small and large l, . (b) Scaled
intensity autocorrelation functions measured for d=3. 81 mm
and for small and large l, . The time constants are 878 ps
(I, =42 mm) and 598 ps (I, ~ 3 m).

g2(r;d, l, ) —gz(r= ~;d, l, )
(1)

g2(r=0;d, l, = ~ ) —g~(r= oo;d, l, = oo )

where g2 is the raw correlation function, and the depen-
dence on d and l, is indicated explicitly. In Fig. 1(a) we
show g2(r;d, l, ) obtained for the largest value of d (25.40
mm) with both short and long coherence lengths. In gen-
eral, we find that the drop in the correlation function,

bg2(d, I, ) =—g2(r=0;d, l, ) —g~(r= ~;d, l, )

=g2(r=0;d, l, ) —1, (2)

is equal to 1 for I, = ~, and is less than 1 for finite I, . It
is important to notice that the g2(r=0) that appears in
the preceding formulas is determined by extrapolating
gz(r & 0) back to r=0, and so does not contain any decay
that occurs in a discontinuous way in the first sample

We found that the overall drop, time constant, and
form of the measured correlation functions depend on d
and l, . To obtain an adequate signal, we used a detection
system that collects light from a region slightly larger
than one coherence area. For all I„we have used the
measured correlation functions obtained for /, = ~ to
normalize our raw data to one coherence area [8],

g2(r;d, l, ) —1
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time of the correlator. As mentioned in the Introduction,
the finite coherence length of the laser can lead to a sub-
stantial decay of gz(r) in a time too short to be measured
by the correlator, so that the measured Ag2 can be less
than 1. The effect of finite coherence length is to reduce
the apparent amplitude of intensity fluctuations. In Fig.
1(b), we have compared the form of the relaxation for
short and long coherence lengths by dividing gz(r) —1 by
Agz, for the smallest d (d=3.81 mm). The correlation
function obtained with a short coherence length has a
slower decay than that obtained with a long coherence
length.

The dependence of bgz(d, l, ) on l, and d is shown in
Figs. 2 and 3. Figure 2 shows bgz(d, l, ) at d =5.72 mm
for various l, obtained by changing the intensity of the
laser. In Fig. 3 we present bgz(d, l, ) measured for vari-
ous d with two different laser intensities. Figures 2 and 3
demonstrate that the amplitude of intensity fluctuations
decreases with decreasing I, or increasing d.

The correlation functions are nearly exponential only
for the largest two values of d. For smaller d, the correla-
tion functions obtained both with and without the etalon
are not exponential and can be well fitted by the
stretched-exponential form gz(r) ~ exp[ —(r/r, ) ]. The
exponent n and time constant ~, are functions of d. In
Fig. 4 we show stretched-exponential fits of
gz(r;d, l, = ap ) for three different values of d. This figure
illustrates that o. is a function of d. In Table I we present
the values of e obtained for various d, both with and
without the etalon (rows 3 and 4, respectively). The
values of a obtained with a small coherence length are
systematically larger than those obtained with large l„al-
though the effect is small. The fact that we in general ob-
serve strongly nonexponential relaxation indicates that
our experiment has been performed in the few-scattering
regime of QEMS, because the decay of the transmitted
intensity autocorrelation function is expected to be nearly
exponential in the diffusive regime [3].

To study the dependence of the decay time on d and I„
we used the time constant T(d, l, ), defined as follows:
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FIG. 3. Overall drop of the intensity autocorrelation func-
tion hg2(d, l, ) as a function of d for fixed l, : (U) l, =13.5 mm,
experiment; (o) l, =18.0 mm, experiment; (X) l, =13.5 mm,
calculated; (+ ) I, = 18.0 mm, calculated.

T(d, l, )= I dr[gz(r;d, l, )
—1] .gz&co (3)

T(d, l, ) is one of the equivalent definitions of time con-
stant for exponential decays. In the case of stretched ex-
ponentials, this quantity is less sensitive to the initial part
of the decay than is ~, . In Fig. 5, we show the depen-
dence of T(d, l, ) on d for both small and large coherence
lengths. Notice that the experiment done with the short-
er coherence length gives systematically slower decays.

III. THEORY

Because the laser fluctuations are phase fluctuations,
the incident field can be written

E;„,(t) =E,(t)exp[i@(t)],
where E,(t) is a perfectly coherent field and exp[i@(t)]
contains the phase fluctuations. For simplicity, we con-
sider the electric field of the scattered light to be a scalar
field, as in Ref. [2]. The field reaching the detector can be
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FIG. 2. Overall drop of the intensity autocorrelation func-
tion Ag2(d, l, ) as a function of laser intensity without the etalon
for d =5.72 mm, showing the decrease of b g2 (d, I, ) with de-
creasing l, : ( ) experimental results; (+ ) theoretical calcula-
tion.

FIG. 4. Intensity autocorrelation functions obtained in the
configuration with the etalon for three different values of d:
d =3.81 mm (squares), d =9.53 mm (circles), and d =25.4 mm
(triangles). The straight line is the stretched-exponential fit and
the slope is equal to the exponent a.
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written as a sum of contributions from groups of paths of
nearly the same length, where the path difference be-
tween adjacent "channels" is much smaller than I, . The
field reaching the detector is therefore

1000

T = A/6

E(t)= g E~ (t)exp[i@.(t)], (4) 600— G C

where E ,(t) i. s the field scattered through the paths of
length 1. when the input field is totally coherent and

( exp[i@,(t) ]exp[ —i@„(t +r) ] )
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=expI —[(Lk Li+—cr)/I, ] ] . (5)

A Gaussian shape for the laser spectrum has been as-
sumed (appropriate for the argon laser used in the experi-
ment). When the spectrum of the source is predominant-
ly Lorentzian, Eq. (5) becomes

FIG. 5. Time constant T(d, l, ) as a function of d for fixed
laser intensity, both with and without the etalon: ( ) l, 3 m,
experimental; (0) l, =13.5 mm, experimental; (X) l, =3 m,
calculated; (+ ) l, = 13.5 mm, calculated. The graphical
definition of T(d, l, ) is shown in the inset.

(exp[i@ (t)]exp[ i@k(t—+r)] )

=expI —[(Lk L +cr—)/l, .]] .

The time required for the light to traverse the longest
I

paths is too short to be detected by the correlator and is
much shorter than the characteristic time of the system
dynamics. When r » ~L Lk ~

/c .for —every k and j and
r »cl, [9],we find

(I(t)I (r +~) )

1 (E,,(t)Ek, (r)E„(t+r)E*,(r +~) )I(t)
X(exp[i@ (t)]exp[ i@ (—1t)]e px[i@((t+r)]exp[ i4 —(t+~)])

—2[(L —L +c )/1 ]g (I,(t)I,(r+r))+ g (I,(t))(I„(r))g»(r)g»(r)eI(t) j,k

= 1+J dL f dL'P(L)P (L ')g, (L, r)g, (L ', r)e
0 0

(7)

where g» (i ) = (E , (t)E ",(t+r) ) /(I. /(t) ).. This equation
is similar to the one proposed in Ref. [5], although it has
been deduced for the intensity autocorrelation function
rather than the field autocorrelation function. Also, Eq.

(7) shows that the identification of g2(r) with g, (r)+1 is
appropriate only when the coherence length is infinite, so
that Eq. (14) in Ref. [5] is not strictly correct as it stands.
When P(L) =5(L —Lo) (where 5 is the Dirac delta func-

TABLE I. Exponents a obtained from stretched-exponential fits to the intensity autocorrelation functions. Each column refers to
fixed position d of the detector. (n ) is the average number of scattering events (from the simulation). The first two rows list a ob-
tained by fitting the experimental correlation functions in the configurations with and without the etalon (l, = ~ and 18 mm, respec-
tively). The last five rows list the results for the correlation functions calculated from the computer simulation (S) and from the
diffusion equation (D), using Eq. (12) [P (Q ) ] or Eqs. (7) and (9) [P (L)].

d
&n)

E. l =~
E: 1, =18 mrn

S: P(Q ), l, =oo
S: P(L), l, =ao

S: P(L), l, =18 mm
D: P(L), I, = ~

D: P(L), l, =18 mm

3.81
5.77

0.68
0.75
0.68
0.98
0.98
0.93
0.94

5.72
6.63

0.70
0.77
0.70
0.97
0.98
0.93
0.94

7.62
7.18

0.75
0.79
0.73
0.97
0.98
0.93
0.94

9.53
7.74

0.76
0.81
0.77
0.97
0.98
0.93
0.94

12.70
9.11

0.80
0.87
0.78
0.97
0.98
0.93
0.95

15.88
10.14

0.84
0.91
0.82
0.97
0.98
0.94
0.95

19.05
11.00

0.90
0.96
0.85
0.97
0.98
0.94
0.95

22.23
11.56

0.92
0.98
0.86
0.97
0.98
0.95
0.95

25.40
12.59

0.92
0,98
0.89
0.97
0.99
0.95
0.96
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tion) Eq. (7) reduces to the ordinary relation between
g2(r) and g, (r) in QELS.

From Eq. (7), it is easily seen that the drop in the inten-
sity autocorrelation is given by

bg =f dL f dL'P(L)P(L')e ' . (8)

Because P (L) is normalized, Eq. (8) shows that bg2 is al-
ways less than or equal to 1.

From Eq. (7) it follows that the shape of g2(~) also is
affected by the value of l, . We assume a ~ dependence for
g, (L,r) that has already been consistently assumed for
strongly scattering media [1,2], namely

g, (L, )r=exp( —@LE) . (9)

y=D, (q )/l, where D, is the self-diff'usion constant of
scatterers, 1 is the photon mean free path, and ( q ) is the
average of the square of the scattering vector performed
according to the differential cross section of the scatter-
ers. With this assumption we can obtain the time con-
stant of intensity fiuctuations from Eqs. (3) and (7):1,P(L)P(L')e

hg2 o o y(L +L')

(10)

IV. CALCULATION
OF THE PATH-LENGTH DISTRIBUTION

To test the theory directly, we have calculated P (L;d)
in two different ways: (i) from a computer simulation
that traces photons whose mean free path and differential
cross section were chosen to match the experimental situ-
ation as closely as possible, and (ii) by solving the ap-
propriate diffusion equation. In both cases the dimen-
sions of the sample cell and the detector positions
matched those in the experiment.

To obtain reasonably good statistics in the simulation,
photons were collected from much larger areas of the
front cell surface and for a much wider range of exit an-
gles than in the experiment. Each photon trajectory was
a weighted random walk, with step sizes chosen from an

Equation (9) is really only appropriate in the diffusive re-
gime of QEMS. As discussed in more detail in Sec. V,
Eq. (9) gives a poor description of the behavior of
g, (L, r) in the few-scattering regime. As a result, Eq.
(10) has only approximate validity in the few-scattering
regime.

If we knew the path-length distribution P (L;d ) for the
experimental situation discussed in Sec. II, we could cal-
culate b,g2(d, I, ) and T(d, 1, ) for various I, from Eqs. (8)
and (10). The foregoing analysis implies that, to the de-
gree of approximation implicit in Eq. (9), the dependence
of both bg2(d, l, ) and T(d, l, ) on d derives entirely from
the d-dependence of P (L;d ). In the following section we
describe two methods for calculating P(L;d) for the ex-
perimental configuration and compare bg2(d, 1, ) and
T(d, l, ) calculated from P(L;d) with the experimental
results.

L

FIG. 6. Typical photon trajectories from the computer simu-
lation, projected onto the three orthogonal planes. The x-z
plane is the horizontal plane, and the incident photons are ini-
tially propagating in the z direction. We have shown five trajec-
tories that emerge in the output channel at d = 15.88 mm.

exponential distribution having a decay constant equal to
the scattering photon mean free path I, and scattering an-
gles chosen from a Lorentzian differential cross section
with a width chosen to give the correct ratio of forward
to back scattering for the colloidal particles and solvent
used in the experiment. For simplicity, we neglected the
dependence of the differential cross section on photon po-
larization. Each photon trajectory was traced until the
photon emerged from the cell, and a contribution was
added to the P(L;d) distribution if the photon emerged
within one of the output channels. 10 photons were
traced, of which -2X10 emerged in the nine output
channels. Figure 6 shows five simulated photon trajec-
tories that emerge in the output channel at d=15.88
mm. The P(L;d) distributions obtained from the simu-
lations for several values of d are shown in Fig. 7(a). As d
increases, the P(L;d) distributions broaden and the
mean values and most probable values of L, both increase.

In the simulation we have also obtained the distribu-
tion of scattering events P(n;d), where n is the number
of scattering events for a given photon path. The P(n;d)
distributions for several values of d are shown in Fig.
7(b). These distributions clearly show that we are in a re-
gime intermediate between QELS and DWS. The mean
number of scattering events (n ), as a function of d, is
shown in the second row of Table I. (n ) ranges from
5.77 for d=3. 81 mm to 12.59 for d=25. 40 mm. We
have also obtained the distribution of Q =g;q;,
P (Q;d), where the sum runs over scattering events for a
single photon path and q, is the squared scattering vector
for the ith scattering event. This distribution is used in
Sec. V to explain the shape of the intensity autocorrela-
tion function. The P( Q; d ) distributions for several
values of d are shown in Fig. 7(c). The distinct peak in
P (Q;d =3.81 mm) near Q =0 appears to be the result
of two-scattering processes.

The diffusion equation for light in highly turbid media
[see Eqs. (16) and (17) in Ref. [3]] has been solved for a
point source placed at the spot where the laser enters the
sample. The solution is similar to the one described in
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Sec. V [see Eqs. (13) and (14)] for a geometry of more gen-

P(L;d) obtained from the diffusion calculation wit
those from the simulation for d =d =3.81 and 25.40 mm, re-

1 . For d =3.81 mm, the agreement between thespectively. or
he small-L arttwo distributions is poor. In particular, the sma - p

f P(L'd) obtained from the difFusion equation is un-of; 0
h

'
1 as it gives a finite probability for p gath len thsp ysica, as i

min and out-s orter anh th the distance between the incoming a
small-L arts ots. For increasing d the unphysical sma - pgoing spo s.

f P (L d) is still present in the solution o e i
'

n of the diffusion0
the two dis-equation, u, b t the overall agreement between the

tributions improves. This suggests that our experiment is
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in the near-diffusive regime only for the largest values of
d. For this reason, only the simulation results have been
compared with the experimental results.

h P(L d) obtained from the simulation, we
calculated Ag2(d;l, ) and T(d, l, ) as a function of d or
various values of l„using Eqs. (8) and (10). Notice that
in all the calculations there are no adjustable parameters:
3, and, the mean free path and the scattering cross sec-

I F' 2 and 3, we present the values of
(d l ) calculated from the simulation using q.gp, ca

dl )and in Fig. we ispF' . 5 display the values obtained for T
ment with(10). We obtain good qualitative agreement wit

the experimen a resut 1 results. This demonstrates the a q
inin t e ob-ey of our theoretical description in explaining t e o-

served effects.
The agreement wi eth the experimental results cou
rha s be improved by enhancing the statistics o eper aps e

P (L) distributions and by including the p
olarization in eth differential cross section. t is also

fh t the assumed functional form oworth reiterating t a
g, (L, t) t q. a[E (9)] that leads to Eq. (10) is correct on y or

ile thephoton pat s wi mah ith many scattering events, w ile
mean number of scatterings, as given by the simula ion,

.77 ~ (n ) ~ 12.59). We will discuss the valid-

ity of this approximation in more detai in t e o
section.

20 40 60 80
L (mm)

100 120

0.20

0.15—

0. 10—

0.05—

0.00
10 20

n

(b)—

40

0.12 ~

'

0.10

0.08

0.06
CL

0.04—

0.02—

0.00: -'
0 20 40 60

L (mm)
80 100

0.08 c)—

0.06

C3'

0.04

0.02

0.00
20 40

0)'/i, '

0.02—

0.00

I

I

I

I

1

I

J

/

/

100
L (mm)

150 200

FICx. 7. Distributions obtained from the computer simulation
for several va ues o: al f d. ( ) photon path-length distribution
P(I;d); (b) distribution of the number of scattering events per
path P(n;d); (c) distribution of Q per path P{Q',di.

FIG. 8. Comparison between P(l. ;d) obt
'

obtained from simula-
tion (solid line) an rom ed f the diffusion approximation (dashed
line): (a) d=3.81 mm; (b) d=2S.4mm.
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which can be rewritten

I

1.0

0. 1

0. 1 1 0.0

FIG. 9. Intensity autocorrelation functions for d =3.81 mm
measured in the configuration with etalon ( ) and calculated
from P(Q;d) obtained from the simulation (solid line). For
both the curves the stretched-exponential fit gives a =0.68.

V. FORM OF THE INTENSITY
AUTOCORRELATION FUNCTION

—Q D, t
gi(r)oo g e

paths

As mentioned above, the intensity autocor relation
functions obtained in the experiment generally have a
stretched-exponential form. The results presented in the
third and fourth rows of Table I show that the relaxa-
tions are less exponential when (n ) is small and that the
effect of finite coherence length on e is small. We have
found that the information contained in P(L;d) is not
sufficient to explain the shape of the experimental decays.
As shown in rows 6—9 in Table I, the exponent a ob-
tained by fitting the g2(r;d, l, ) calculated from P(L;d)
via Eqs. (7) and (9) is approximately 1 independent of d
and l„ for both the simulation and the diffusion approxi-
mation. An understanding of the stretched-exponential
decay in this regime requires the knowledge of P(Q;d).
In the limit l, —+ Oo, the field autocorrelation function can
be calculated from P(Q;d) from

P(L,p) ~ gC exp

1X
2' PL 2PL

exp (13)

where

—QDtgi(r)= JdQ P(Q )e

In this limit g2(r)=g&(r)+1. The values of a obtained
from Eq. (12) using the P(Q;d) distributions from the
simulation are shown in the fifth row of Table I, and are
observed to have the same dependence on d as the experi-
mental results for l, = ~, when fitted with a stretched ex-
ponential in the experimental time interval. The values
of a obtained from P(Q;d) are nearly the same as those
obtained from P (L;d) for the two largest values of d. In
Fig. 9 we have shown the intensity autocorrelation func-
tion obtained from the simulation using P(Q;d) for
d =3.81 mm, together with the one experimentally mea-
sured. The calculated correlation decay exhibits a slight
curvature not present in the experimental data, which in-
dicates that even this approach has some intrinsic limita-
tions, perhaps due to the neglect of photon polarization
in the simulation. Overall, the results of Table I demon-
strate that when the average number of scattering events
( n ) is small ( ( 10), Q cannot be approximated by
L(q )/l and, therefore, P(Q;d) and P(L;d) are in-
dependent. This can be seen by comparing Figs. 7(a) and
7(c). The width of P(L;d) increases dramatically with
increasing d, while the width of P(Q;d) is nearly in-
dependent of d.

To gain a better understanding of the origin of the
shape of the decay of the intensity autocorrelation func-
tion in transmission, we have solved the difFusion equa-
tion for a point source on the face of a slab of thickness
L, and of infinite lateral extention. We have obtained the
path-length distribution in transmission as a function of
the radial offset p, which is

4A, P[sin(A. L, )+A, P cos(A, L, ) j

2A, L, (A, P + I)+4k. Psin (A, L, )+(A, P —1)sin(2A, L, )

and the A, are the solutions of

tan(A, L, ) = 2A

A, 'P' —1
(14)

Here p ——'l* and l* is the transport mean free path,
defined in terms of the scattering mean free path l as
l*=2lko/(q ), where ko is the wave vector of the in-
cident light. For l*/L, ~0.2, P(L;p=O) is well approxi-
mated by the equation

P(L,p=O) = expL

X exp

gL,
2PL

A, PL
2

kb pL+8 exp
2

(15)

where g is a number close to 1, A,, is close to the lowest-
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order solution of Eq. (14), and A, b and B are fitting param-
eters that take into account the effect of higher-order
terms [the case p) 0 can be treated by replacing L, by
L +p jn Eq. (15)]. A fit. of P(L,p=0) to Eq. (15) for
l*/I, =0.01 is shown in Fig. 10. The intensity autocorre-
lation function calculated from Eqs. (7), (9), and (15) is, in
the limit I, —+ oo,

0.80 )-:i
i

0.85 'I:: i

-t. ,
I

I/L, = 0.&0

L, = 0.05

I /L, = 0.02

I'/L, = 0.01

8k
g2(&) ~ '&o g A,,L, +

3P

1/2

8k
+BE g' '/i L + Dr0 b s 3pp s

1/2

(16)

where Eo is a zeroth-order modified Bessel function.
This correlation function exhibits a crossover from ex-
ponential behavior at small ~ to a stretched-exponential
form with a= —,

' for long times. Neglecting power-law
corrections, g2(w) =exp[ —(E +Fr)' ), where
E =4k,bL, and F=32k oL, D, /(3P ). For small r,
(E+Fr)'/ =E' [1+(F/2E)r], so that the time con-
stant for the intial exponential decay is r, =2E /F.1/2

The crossover time r, after which g2(r) has a stretched-
exponential form with e= —,

' to a good approximation is
determined by solving the equation
(E+Fr )' =(Fr„)' ( I+a), where e is a small num-
ber. With e=0. 1 we find that
r /r, =E' /(4e) =AbL, /(2e) =30 for l'/L, ~0.2.
This estimate explains why the asymptotic stretched-
exponential behavior of g2(r) is difficult to observe exper-
imentally. In fact, the correlation function calculated
form Eq. (16) is nearly exponential in the restricted inter-
val 0 (r (4r, (an exponent of a =0.89 is obtained from a
stretched-exponential fit in this time interval for
I*/L, =0.01).

VI. EFFECTS OF FINITE COHERENCE LENGTH
IN THE DIFFUSIVE REGIME

In the preceding section, we described the solution of
the diffusion equation for an infinite slab. In this section,
we use this solution to investigate the effects of finite
coherence length in the diffusive regime, for the particu-
lar case p =0 (the case p )0 is expected to exhibit qualita-
tively similar behavior). In Fig. 11 we show the l, depen-
dence of the first cumulant of the transmitted intensity
autocorrelation function I' for several values of I*/L, .
In Fig. 12 we show the analogous plot for the time con-
stant T. I has been calculated from its definition [10]
and Eqs. (7)—(9):

2D, k' + I

~g, fdL fdL'P(L)P(L')
l

—2[(L—L')/1 ]Xe (17)

1.00
0 100 200 30Q 40p 500

t, /L,
FIG. 11. First cumulant I of the intensity autocorrelation

function calculated from Eq. (17) as a function of l, /L, for vari-
ous l*/L, . The four curves have been rescaled with the value
of I obtained when l, /L, ~~, given here in units of D, ko..
l*/L, =0.01, I =1.44X 10; l*/L, =0.02, I „=3.75 X 10;
l*/L, =0.05, I- =6.42X10'; l'/L, =0.10, I .=1.77X10'.
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;1

'I

1.2 &',
I'

1
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/L, = 0.10
~~

I /L, = 0.05
I /L, = 0.02

I'/L, = 0.01

'lpp 200 300 400 500
I, / L,

FIG. 10. P (L,p =0) calculated from Eq. (13) for
l /L, =0.01 (solid line), together with a fit to Eq. (15) (dashed
line). The fitting parameters are /=0. 81, X, =1.03K,„and
X&=0.84K,&. XI and k, are the first two solutions of Eq. (14).
The fitting parameters in the case I*/1., =0.05 are /=0. 85,
X, = 1.03XI, and A, q =0.8212.

FIG. 12. Time constant T of the intensity autocorrelation
function calculated from Eq. (10) as a function of l, /L, for vari-
ous l*/L, . The four curves have been rescaled with the value
of T obtained when l, /L, ~ ~, given here in units of 1/(D, ko ):
I /L, =0.01, T„=8.17X 10 l*/L, =0.02,
T =3.17 X 10; l*/L, =0.05, T = 1.86X 10
l*/L, =0.10, T =6.78X10
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and Eq. (10) has been used to calculate T. Figures 10 and
11 support our previous conclusion that the decay of the
intensity autocorrelation function becomes slower as the
coherence length decreases. Our results demonstrate that
finite coherence length significantly affects both I [which
is sensitive to the short-time behavior of g2(r)] and T
(which refiects the intermediate-time behavior). Our re-
sult for transmission differs somewhat from that obtained
by Maret and Wolf in backscattering, where the effect of
finite coherence length is more noticeable in the short-
time behavior of g2(r) (see Fig. 6 of Ref. [5]). This can be
understood from Eq. (17), which also holds in the back-
scattering geometry, the only difference being in P(L).
Adopting for P(L) the approximate expression for back-

scattering, P(L) ccL e [5], where 8'is a constant,
it is easily shown that a finite coherence length suppresses
the divergence of I . This drastic change in the shape of
g2(r) induced by the finiteness of I, is a consequence of
the power-law decay of P (L) for large L.
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