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Three-mode treatment of a high-gain steady-state free-electron laser
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A description of the steady-state nonlinear behavior of a Compton free-electron-laser (FEL) amplifier
is presented, in which the radiation field is written in both linear and nonlinear regimes as the sum of
three coupled "normal modes. " In the linear regime these modes reduce themselves to the noninteract-
ing modes of the usual linear theory. The two linearly stable modes turn out to be nonlinearly unstable,
because their amplitudes grow exponentially as the FEL enters into the nonlinear regime. We derive a
self-contained system of three nonlinear dynamical equations for these modes in two diferent ap-
proaches. The system is then reduced to comparatively simple forms in which only cubic nonlinearities
appear. In this way, we are able to describe the FEL saturation process and the first peak in the ampli-
tude of the radiation field with a good degree of accuracy. The large-amplitude oscillations in the field

intensity, which are the main feature of the FEL nonlinear dynamics, are also reproduced through the
nonlinear coupling between the normal modes.

PACS number(s): 42.55.Tb

I. INTRODUCTION

In this paper we investigate the possibility of describ-
ing the steady state of a single-pass high-gain Compton
free-electron-laser (FEL) amplifier by means of three cou-
pled variables, named "normal modes. " Such a descrip-
tion holds both in the linear and in the nonlinear regime,
where the radiation-field intensity exhibits a saturation
peak and subsequent nearly periodic undamped oscilla-
tions.

A general description of a FEL system is achieved by
numerical integration of the microscopic dynamical equa-
tions for N electrons (N ))I ) and the radiation field [I].
The linearization of such equations is a good approxima-
tion for an analytical description of the collective insta-
bility in a high-gain FEL, which leads to the exponential
growth of the radiation-field amplitude. In fact, this
linearization leads to a well-known third-order linear
differential equation for the radiation-Geld amplitude dy-
narnics. Among the three solutions of this equation, one
gives an exponentially growing contribution to the field
intensity, the two other ones give exponentially decaying
or constant contributions. However, this approach does
not reproduce the saturation of the signal and the subse-
quent oscillations in the field intensity. These last
features are due to the strong nonlinearity in the coupled
electron-radiation system, corresponding to syncrotron
oscillations of trapped electrons [2,3] in the "ponderomo-
tive potential, " determined by the combined radiation-
wiggler field.

The saturation process of the linearly unstable elec-
tromagnetic signal was analytically reproduced by several
authors [4—9] by reducing the problem to simplified non-
linear differential or integro-differential equations for the
radiation field in several cases (small-gain, high-gain
Compton-regime single-pass FEL and also oscillator

FEL). In some cases [4,8,9] it was found that the satura-
tion in the signal is reproduced by a Landau-Ginzburg
equation for the radiation-field amplitude. These analy-
ses predicted the saturation level, but could not repro-
duce the high-amplitude oscillations in the field intensity.

In order to also model this feature of the FEL non-
linear dynamics, we follow a rather different approach,
which appears as a natural extension of the usual linear
theory to the nonlinear regime. In fact, we present a
"three-coupled-modes" description of the FEL dynamics
whose basic assumption is that the radiation field is writ-
ten both in the linear and in the nonlinear regime as the
sum of three interacting "normal modes" or "oscilla-
tors. " In the linear regime the three modes reduce to the
usual independent solutions of the third-order differential
equation for the field amplitude derived from the linear
theory. Such modes are driven and coupled to each other
by the nonlinear contributions to the electron-radiation
FEL interaction, thus when the FEL system is in the
linear regime these modes are uncoupled, but their linear
dynamics is strongly modified as soon as the FEL enters
into the nonlinear regime. The model is introduced in
Sec. II, after a brief account of the microscopic equations
and of the linear theory.

In Sec. III we discuss two different possible ways of
reaching a self-contained dynamical description of such
"oscillators, " i.e., of writing a set of three nonlinear
differential equations that describe the FEL dynamics
both in the linear and in the nonlinear regimes and which
involve only the three modes. After this, we introduce
some simplifications of the two schemes, which are
sufficient to account for the main features of our
"coupled-modes" description. Finally, we obtain a
description of the radiation field that is sufficiently
correct both in amplitude and phase and is based on a
very simple system of three coupled nonlinear equations.
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In Sec. IV we conclude with a few remarks. Some de-
tails of the calculations are reported in Appendixes A and
B.

II. BEHAVIOR OF THE "NORMAL MODES"

dp;e d 0.= —( Ae '+ c.c. ) =-
dz dz2 '

=(e ' )+i5A
dz

(3)

(where j= I, . . . , N and c.c. means "complex conju-
gate"). Note that such equations are written in dimen-
sionless form according to the "universal scaling" adopt-
ed in Ref. [1], to which we refer for further details. Here
we only recall that 8 =(k+k )z. tet —2k—p5zj and

p, =(1/p)(y, yo)/yp are, respectively, the jth electron
phase in the "ponderomotive" field, determined by the
combined radiation-wiggler field, and the jth electron rel-
ative energy variation (y mc is the electron energy and

yomc is the initial energy of the electrons in the monoki-
netic beam). In the same scaling, z =2k~p(y„/yo)z is the
longitudinal coordinate, and A is the complex amplitude
of the vector potential of the radiation field, from which
we obtain the intensity of the electric field as
~E~ =

~ A~ 4mpnyomc Final.ly, 5=(1/2p)(yo —y„)/y„
is the detuning parameter that indicates how far the elec-
trons are from the resonance condition (an electron is
said to be "resonant" when the frequency of the radiation
emitted spontaneously matches that of the radiation to be
amplified). In these definitions we introduced the follow-
ing quantities: the "FELparameter"

i 2/3
1 To awp

4ckP XO, 7r

the wiggler parameter a =eh, B„/2nmc, the wiggler
period A, =2m. /k„, the plasma frequency Ap, the elec-
tron density n, the frequency of the radiation field
co =ck = (2'/A, )c, and the resonant electron energy
y„= [A,„(1+a )/2A, ]'~ .

The driving source of the radiation field is the electron
"bunching parameter"

—ieb—:(e ')—:—ge (4)

In a single-pass FEL a beam. of relativistic electrons in-
jected in a suitable magnetostatic field ("wiggler" ) in-
teracts with a copropagating electromagnetic radiation
field. Under proper conditions the system can behave as
a high-gain amplifier, generating tunable, coherent, high-
peaked power radiation. When propagation efFects (due
to the different velocities of the electron beam and of ra-
diation) and space-charge efFects are neglected, in the
steady-state Compton regime, the FEL basic physics is
well described by the following one-dimensional micro-
scopic equations, based on the slowly varying envelope
approximation for the radiation field [1,10]:

d0 =p

that represents the microscopic average distribution
along the coordinate z of a sample of N electrons in the
beam.

The general description of the FEL dynamics, based on
the numerical integration of Eqs. (1)—(3), shows that the
FEL is an unstable system where collective effects occur.
The electrons in the beam "self-bunch'* on a radiation
wavelength scale and the emitted radiation grows ex-
ponentially until nonlinear effects limit the conversion of
the electron kinetic energy into radiation energy, leading
to a saturation peak with subsequent oscillations in the
field amplitude.

An analytical description of the exponential growth in
the intensity of the electromagnetic signal inside the
wiggler is obtained by a linear stability analysis per-
formed on Eqs. (1)—(3) around the equilibrium state
defined by AO=0, (e ' )O=O, po=O. From the lineari-
zation of such equations we derive the approximate equa-
tion

A "'(z ) i 5 A "—(z )
—i A (z ) =0 (5)

and write formally the radiation field, for all values of z,
as

3

g a„(z)=A(z) .

The functions of a„(z ), which are obviously not complete-
ly determined by Eq. (7), can immediately be found by
following a procedure that is similar to the usual method

(where the prime denotes d/dz). Looking for solutions
of the form A(z) ~ e ' ', we see that the characteristic
equation associated with Eq. (5) is the cubic
k +5k —1=0. Since it admits two complex roots and
one real root [for 5 ( ( —", )'~ ], the complex root with posi-
tive imaginary part gives the exponential growth in the
complex amplitude A (z). The contributions from the
other roots are either merely oscillatory (corresponding
to the real root) or exponentially decaying (corresponding
to the complex root with negative imaginary part).

Hereafter we will restrict our discussion to the case of
exact resonance, i.e., 6=0. In this case the cubic equa-
tion reduces to the even simpler form k = 1 and it has
two "linearly stable" roots k, =1 and kz = ,' i&—3—/—2,
together with the "linearly unstable" root k3

,'+i &3/2—
Our current purpose is to extend the linear theory to

the nonlinear regime in a simple way. From the linear
theory we know that the complete solution for the radia-—fk Z
tion field has the form A (z)=g, ,a„e ",where a„are
suitable constants defined by the boundary conditions on
system (1)—(3) given at z=O and k„(r=l,2,3) are the
roots of the equation k =1. We assume that such an ex-
pression for the field A(z) is also valid in the nonlinear
regime. To do this, we let the amplitudes a, of the three
linearly independent solutions of Eq. (5) vary from their
originally constant values. In other words, we define the
functions

—ik„za„(z)=a„(z)e
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3

g k„a„(z)=—A "(z), (9)

of the variation of the arbitrary constants. In fact, Eq. (7)
is closed by taking its first and second derivatives with
respect to z, obtaining the two equations

3

g k„a„(z)=iA'(z),

I I I I

la (z)l (a)

'l. 0

I'i

i ',

l

i
1

J

I '

I

I

C

I

I

I \

t l

3

g a„'(z)e ' =0, (10)

provided that the functions a„(z) are chosen in such a
way that

0.0
'10. 0

z

20. 0

3

g k„a„'(z)e ' =0 .

If we consider the right-hand side (rhs) of Eqs. (7)—(9) as
given, such equations yield a linear algebraic nonhomo-
geneous system of three equations in the three unknown
functions a„(z ). The inversion of such a system allows us
to write

a„(z ) =—3[ A (z ) +ik„A '(z ) —k„A "(z )],

Ig (z)l
'l0

10

10

; g

I

I& l i ~ & & l & i i a ) s

'10. 0 20. 0

where we have used the equalities g3 ik„=0, k„=l,
k, k2k3 = 1, and k, k2+ k2k3+ k3k, =O.

The exact behavior of the three functions a„(z) is ob-
tained substituting the numerical solutions of Eqs. (1)—(3)
for A (z ), A '(z ), and A "(z ) and is reported in Figs. 1
and 2. The important point to note is that the amplitudes
of the two "linearly stable modes" ai(z) and a2(z) start
growing exponentially in a region where the total field
amplitude is still small with respect to the saturation
value.

Moreover, the growth rate of the functions la i (z ) l and
la2(z ) l

is equal to 3&3/2, i.e., their growth is three times
faster than the growth of the amplitude of the linearly
unstable mode a3(z) in the linear region. The "anoma-
lous" growth of the stable modes is the decisive feature of
our description, and it is analytically demonstrated in the
following section. It is interpreted in terms of a pumping
of the oscillator a3(z) upon the linearly stable modes.
The result is a forced exponential growth of a, (z) and
a2(z).

Furthermore, note also that when ai(z) and az(z)
reach the first peak of saturation their amplitudes are
comparable with that of a3(z). At this point a new re-
gime begins, where there are quasiperiodic energy ex-
changes between the three oscillators. We could say that
the large-amplitude oscillations in the radiation-field in-
tensity are precisely due to these energy exchanges be-
tween the three modes.

and recall that k„=1, by means of Eq. (7) we find

3

g k„za„'(z)e " = —A"'(z)+iA(z) . (13)

Equations (10), (ll), and (13) are a set of equations
equivalent to system (7)—(9) and to system (1)—(3), and
they provide a linear algebraic nonhomogeneous system
of three equations in the three unknown functions a„'(z ).
If we define the function C&(z ) such that

V '(z)
0.0
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FIG. l. (a) ~a, (z)
~

as a function of the dimensionless longitu-
dinal coordinate z for r=1 (dotted line), r =2 (dashed line),
r =3 (solid line). Also shown is the numerical solution of Eqs.
(l)-(3) for the field intensity

~
A(z)

~
{dot-dashed line). (b)

~a„(z) ~
vs z (log scale) for r= 1 (dotted line), r=2 (dashed line),

r=3 (solid line).

III. AN%I.VTICAI. MQDEI. 10.0 20.0

We now introduce the analytical "coupled-modes"
model, where the dynamics of a„(z ) is self-consistently as-
signed, instead of being written in terms of the numerical
solutions of the microscopic system (1)—(3) as in Eq. (12).
If we take a further derivative with respect to z in Eq. (9)

FIG. 2. Derivatives of the phases l(„lz) of the three modes

a„lz)=~a„(z)~e " vs z for r=l (dotted line), r=2 (dashed
if (z)

line), r=3 (solid line).
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4(z ) = —i A "'(z )
—A (z ),

the solution of the algebraic system of Eqs. (10), (11), and
(13) is the following:

l ikrZ
a„'(z ) = ——k„N(z )e

i.e., from definition (6),

The calculation is explained in Appendix A. The final re-
sult is the "collective'* nonlinear differential equation for
the radiation field

—iA"'(z) —A (z) = —2A'(z)[A (z) A'*(z) —c.c. ]

+2A-(z }IA(z }I'
a '„(z ) = —ik„[a„(z)+—,@(z) ] . (16)

(18)
Thus an analytical description of the FEL dynamics in
terms of the functions a„(z) is given if system (16) is
analytically closed on the variables a„(z ).

Actually, note that the functions a„(z) are driven and
coupled to each other by the quantity 4(z )—:

i A "'(z )——A (z }, which is the nonlinear contribution to
the interaction between the N electrons and the radiation
in the microscopic system (1)—(3). In fact, recalling that
the average value of a dynamic variable f(BJ,pI) is
defined as & f(8,p)&=(1/N)g+, f(8,p ), from system
(1)—(3) we obtain the exact equation (involving the collec-
tive variables &p e '

& and A*&e '
&)

where we supposed for simplicity l
A la=0. Note that the

nonlinearities that are present in the driving term (18) are
of third and fifth order in A (z ) and its derivatives. From
Eq. (18) we calculate the nonlinear driving function
@(z) —= i A —"'(z }—A (z ) in terms of the "oscillators"
a„(z) using Eqs. (7)—(9). The result is

3

4,(z)—:g I „„a„{z)a,(z)a, (z)
r, s, t =1

k„a„(z)a, (z)a, (z)a „(z)a,(z),
4(z ) = i A "'—(z )—A (z )

—:i&p'e ' &+A'(z)&e (17)
where

r, s, t, u, v =1

(19)

This is the reason why in the linear regime the functions
a„(z} are nearly constants [whose values are defined by
the boundary conditions at z =0 on the field A (z ) and its
derivatives], while their dynamics are strongly modified
as soon as the coupled electron-radiation system enters
into the nonlinear regime.

The "coupled modes" model can be analytically closed
on the variables a„(z) when the explicit dependence on
the electron dynamics can be eliminated from Eq. (17).
This is done by means of two different approaches, both
outlined in the following subsections. Details of the cal-
culations are reported also in the Appendixes A and B.

A. Collective scheme

In the first scheme the driving function (17) is ex-
pressed in terms of the variables A (z ), A '(z ), and A "(z )

by neglecting the "second-harmonic" contribution
A '(z) & e '

&, and by writing the following approximat-
ed expression for the quantity &p e

&p e ' &=b&p & 2b&p& +2&p&—&pe

This last equality was first introduced in the collective
variables model of an FEL [11] and is based on the fac-
torization ansatz

I „„=—(k„+k, )(k„+k, +k, ) . (20)

When the driving function (19) is considered, the solu-
tions of Eq. (16) give the total radiation field A(z)

,a, (z) shown in Fig. 3.

B. Iterative scheme

In the second scheme the electron dynamics is elim-
inated from the nonlinear driving function (17) by solving
Eqs. (1)—(3) through an iterative calculation that is simi-
lar to an iteration procedure used in a different context
by Kimel and Elias [6]. The calculation is given in detail
in Appendix B. Here we only say that it is performed
preserving the full pendulum nonlinearity both in the
phase equation (2) and in the field equation (3). This fact
leads to a nonlinear integro-differential equation for the
radiation field with nonlinear terms of all orders in A (z ).
The "series" that is generated in this way is truncated by
taking into account only nonlinear terms of the third or-
der in the field A (z). Although we limit ourselves to a
self-consistent third-order calculation, the scheme can, in
principle, yield all higher-order coupling terms.

The integro-differential nonlinear equation for the radi-
ation field is the following:

iA"'(z)——A(z)=2 Q'(z) f'dz'A(z')n (z') Q'(z) f 'd—z'A (z')Q(z )
0 0

+Q' (z)f dz 'A (z ')Q(z ') +2A*(z)f dz ' f dz "A (z ")Q(z ")
0 0 0

—Q'(z }Q'(z }—2Q(z) In'(z) I' —2Q'(z) A '(z), (21)
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would be generated writing from Eqs. (1)—(3) the exact
evolution equations for the macroscopic collective vari-
ables A, b, and P =—(pe ' }. In this way, the closed sys-
tem for the variables A, b, and I' reads

Note that the function I [ Ae' ](z ) takes into account the
pendulum nonlinearity.

Now we substitute the formal solution (83) for 0 (z ) in
the 6eld equation

A'=b, (A6) (
—i()(z) } (

' 0 iI[zie' ](z) }

P'= —A +2b( Ab ' —A *b ) —2b ( Ab* —A *b)()

+2i(I Al' —
I Ala)[P+b(I Al' —

I Alo)],

and is equivalent to system (16) when the complete cou-
pling function (I), (z ) as given in Eq. (19) is considered.

APPENDIX 8

In this appendix the driving function (17) is rewritten
as a function of the radiation field by an iterative ap-
proach on the microscopic equations

it9. (z)0"(z ) = —[ A (z )e ' +c.c.],
A (z)=(e '""}

and we expand the bunching parameter in Eq. (85) as a
power series in I [ Ae ' ](z ) up to the third order:

A'(z)=(e " (+(I[de' ](z)+—Iz[e(e'e](z)
2!

+ I [—Ae' ](z)3! (86)

If we substitute for 8(z) the formal solution (83) of the
nonlinear pendulum equation (Bl) we obtain

e('(z)=(e ' 1+(I[e(e 'e ' "' )'*'](z)

~ 2

I2[ A
' o —iI[Ae' ](z))(—)2'!

8 (Iz)=6 () I[Ae' ](—z),
where we have defined the function

(83)

We consider the solution of the pendulum equation (Bl): ~ 3

+ I'[Ae "e e(e' —"*'](z)
)

(87)

I[Ae' ](z)=f dz'f dz "[A(z")e ' +c c. ] (84)
0 0

and have considered a cold electron beam (i.e., pj O=O).

We see that in order to keep the nonlinear terms up to
third order in the radiation field A (z), each exponential
e ' t"' j"has to be further expanded as follows:

2

A'(z)=(e ".1+iI e(e '
1 —11[Ac '](z)+ I [Ae '](z) (I)

L

+—I'[ e(e "[1 —il[ Ae "](z)] ](z ) + I '[ Ae '](z ) )
. —

2! 3!

Performing explicitly the averages and taking into account that (e '}=0, by a twofold diff'erentiation of the final re-
sult we obtain

i A "'(z ) —A (z —) =2 Q'(z )f dz 'A (z ')Q*(z ')
0

—Q'(z) f dz 'A *(z ')Q(z ')+Q'*(z) f dz 'A (z ')Q(z ')
0 0

+2A'(z) f dz ' f dz "A (z ")Q(z ")—Q' (z)Q*(z)—2Q(z)IQ'(z)l —2Q (z)A *(z), (89)

where we have defined

Q(z)= f dz ' f dz "A(z ") . (810)
0 0

We observe that our calculation di6'ers from that of
Gallardo et al. performed in Ref. [7] since they neglect
the pendulum nonlinearity, replacing the function

iO
exp[iI[Ae' ](z)] with the function e pIxiI[A e](z)] in
the field equation (85). On the contrary, since we keep
the complete solution for 8.(z) both in the phase equa-
tion (81) and in the rhs of the field equation (85), our
scheme is actually based on a self-consistent third-order
expansion in the field equation.
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