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A description of the steady-state nonlinear behavior of a Compton free-electron-laser (FEL) amplifier
is presented, in which the radiation field is written in both linear and nonlinear regimes as the sum of
three coupled “normal modes.” In the linear regime these modes reduce themselves to the noninteract-
ing modes of the usual linear theory. The two linearly stable modes turn out to be nonlinearly unstable,
because their amplitudes grow exponentially as the FEL enters into the nonlinear regime. We derive a
self-contained system of three nonlinear dynamical equations for these modes in two different ap-
proaches. The system is then reduced to comparatively simple forms in which only cubic nonlinearities
appear. In this way, we are able to describe the FEL saturation process and the first peak in the ampli-
tude of the radiation field with a good degree of accuracy. The large-amplitude oscillations in the field
intensity, which are the main feature of the FEL nonlinear dynamics, are also reproduced through the

nonlinear coupling between the normal modes.

PACS number(s): 42.55.Tb

I. INTRODUCTION

In this paper we investigate the possibility of describ-
ing the steady state of a single-pass high-gain Compton
free-electron-laser (FEL) amplifier by means of three cou-
pled variables, named “normal modes.” Such a descrip-
tion holds both in the linear and in the nonlinear regime,
where the radiation-field intensity exhibits a saturation
peak and subsequent nearly periodic undamped oscilla-
tions.

A general description of a FEL system is achieved by
numerical integration of the microscopic dynamical equa-
tions for N electrons (N >>1) and the radiation field [1].
The linearization of such equations is a good approxima-
tion for an analytical description of the collective insta-
bility in a high-gain FEL, which leads to the exponential
growth of the radiation-field amplitude. In fact, this
linearization leads to a well-known third-order linear
differential equation for the radiation-field amplitude dy-
namics. Among the three solutions of this equation, one
gives an exponentially growing contribution to the field
intensity, the two other ones give exponentially decaying
or constant contributions. However, this approach does
not reproduce the saturation of the signal and the subse-
quent oscillations in the field intensity. These last
features are due to the strong nonlinearity in the coupled
electron-radiation system, corresponding to syncrotron
oscillations of trapped electrons [2,3] in the “ponderomo-
tive potential,” determined by the combined radiation-
wiggler field.

The saturation process of the linearly unstable elec-
tromagnetic signal was analytically reproduced by several
authors [4—9] by reducing the problem to simplified non-
linear differential or integro-differential equations for the
radiation field in several cases (small-gain, high-gain
Compton-regime single-pass FEL and also oscillator
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FEL). In some cases [4,8,9] it was found that the satura-
tion in the signal is reproduced by a Landau-Ginzburg
equation for the radiation-field amplitude. These analy-
ses predicted the saturation level, but could not repro-
duce the high-amplitude oscillations in the field intensity.

In order to also model this feature of the FEL non-
linear dynamics, we follow a rather different approach,
which appears as a natural extension of the usual linear
theory to the nonlinear regime. In fact, we present a
“three-coupled-modes” description of the FEL dynamics
whose basic assumption is that the radiation field is writ-
ten both in the linear and in the nonlinear regime as the
sum of three interacting ‘“normal modes” or ‘“oscilla-
tors.” In the linear regime the three modes reduce to the
usual independent solutions of the third-order differential
equation for the field amplitude derived from the linear
theory. Such modes are driven and coupled to each other
by the nonlinear contributions to the electron-radiation
FEL interaction, thus when the FEL system is in the
linear regime these modes are uncoupled, but their linear
dynamics is strongly modified as soon as the FEL enters
into the nonlinear regime. The model is introduced in
Sec. II, after a brief account of the microscopic equations
and of the linear theory.

In Sec. III we discuss two different possible ways of
reaching a self-contained dynamical description of such
“oscillators,” i.e., of writing a set of three nonlinear
differential equations that describe the FEL dynamics
both in the linear and in the nonlinear regimes and which
involve only the three modes. After this, we introduce
some simplifications of the two schemes, which are
sufficient to account for the main features of our
“coupled-modes” description. Finally, we obtain a
description of the radiation field that is sufficiently
correct both in amplitude and phase and is based on a
very simple system of three coupled nonlinear equations.
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In Sec. IV we conclude with a few remarks. Some de-
tails of the calculations are reported in Appendixes A and
B.

II. BEHAVIOR OF THE “NORMAL MODES”

In a single-pass FEL a beam of relativistic electrons in-
jected in a suitable magnetostatic field (“wiggler”) in-
teracts with a copropagating electromagnetic radiation
field. Under proper conditions the system can behave as
a high-gain amplifier, generating tunable, coherent, high-
peaked power radiation. When propagation effects (due
to the different velocities of the electron beam and of ra-
diation) and space-charge effects are neglected, in the
steady-state Compton regime, the FEL basic physics is
well described by the following one-dimensional micro-
scopic equations, based on the slowly varying envelope
approximation for the radiation field [1,10]:

do

—=p;, (1)
az
dp; 0. d?®o,;
—-p—]=—(Ae10’+c.c.)E 2] , ()
dz dz
94 _(e=i0)+isA4 3)
dz
(where j=1,...,N and c.c. means ‘“complex conju-
gate”). Note that such equations are written in dimen-

sionless form according to the “universal scaling” adopt-
ed in Ref. [1], to which we refer for further details. Here
we only recall that 6,=(k +k,)z; —wt—2k,pdz; and
p;=(1/p)y;—7v0)/vo are, respectively, the jth electron
phase in the ‘“ponderomotive” field, determined by the
combined radiation-wiggler field, and the jth electron rel-
ative energy variation (y jmc2 is the electron energy and
yomec? is the initial energy of the electrons in the monoki-
netic beam). In the same scaling, Z=2k,,p(y2/y3)z is the
longitudinal coordinate, and A is the complex amplitude
of the vector potential of the radiation field, from which
we obtain the intensity of the electric field as
|E|?=| A|*4mpnyymc?. Finally, 8=(1/2p)(y3—y2)/y?
is the detuning parameter that indicates how far the elec-
trons are from the resonance condition (an electron is
said to be “resonant” when the frequency of the radiation
emitted spontaneously matches that of the radiation to be
amplified). In these definitions we introduced the follow-
ing quantities: the “FEL parameter”

2 awﬂp 2/3
4ck,
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the wiggler parameter a, =eA, B, /2mmc?, the wiggler
period A, =2w/k,, the plasma frequency Q,, the elec-
tron density n, the frequency of the radiation field
w=ck=(2m/A)c, and the resonant electron energy
v,=[A(1+a2)/2A]"2

The driving source of the radiation field is the electron
“bunching parameter”

b=(e 0)=L § e % @)
N =
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that represents the microscopic average distribution
along the coordinate z of a sample of N electrons in the
beam.

The general description of the FEL dynamics, based on
the numerical integration of Egs. (1)—(3), shows that the
FEL is an unstable system where collective effects occur.
The electrons in the beam “self-bunch” on a radiation
wavelength scale and the emitted radiation grows ex-
ponentially until nonlinear effects limit the conversion of
the electron kinetic energy into radiation energy, leading
to a saturation peak with subsequent oscillations in the
field amplitude.

An analytical description of the exponential growth in
the intensity of the electromagnetic signal inside the
wiggler is obtained by a linear stability analysis per-
formed on Egs. (1)-(3) around the equilibrium state
defined by 4,=0, {e 9),=0, p,=0. From the lineari-
zation of such equations we derive the approximate equa-
tion

A""(Z)—idA"(Z)—iA(Z)=0 (5)

(where the prime denotes d /dZz). Looking for solutions
of the form A(Z)x<e % we see that the characteristic
equation associated with Eq. (5) is the cubic
k3+8k?—1=0. Since it admits two complex roots and
one real root [for & < (23 )173], the complex root with posi-
tive imaginary part gives the exponential growth in the
complex amplitude A4(Z). The contributions from the
other roots are either merely oscillatory (corresponding
to the real root) or exponentially decaying (corresponding
to the complex root with negative imaginary part).

Hereafter we will restrict our discussion to the case of
exact resonance, i.e., 8=0. In this case the cubic equa-
tion reduces to the even simpler form k3=1 and it has
two “linearly stable” roots k; =1 and k,=—1—iV'3/2,
together with the “linearly unstable” root k;
=—14+iV3/2.

Our current purpose is to extend the linear theory to
the nonlinear regime in a simple way. From the linear
theory we know that the complete solution for the radia-

tion field has the form 4 (z)=33_,a,e ﬂk’z, where a, are
suitable constants defined by the boundary conditions on
system (1)-(3) given at Z=0 and k, (r=1,2,3) are the
roots of the equation k*=1. We assume that such an ex-
pression for the field 4(Z) is also valid in the nonlinear
regime. To do this, we let the amplitudes a, of the three
linearly independent solutions of Eq. (5) vary from their
originally constant values. In other words, we define the
functions

_ —ik,z

a,(z)=a,(Z)e

(6)

and write formally the radiation field, for all values of Z,
as

3
> a(zZ)=A4(zZ). (7)
r=1

The functions of @,(Z), which are obviously not complete-

ly determined by Eq. (7), can immediately be found by
following a procedure that is similar to the usual method



5208 C. MAROLI, N. STERPI, M. VASCONI, AND R. BONIFACIO

of the variation of the arbitrary constants. In fact, Eq. (7)
is closed by taking its first and second derivatives with
respect to z, obtaining the two equations

3

S k,a,(z)=id'(z), ®)
r=1

3

S kla,(z)=—A4"(z), 9

r=1
provided that the functions a,(Z) are chosen in such a
way that

3 =
—ik z
> a/(Z)e 7

r=1

=0, . (10)

3 o
S kal(z)e =0 (11)
r=1

If we consider the right-hand side (rhs) of Egs. (7)-(9) as

given, such equations yield a linear algebraic nonhomo-

geneous system of three equations in the three unknown
functions @,(Z). The inversion of such a system allows us
to write

a,(z)=1[A4(z)+ik}A'(z)—k,4"(Z)], (12)

where we have used the equalities 33_,k, =0, k}=1,
kikyk3=1,and k k,+k,k;+kyk,=0.

The exact behavior of the three functions @,(Z) is ob-
tained substituting the numerical solutions of Egs. (1)-(3)
for 4(Z), A'(Z), and A4''(Z) and is reported in Figs. 1
and 2. The important point to note is that the amplitudes
of the two “linearly stable modes” a@,(Z) and @,(Z) start
growing exponentially in a region where the total field
amplitude is still small with respect to the saturation
value.

Moreover, the growth rate of the functions la@ 1(Z)] and
IEZ(Z )| is equal to 3v'3 /2, i.e., their growth is three times
faster than the growth of the amplitude of the linearly
unstable mode @;(Z) in the linear region. The ‘“‘anoma-
lous” growth of the stable modes is the decisive feature of
our description, and it is analytically demonstrated in the
following section. It is interpreted in terms of a pumping
of the oscillator @;(Z) upon the linearly stable modes.
The result is a forced exponential growth of @,(Z) and
a,(z).

Furthermore, note also that when @,(Z) and a,(z)
reach the first peak of saturation their amplitudes are
comparable with that of @;(Z). At this point a new re-
gime begins, where there are quasiperiodic energy ex-
changes between the three oscillators. We could say that
the large-amplitude oscillations in the radiation-field in-
tensity are precisely due to these energy exchanges be-
tween the three modes.

III. ANALYTICAL MODEL

We now introduce the analytical “coupled-modes”
model, where the dynamics of @,(Z) is self-consistently as-
signed, instead of being written in terms of the numerical
solutions of the microscopic system (1)—(3) as in Eq. (12).
If we take a further derivative with respect to Z in Eq. (9)

kS

la ()12 | @ ]
. .

1.0 [

FIG. 1. (a) |@,(Z)|? as a function of the dimensionless longitu-
dinal coordinate z for r=1 (dotted line), r =2 (dashed line),
r =3 (solid line). Also shown is the numerical solution of Egs.
(1)-(3) for the field intensity | A(Z)|?> (dot-dashed line). (b)
|@,(z)| vs (log scale) for r=1 (dotted line), r=2 (dashed line),
r=3 (solid line).

and recall that k=1, by means of Eq. (7) we find
3 ez
S kZa)(z)e T=—
r=1
Equations (10), (11), and (13) are a set of equations
equivalent to system (7)-(9) and to system (1)-(3), and
they provide a linear algebraic nonhomogeneous system
of three equations in the three unknown functions a,(Z).
If we define the function ®(Z) such that

A"(Z)+iA(Z) . (13)

Y’ (z)
r 0.0

T
L

50 i ;
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4

FIG. 2. Derivatives of the phases 9,(Z) of the three modes
E,(Z)EIE,(Z)lelw’(Z) vs Z for r=1 (dotted line), »=2 (dashed
line), r=3 (solid line).
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P(Z)=—iA"(z)— A(Z), (14)

the solution of the algebraic system of Egs. (10), (11), and
(13) is the following:

al(z)= —%k,cl)(f)eik’f , (15)
i.e., from definition (6),
a,(z)=—ik,[a,(z)+10(z)] . (16)

Thus an analytical description of the FEL dynamics in
terms of the functions @,(Z) is given if system (16) is
analytically closed on the variables a,(Z).

Actually, note that the functions a,(Z) are driven and
coupled to each other by the quantity &(z)=
—iA"'(Z)— A(Z), which is the nonlinear contribution to
the interaction between the N electrons and the radiation
in the microscopic system (1)—(3). In fact, recalling that
the average value of a dynamic variable f(60 »p;) is
defined as (f(@,p))E(1/N)2§V=1f(0j,pj ), from system
(1)-(3) we obtain the exact equation (involving the collec-
tive variables {p%e /%) and A *(e ~29))

D(Z)=—id""(Z)— A(Z)
=i(ple )+ A*(z)(e %) . (17)

This is the reason why in the linear regime the functions
a,(Z) are nearly constants [whose values are defined by
the boundary conditions at Z=0 on the field 4 (Z) and its
derivatives], while their dynamics are strongly modified
as soon as the coupled electron-radiation system enters
into the nonlinear regime.

The “coupled modes” model can be analytically closed
on the variables @,(Z) when the explicit dependence on
the electron dynamics can be eliminated from Eq. (17).
This is done by means of two different approaches, both
outlined in the following subsections. Details of the cal-
culations are reported also in the Appendixes A and B.

A. Collective scheme

In the first scheme the driving function (17) is ex-
pressed in terms of the variables 4 (Z), 4'(Z), and 4''(Z)
by neglecting the ‘“second-harmonic” contribution
A*(z)(e %), and by writing the following approximat-
ed expression for the quantity {pZe ~'9)

(p2e ) =b(p?)—2b{(p)2+2{p){pe %) .

This last equality was first introduced in the collective
variables model of an FEL [11] and is based on the fac-
torization ansatz

(p—(p»e ) =((p—<p)P) (e ) .

The calculation is explained in Appendix A. The final re-
sult is the “collective” nonlinear differential equation for
the radiation field

—iA"(Z)— A(Z)=—2A4"(Z)[A(2)A'*(Z)—c.c.]
+24"(z)| A(2)|?
—2i4'(Z)| 4(Z)|*, (18)

where we supposed for simplicity | 4|,=0. Note that the
nonlinearities that are present in the driving term (18) are
of third and fifth order in A4 (Z) and its derivatives. From
Eq. (18) we calculate the nonlinear driving function
P(Z)=—iA"'(Z)— A(Z) in terms of the ‘‘oscillators”
a,(Z) using Egs. (7)—(9). The result is

rstuv=1

(19)
where
L,,=—(k,tk)k,+k*+k,). (20)

When the driving function (19) is considered, the solu-
tions of Eq. (16) give the total radiation field A4 (Z)
=33_,3,(Z) shown in Fig. 3.

B. Iterative scheme

In the second scheme the electron dynamics is elim-
inated from the nonlinear driving function (17) by solving
Egs. (1)-(3) through an iterative calculation that is simi-
lar to an iteration procedure used in a different context
by Kimel and Elias [6]. The calculation is given in detail
in Appendix B. Here we only say that it is performed
preserving the full pendulum nonlinearity both in the
phase equation (2) and in the field equation (3). This fact
leads to a nonlinear integro-differential equation for the
radiation field with nonlinear terms of all orders in 4 (Z).
The ‘“‘series” that is generated in this way is truncated by
taking into account only nonlinear terms of the third or-
der in the field 4 (Z). Although we limit ourselves to a
self-consistent third-order calculation, the scheme can, in
principle, yield all higher-order coupling terms.

The integro-differential nonlinear equation for the radi-
ation field is the following:

—iA""(Z)— A(Z)=2 Q’(E)f:df’A(E’)Q*(E')—-Q'(E)f:df’A*(E’)Q(E’)

+*z) [Tdz' Az |+24%@) [Tdz [Tdzr 4@z
0 0 0

—Q'UZ)Q*(Z)—20(2)|Q(2)2—20%Z) 4 *(Z) , 21
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where we have defined
z z’

A ’ IIA -1 . 22

)= [z’ [Tdz Az (22)

At last, we have to close the dynamical equations (16) for
the variables @,(Z) by expressing the function ®(zZ)
=—[A""(Z)— A(Z) through Eq. (21) in terms of the
“modes” @,(Z).

If we again take into account only those nonlinear
terms that are cubic in the three unknown variables
a,(Z), the calculation can be carried out as the ampli-
tudes a,(Z) were actually independent if Z. In fact, in the
explicit evaluation of integrals of the form
3oz, ., —ikz
r§1 fodf a,(z')e s
we can first make an integration by parts writing

ik z’

3 z _
S fodz a,(z")e

r=1

i _, —ikz|®
7c—a,(2 Je
r 0

I (Z,, +—, —ikz’
_Efodf a,(z')e ] . (23)

Then we may neglect the integral containing the first
derivatives of the amplitudes a,(Z) since, according to

1A(z) 12
1.0
0.0 :
z
) [ | ;
0t I
r ! i
: H
-

FIG. 3. (a) |@,(Z)+a,(Z)+@,;(Z)|? vs Z as obtained from Egs.
(16) and (19) (solid line) and | 4(Z)|? vs Z as obtained from Egs.
(1)—(3) (dot-dashed line). (b) Derivatives of the phases ¢(Z) of
the previous two fields.
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Eq. (15), it would eventually lead to nonlinear terms of
the fifth order.

Finally, with a little more algebra, we are led to the
driving function

PD,(z)= élA,s,a,(f)a;‘(z)a,(z), (24)
r,s5t=
where
A,=————2(kt+k:)(l—8 S R
"k kXK koks ™ kcX(k,+k,)
2 12 2
kMk,+k)  kk*k, kPk?  kZkrXk,
(25)

and & o K* is the usual Kronecker symbol.
t’7s

C. Simplified collective and iterative schemes

In the previous two schemes we found that the non-
linear driving function ®(Z) for the dynamical evolution
of @,(Z) is expressed as the sum of third-order and (in the
case of the “collective scheme) also fifth-order nonlinear
terms in the three variables @,(Z), as given by Eqgs. (19)
and (24).

It is possible to simplify further the previous two
schemes by neglecting some terms among the several
forcing terms that are contained in the coupling functions
®.(Z) or ®,;(Z). It must be noted at this point that if we
approximate the dynamical evolution of a;(Z) by means
of any reduced coupling function ®(z), namely, if we
write

ikyZ

a§(2)=—§k3&>(7)e , (26)

the same choice must be also done for consistency in the
other two equations for a,(Z) and a,(Z). In fact from Eq.
(15) it follows for r =1,2

_i(k3—k,)fa,3=_ékr&>(_z_)eik,2. 27)

a,(z)=k, e
To understand the main features of the model, it is

enough to consider as a driving term the third-order term

containing @;|@;|%, and write, therefore, system (16) as

a |(z)=—ik,[@,(2)+1Aa;(2)|a;(2)]?] (28)

(where the coupling factor is A=T'3;; in the collective
scheme or A=A;3; in the iterative scheme). If we do this,
we obtain the analytical demonstration of the ‘“anoma-
lous” exponential growth of @,(Z) and @,(Z) in the first
nonlinear region. The choice of this driving term is un-
derstandable if we recall that @;(Z) is the only mode
whose amplitude grows exponentially in the linear re-
gime, so that the term @4(Z)|@;(Z)|? is the fastest-growing
third-order nonlinear term. Furthermore, we neglect
higher-order nonlinear coupling terms, since their ampli-
tudes are negligible with respect to the third-order ones.
It is clear that for r =3 we have a Landau-Ginzburg
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equation. Within both schemes the amplitude of the
analytical solution of this equation saturates to the same
value (independent of the initial conditions) that is

Im(k,)

T Im(Aky) @9)

lim |@,(2)?=
z>>1

Moreover, the mode @;(z) has clearly the role of pump-
ing mode. This pump effect leads to an exponential
growth of the linearly stable oscillators @;(Z) and @,(Z).
The resulting fields are reported in Fig. 4, while in Fig. 5
the field 4(z)=33_,d,(Z) is compared with the numeri-
cal solution of the 2N +2 microscopic equations (1)—(3).
Note that, as we said in the previous section, the non-
linear growths of @,(Z) and @,(Z) are three times faster
than the linear growth of @;(Z) even in this simplest mod-
el. This behavior is due to the presence of the coupling
term @4(Z)|@,(z)|%. In fact, to obtain the correct growth
rate of @(Z),a,(Z) it is sufficient to substitute in Eq. (28)
the linear expression for the linearly unstable mode
53(2)=a3e_lk3z

If we extrapolate the validity of Eq. (28) up to the full
nonlinear region, we can see that the oscillations in the
intensity of the radiation field A4 (Z) (even if with an in-
correct period) are an intrinsic feature of this model. In
fact, the main difference of this simplified model with
respect to the previous Landau-Ginzburg models [4,8,9]
is that now the Landau-Ginzburg equation holds for the
oscillator @;(Z) and not for the total field A(Z). Thus
even this very simplified model is also able to reproduce,
beyond the saturation, the oscillations in the amplitude of
the radiation field through the coupling of @,(Z) and
a,(Z) with @,;(z2).

A more correct description of the A4(Z) dynamics is
given if we consider the following step in the choice of
the coupling function ®(Z). A straightforward extension
of the preceding Landau-Ginzburg model is to consider
as forcing terms the “‘diagonal” ones, so that each oscilla-
tor has its own Landau-Ginzburg equation and is symme-
trically driven by the other two. Equations (16) become

2.0 T T T

la ()12 |
_

1.0 b

0.0

FIG. 4. |@,(z)|? vs Z for r=1 (dotted line), »=2 (dashed line),
r=13 (solid line) as obtained from Eq. (28) (iterative scheme).
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1Az 12

0.0 L

10.0 20.0

FIG. 5. |@,(Z)+@,(Z)+a,(Z)|* vs Z as obtained from Eq. (28)
(solid line) in the iterative scheme and | 4(Z)|? vs Z as obtained
from Egs. (1)—(3) (dot-dashed line).

a(z)=—ik,{@,(z)+L[A,a,(2)|a,(2)]?
+ Ay, (2)|a,(2)]?
+A33385(2)]@5(2)12]}  (30)
(in the iterative scheme). The radiation field obtained by

solving numerically Egs. (30) is shown in Fig. 6. We ob-
serve that with the forcing term given in these equations

lACz) 12
1.0 [
[
0.0 L
z
- L LI B B
' (z) 20 F .
- 'f‘ 1
L i H
L I'\‘ !‘- i
1.0 ;‘. ]“ H
Y ] f
: ~. / A/! l "\ N
| R \ \/_
L [ B L J,_Lq
10.0 20.0
z

FIG. 6. (a) |@,(2)+a,(2)+@;(2)|? vs 7 as obtained from Eq.
(30) (solid line) in the iterative scheme and | A(2)|? vs Z as ob-
tained from Egs. (1)—(3) (dot-dashed line). (b) Derivatives of the
phases ¢(Z) of the previous two fields.
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the agreement with the numerical solutions of the micro-
scopic 2N +2 equations appears to be qualitatively
correct, supporting the validity of the description in
terms of three “oscillators.”

Finally, we remark about the possibility of obtaining
better agreements with different choices of the coupling
terms. For instance, if we consider as driving terms in
Eq. (15) the terms that are “nonresonant” with a,(Z), i.e.,

all the terms in ®(Z) such that Re(k, —k* +k,)#Re(k,),
the radiation field 4(Z) is better reproduced both in am-
plitude and phase so that the agreement is qualitatively
and even quantitatively remarkable. The resulting radia-
tion field, obtained in the collective scheme, i.e., with the
coupling coefficients as given by Eq. (20), is shown in Fig.
7.

IV. CONCLUSIONS

Summarizing, we have shown that the steady-state be-
havior of a high-gain Compton FEL amplifier can be de-
scribed in terms of the nonlinear interaction between
three “modes” that reduce to the usual linear modes in
the region where the lethargy of the radiation field is still
the dominating feature of the FEL process.

One of the basic findings is that the two modes that are
stable from the linear point of view actually are non-

1Acz) 12
1.0 L
0.0 L
Z
d’ (2) S R
zZ s.0 E t
4.0 E i
2.0 L j
- A A
L ; ,'.4
oo LA o VY N T
10.0 20.0
z

FIG. 7. (a) |a,(z)+@a,(Z)+a5(Z)|? vs Z as obtained from Eq.
(16) with the “nonresonant terms” for a,(Z) as driving terms
(solid line) in the collective scheme, and | 4(Z)|? vs Z as obtained
from Egs. (1)-(3) (dot-dashed line). (b) Derivatives of the
phases ¢(Z) of the previous two fields.
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linearly unstable, and they grow exponentially to appre-
ciable levels in the first nonlinear region. The final evolu-
tion of the system is therefore dominated by strong ener-
gy exchanges between the three modes.

We have also shown how it is possible to build up a
simplified description of the interaction among these
three oscillators in terms of only cubic nonlinearities.
The results that are obtained by solving system (30), al-
though only qualitatively correct, lead to the conviction
that much insight into the physical aspects of the FEL
process can be gained along the line indicated in this pa-
per.

APPENDIX A

In this appendix we calculate the driving function
P(Z)=—iA""(Z)— A(Z) in the collective scheme. We
recall that the following equation holds:

—id"—A=i{p’e )+ 4*(e¥?) . (A1)

We neglect the “second-harmonic” term 4 *(e ~%?) and
we use the following factorization ansatz [11]:

(p—{pNe ) ={(p—(p))P?) (e 9,
from which follows
—id""—A=ib{p?)—2ib{p)*+2i{p){pe %),
(A3)

(A2)

where b=(e '), The approximations written above
have been checked numerically [11], moreover they are
certainly suitable for the electron distributions corre-
sponding to the boundary conditions usually considered
(almost unbunched and monokinetic electron beams).

As the microscopic system (1)-(3) admits the following
constants of motion:

2
<%>—i(Ab"—A*b)—8|A|2

=<%2>0—i( Ab*— A*b)y—8| A3,
(p)+14*>=|4},
Eq. (A3) is rewritten as
—iA""—A=—2b[(Ab*— A*b)—(Ab*— A*b),]
—2ib(] A|*—| A[3)?
+2i{pe )| A5~ 4] (A4)

(where we supposed =0, {p ),=0, {p2),=0). By recal-
ling the system (1)—(3), this last equation can be written
as

— A" —A=—2A4"[(AA'*—A4*4’)
—(AA™*—A*A4"),)
—2iA'(| A|*—| 4]|2)?

—24"(14|13—14)%) . (A5)
As a last observation, we note that the above approxi-
mations lead to the truncation of the hierarchy that
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would be generated writing from Egs. (1)-(3) the exact
evolution equations for the macroscopic collective vari-
ables A, b, and P={pe ~i9) . In this way, the closed sys-
tem for the variables A, b, and P reads

A'=b, (A6)

b'=—iP, (A7)

P'=—A+2b(Ab*— A*b)—2b(Ab*— A*b),
+2i(| 42— 4|D[P+b (| 4]>—[ 41D, (A8)

and is equivalent to system (16) when the complete cou-
pling function ®_.(Z) as given in Eq. (19) is considered.

APPENDIX B

In this appendix the driving function (17) is rewritten
as a function of the radiation field by an iterative ap-
proach on the microscopic equations

0/ (@)=—[A@)e'"" +c.c.], (B1)
AI(E)=<e—i9(f)) i (Bz)
We consider the solution of the pendulum equation (B1):
0;(z)=0;,—1I[ 4¢°)(z) , (B3)
where we have defined the function

I[4e%)(z)= f:df'foildf”[A (E,,)eiej(z”)

+c.c.] (B4)

and have considered a cold electron beam (i.e., p j,o=0).

A'(Z)z(e_mo 14iI | de'® [1—iI[ 4e'® (

iy ;
1Z)+ —T’)IZ[Ae %1(z)
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Note that the function I[ 4e‘®](Z) takes into account the
pendulum nonlinearity.
Now we substitute the formal solution (B3) for 6;(2) in
the field equation
A,(E)z(e—iom)=<e‘f90ei1[Ae"9](z>> (B5)
and we expand the bunching parameter in Eq. (B5) as a
power series in I[ Ae'](Z) up to the third order:

—i . ;2 .
A’('z')z(e % |1 i 4e)@)+ L1 e )(2)

i3 :
+ =13 4e'%(z)

L > . (B6)

If we substitute for 6(Z) the formal solution (B3) of the
nonlinear pendulum equation (B1) we obtain

14iI[ Ae' %o ~iTT4e12))(z)

A’(E)z<e_ie°

j2 i6, ; 015
+_§TIZ[ Ae Oe—II[Ae 6](2)](2)

_'___l:_;_:_:_13[ Aeiooe*iI[AeiG](f)](E) ]) .

(B7)

We see that in order to keep the nonlinear terms up to
third oréier in the radiation field 4(Z), each exponential
e ~14¢7)®) has to be further expanded as follows:

](E)

2, 6, . 00—y v 1 £ 3, i0pe—
+ 2P e P (1=il[ e 120} 1)+ L1 e )z) > (B8)

Performing explicitly the averages and taking into account that (e _mo) =0, by a twofold differentiation of the final re-

sult we obtain

—iA"(Z)— A(Z)=2

(@) [dz'4(z)00E")

— () [(dz’ 4*E0E )+ Q@) [[dz 4 (ZIE)

+24%2) [Tz’ [T dz" Az - 020N @200 0@ P20 40E), (B

where we have defined

Q@)= [Tdz' [Tazaz"). B10
(@)= [dz' ["az" Az (B10)

We observe that our calculation differs from that of
Gallardo et al. performed in Ref. [7] since they neglect
the pendulum nonlinearity, replacing the function

[

exp{il [ Ae'9](Z)} with the function exp{iI[Aelao](E)} in
the field equation (B5). On the contrary, since we keep
the complete solution for 6,(z) both in the phase equa-
tion (B1) and in the rhs of the field equation (BS5), our
scheme is actually based on a self-consistent third-order
expansion in the field equation.
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